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Abstract. Research on inconsistency-tolerant query answering usually
assumes that the terminological knowledge is correct, and only the facts
(ABox) need to be repaired. In this paper we study the problem of an-
swering instance queries over inconsistent ontologies, by repairing the
whole knowledge base (KB). Contrary to ABox repairs, when KB re-
pairs are considered, instance checking in DL-LiteHorn w.r.t. the brave
semantics remains tractable, and the intersection semantics allow for an
any-time algorithm. We also show that inconsistency-tolerant instance
checking w.r.t. ABox repairs is intractable even if only polynomially
many ABox repairs exist.

1 Introduction

Inconsistent-tolerant reasoning arose as a means of obtaining meaningful infor-
mation from an inconsistent knowledge base (KB). The main idea behind this
reasoning task is to consider the different ways in which the KB can be repaired
to avoid the inconsistency—or, more generally, any other observed error. The
most natural approach is to consider only consequences that follow from all
such repairs. This approach, which is at the root of the original consistent query
answering in databases [1], provides many logical guarantees. Most importantly,
it only yields answers that are certain in the sense that they will remain the
same, regardless of how the inconsistency is removed. However, providing these
answers tends to be computationally hard. In order to regain tractability, sev-
eral different semantics have been proposed [8, 20]. Two notable examples are
the brave semantics that require the consequence to follow from at least one
repair, and the intersection semantics that limit reasoning to the intersection of
all repairs.

The computational complexity of dealing with all these semantics has been
thoroughly studied for a wide variety of description logics, which have the capa-
bility of expressing terminological knowledge along with facts [6, 24, 35]. A run-
ning assumption in all this previous work is that the terminological knowledge
is always correct, and hence repairs are only made on the data (ABox repairs).
However, this assumption is not always valid, since ontology engineering is a
very error-prone task.

In this work, we consider the problem of inconsistent-tolerant query answer-
ing where repairs allow also parts of the terminological knowledge to be removed,



which we call KB repairs. To the best of our knowledge, the only work where
a similar problem has been considered before is [12]. In that work, they con-
sider the problem of inconsistency-tolerant query answering over KB repairs, in
a different logic. To guide our complexity analysis, we focus on instance check-
ing in the light-weight description logic DL-LiteHorn. This choice is motivated
by DL-LiteHorn being the largest member of the DL-Lite family where instance
checking remains tractable (w.r.t. so-called KB complexity). For the scope of
this paper, we focus only on instance checking as a first step towards dealing
with conjunctive queries. Moreover, we do not analyse the data complexity since
the problem depends strongly on the input terminological knowledge.

We show that under KB repairs, brave instance checking remains tractable.
Although cautious and IR semantics become conp-complete, we provide an any-
time algorithm for the latter, based on methods for enumerating minimal in-
consistent subKBs. Afterwards, we revisit the case of ABox repairs. We show
that hardness of this problem goes deeper than previously implied, as brave
and cautious instance checking cannot be solved in polynomial time even if only
polynomially many ABox repairs exist.

2 Preliminaries

We start by introducing the description logic DL-LiteHorn [4], along with the
main reasoning problems that we consider in this paper. The importance of
looking at DL-LiteHorn is that it is one of the largest members of the DL-Lite
family that remains tractable w.r.t. combined complexity.

Let NC , NR, and NI be mutually disjoint sets of concept, role, and individual
names, respectively. The classes of DL-Lite concepts B, and roles R are defined,
respectivley, by the syntax rules:

B ::= A | ∃R | ⊥
R ::= P | P−

where A ∈ NC and P ∈ NR. A DL-LiteHorn TBox is a finite set of concept
inclusions (CIs) of the form B1 u · · · u Bn v B, n ≥ 1, where each B,Bi is a
concept, and role inclusions (RIs) R1 v R2, where R1, R2 are roles. An ABox is
a finite set of assertions of the form A(a) or P (a, b) with A ∈ NC , P ∈ NR, and
a, b ∈ NI . A knowledge base (KB) is a pair (T ,A), where T is a TBox and A an
ABox.

The semantics of this logic is based on interpretations. An interpretation is
a pair I = (∆I , ·I), where ∆I is a non-empty set called the domain and ·I is
the interpretation function that maps every a ∈ NI to an element aI ∈ ∆I ,
every A ∈ NC to a set AI ⊆ ∆I , and every P ∈ NR to a binary relation
RI ⊆ ∆I×∆I . This interpretation function is extended to concepts and roles by
setting (P−)I := {(y, x) | (x, y) ∈ P I}, ∃RI := {x ∈ ∆I | ∃y.(x, y) ∈ RI}, and
⊥I := ∅. The interpretation I satisfies the CI B1u· · ·uBn v B if

⋂n
i=1B

I
i ⊆ BI .

It satisfies the assertions A(a) and P (a, b) if aI ∈ AI and (aI , bI) ∈ P I , respec-
tively. This interpretation is a model of the TBox T (ABox A, respectively), if



it satisfies all the CIs in T (all the assertions in A, respectively). It is a model
of the KB (T ,A) if it is a model of both, T and A.

To simplify the notation, throughout this paper we will often speak of KBs as
finite sets of CIs and assertions, unless the distinction between ABox and TBox
is relevant. Set operations between KBs are defined in the obvious manner, by
operating over each component. For example, if K = (T ,A) and K′ = (T ′,A′),
then K ∩ K′ := (T ∩ T ′,A ∩A′) and K ∪ K′ := (T ∪ T ′,A ∪A′).

Two of the most basic reasoning problems in description logics are deciding
consistency of a KB and instance checking. A KB is consistent if it has a model.
The individual name a is an instance of the concept B w.r.t. the KB K (denoted
by K |= B(a)) if aI ∈ BI holds for all models I of K. It is known that deciding
consistency and instance checking in DL-LiteHorn is polynomial on the size of
the KB, which is usually known as the KB complexity in the query answering
literature.

When a KB is inconsistent, its lack of models means that all logical conse-
quences follow trivially. In particular, every individual is an instance of every
concept w.r.t. an inconsistent KB. Thus, instance checking is uninformative in
this case. Inconsistency-tolerant semantics have been introduced as a way to ex-
tract meaningful information from inconsistent KBs by considering some or all
the ways in which the inconsistency can be avoided through a repair.

Definition 1. Let K = (T ,A) be an inconsistent KB. A KB repair of K is a
consistent KB K′ = (T ′,A′) with T ′ ⊆ T ,A′ ⊆ A such that for all T ′ ⊆ T ′′ ⊆ T
and all A′ ⊆ A′′ ⊆ A it holds that (T ′,A′′) and (T ′′,A′) are inconsistent.

An ABox repair of K is a maximal (w.r.t. set inclusion) subset A′ ⊆ A such
that (T ,A′) is consistent.

Intuitively, a KB repair is obtained by removing the least amount of axioms
from a KB to regain consistency. An ABox repair is similar, but assuming that
the TBox is correct, thus removing only assertions from the ABox. This latter
notion is the one most typically used in the literature of inconsistency-tolerant
reasoning. For the rest of this paper, we will use the generic term repair to
encompass both, KB- and ABox repairs.

It is easy to see that repairs are not unique in general. In fact, a single KB may
contain exponentially many repairs (see e.g. [22]). We denote by RepK the set of
all repairs of K. Depending on how these repairs are used, different inconsistency-
tolerant semantics can be defined. We present the three most commonly studied,
focusing on the case of instance checking.

Definition 2. Let K be an inconsistent KB, a ∈ NI and B a concept. We say
that a is a:

– cautious instance of B (K |=c B(a)) if R |= B(a) holds for every R ∈ RepK;

– brave instance of B (K |=b B(a)) if R |= B(a) holds for some R ∈ RepK;

– intersection repair (IR) instance of B (K |=IR B(a)) if
⋂
R∈RepK

R |= B(a)
holds.



When it is relevant to distinguish the class of repairs under consideration, we will
denote it through a superscript on the entailment relation. Thus, K |=KB

c B(a)
refers to cautious entailment w.r.t. the set of all KB repairs, while for K |=A

b B(a)
the inference is made w.r.t. ABox repairs only.

Notice that every IR instance is a cautious instance, and cautious instances
themselves are always brave, as long as the input KB is inconsistent. Interest on
IR semantics has arisen since they have been shown to provide some tractability
guarantees for different scenarios.

The dual notion of a repair is that of a MinA—also known as justification [16,
18, 28] or MIPS [33, 34]—which is a minimal inconsistent sub-KB of K. We
will denote the set of all MinAs as MinK. It is well known that repairs and
MinAs are dual in the sense that the set of all MinAs can be obtained from all
the justifications, and vice versa, through the complementation of all Hitting
Sets [5, 31].1 A simple consequence of this duality is that the union of MinAs
complements the intersection of repairs; that is,

⋃
M∈MinK

M = K \
⋂
R∈RepK

R.
Notice that although the computation of Hitting Sets is an important problem
with applications in many fields of computer science [15], its precise complexity
remains unknown. It has been shown that this problem can be solved in a time
bound below no(log n), which implies that it is most likely not conp-hard [14]. It
is conjectured that, together with several computationally equivalent problems,
it forms a class properly contained between p and conp [13].

An important property that will be useful in the following sections is that if
K is an inconsistent KB, then every consistent sub-KB of K can be extended to
a repair, by adding axioms that do not affect its consistency. Analogously, every
inconsistent sub-KB of K can be reduced to a MinA, by removing all superfluous
axioms. Thus, for instance, brave instance checking is equivalent to deciding the
existence of a consistent sub-KB R (not necessarily maximal w.r.t. set inclusion)
that entails the desired instance relation.

Finally, to simplify the presentation of the paper, we assume w.l.o.g. that the
concept ⊥ appears only in CIs of the form B1 u · · · u Bn v ⊥, where for every
i, 1 ≤ i ≤ n, Bi 6= ⊥. Notice that a CI that contains ⊥ on its left-hand side
is trivially satisfied by every interpretation, and would hence appear in every
repair, and in no MinA.

3 Instance Checking Under KB Repairs

In this section, we study the case where KB repairs are taken into account.
The case of ABox repairs will be the focus of the following section. As the
result depends on the whole KB, including the TBox, it does not make much
sense to consider the data complexity, in which only the size of the ABox is
taken into account. Thus, in the following we focus on the KB complexity only,
without mentioning it explicitly in every instance. In previous work [8] it has
been shown that inconsistency-tolerant instance checking in DL-LiteHorn w.r.t.

1 A hitting set for e.g. RepK is a set S that satisfies S ∩R 6= ∅ for every R ∈ RepK.



ABox repairs is hard in general, even if one focuses on the simpler brave and
intersection semantics. We show that the same does not hold if KB repairs are
taken into account. Indeed, as we show next, brave instance checking remains
tractable in this case.

Theorem 3. Brave instance checking w.r.t. KB repairs can be decided in poly-
nomial time.

Proof. Given a KB K = (T ,A) and an individual a ∈ NI , let Aa be the sub-
ABox of A that contains only the assertions that refer to a; that is, Aa contains
all axioms A(a), P (a, b), and P (b, a) appearing in A with A ∈ NC , P ∈ NR,
and b ∈ NI . Define T> := T \ {B1 u · · · u Bn v ⊥ ∈ T }, to be the sub-
TBox of T that does not use ⊥. Clearly, a is a brave instance of the concept
B iff (T>,Aa) |= B(a). Since (standard) instance checking in DL-LiteHorn is
polynomial, we obtain the desired upper bound. ut

Unfortunately, tractability does not extend to the other two semantics. As we
show next, hardness for cautious and IR instance checking is a consequence of
the intractability of finding simple paths in a graph that cross through a given
edge.

Theorem 4. Cautious and IR instance checking are conp-complete.

Proof. The upper bounds are obvious, so we focus only on showing hardness
through a reduction from the following np-hard problem: given a directed graph
G = (V, E), two nodes v, v′ ∈ V and an edge e ∈ E , decide whether there is a
simple path from v to v′ in G that passes through e.

Let G = (V, E), v, v′ ∈ V, and e = (u, u′) ∈ E , be an instance of this decision
problem. We assume w.l.o.g. that the edge (v, v′) does not appear in E , and that
u, u′ are both different from v and v′. These cases can be dealt with easily. For
every w ∈ V \ {v, v′} create a concept name Bw, and additionally create two
individual names a, b. Then, we construct the DL-LiteHorn KB KG = (T ,A),
where

T := {Bw v Bw′ | (w,w′) ∈ E , v, v′ /∈ {w,w′}} ∪ {Bw v ⊥ | (w, v′) ∈ E},
A := {Bw(a) | (v, w) ∈ E} ∪ {Bu(b)}.

It is easy to see that there is a simple path from v to v′ passing through (u, u′)
iff there is a repair for KG that does not contain the axiom Bu v Bu′ . Thus,
such a path exists iff b is not a cautious instance nor an IR instance of Bu′ . ut

Interestingly, despite this hardness result, the duality between MinAs and repairs
can be exploited to produce an any-time algorithm for deciding intersection
repair instances. The main idea of this algorithm consists on enumerating all the
possible MinAs for inconsistency of the KB. Since the union of all MinAs and
the intersection of all repairs are complements of each other, any set of MinAs
provides an approximation of the intersection of all repairs. If it is possible to
enumerate all MinAs with only a polynomial (on the size of the KB) delay



between each new output, then we can efficiently improve this approximation in
polynomial time steps.

A first step towards developing this algorithm is to show that MinAs can
be enumerated in polynomial delay. It was previously shown that this holds
for DL-LiteHorn TBoxes, but the case in which an ABox considered was left
open [29,30]. We build on those previous ideas and provide an algorithm capable
of handling ABoxes too.

First, we make a small simplifying assumption. For the following approach,
we assume that the TBox contains no role inclusions R1 v R2. Notice that, in
the case of DL-LiteHorn, this assumption is without loss of generality since the
role inclusion R1 v R2 can be equivalently expressed through the CI ∃R1 v ∃R2.

Our algorithm is based on the notion of a hypergraph. Formally, a (directed)
hypergraph is a pair H = (V, E), where V is a finite set of vertices and E is a set of
edges of the form V → v, where V ⊆ V and v ∈ V. Given two vertices v, w ∈ V,
a path from v to w in H is a sequence of edges P = V1 → v1, . . . , Vn → vn such
that for every i, 1 ≤ i ≤ n, Vi ⊆ {v} ∪

⋃i−1
j=1{vj} and vn = w. Such a path is

called simple if no subsequence of P is also a path from v to w.
Given a KB K = (T ,A), we construct a directed hypergraph HK as follows.

The set of vertices VK of HK contains one element va for each individual name a
appearing in the ABox A, and an element wB for every concept B appearing in
the KB K; that is, either in the TBox or in the ABox. We call the vertices of the
form va individual nodes. The set of hyperedges of this hypergraph is defined by
EK := ET ∪ EA, where

EA := {va → wB | B(a) ∈ A} ∪ {va → w∃R, vb → w∃R− | R(a, b) ∈ A},
ET := {{wB1 , . . . , wBn} → wB | B1 u · · · uBn v B ∈ T }.

It is easy to see that K is inconsistent iff there is a path from some va to w⊥ in
HK. More interestingly, every simple path of this kind corresponds to a MinA
for the inconsistency of K. Unfortunately, this relationship between simple paths
and MinAs is not bijective. As the following example shows, two simple paths
may correspond to the same MinA.

Example 5. Consider the DL-LiteHorn KB Kexa = (Texa,Aexa) defined by

Aexa := {P (a, b), P (b, a), C(a)}
Texa := {∃P u ∃P− v B, B v ⊥, C u ∃P v ⊥}.

The hypergraph HKexa is depicted in Figure 1(a). Two simple paths from an
individual node to w⊥ are shown below (Figures 1(b) and 1(c)). Clearly, both
paths correspond to the same MinAM = (T1,A1) with A1 := {P (a, b), P (b, a)}
and T1 := {∃P u ∃P− v B,B v ⊥, }.

In order to enumerate all MinAs with polynomial delay, we thus try to enumerate
all the simple paths leading from an individual node to w⊥, but taking care of
removing all those paths that would yield a repeated MinA. The idea behind
the enumeration of all simple paths in a hypergraph is, given one such path,



va

vb

w∃P

w∃P−

wB w⊥

wC

(a) HKexa

va

vb

w∃P

w∃P−

wB w⊥

(b) P1

va

vb

w∃P

w∃P−

wB w⊥

(c) P2

Fig. 1. The hypergraph HKexa from Example 5, and two simple paths.

construct a set of sub-hypergraphs that partition the set of all remaining simple
paths from an individual node to w⊥, in the sense that each such path exists
in exactly one of the generated sub-hypergraphs. The main insight needed for
dealing with the repetition of MinAs is that role assertions R(a, b) generate two
hyperedges in HK, even though they correspond to the same ABox axiom. Thus,
these two hyperedges need to be always considered simultaneously: either they
are both included, or both excluded in the search of a new simple path.

One (arbitrary) simple path from an individual node to w⊥ can be found in
polynomial time using standard techniques [25,27]. Given such a path P, let va
be the (unique) individual node appearing in it. Then, by definition P is of the
form L1 → r1, . . . , Ln → rn, where n is the size of P. Intuitively, the sequence
defined by P provides an ordering of the edges in such a way that all the required
nodes to traverse an edge are visited before the head is observed.

Given P and n := |P|, we define n subgraphs of HK as follows. For each
i, 1 ≤ i ≤ n, let

H′i := HK \
⋃

i<j≤n

{L→ r ∈ HK | r = rj , L 6= Lj}.

Then we define

Hi :=

{
H′i \ {va → w∃R, vb → w∃R−} if Li → ri was created by R(a, b) ∈ A,

H′i \ {Li → ri} otherwise.

Example 6. Consider again the KB Kexa from Example 5, and the path P1 de-
picted in Figure 1(b), which is defined by the sequence

va → w∃P , va → w∃P− , {w∃P , w∃P−} → wB , wB → w⊥
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Fig. 2. The subgraphs H1, . . . ,H4 of HKexa obtained from P1.

The four subgraphs H1, . . . ,H4 of HKexa obtained through this path are depicted
in Figure 2. As it can be seen from the figure, only H4 contains a path from
an individual node to w⊥. This path represents the only other MinA for the
inconsistency of Kexa.

Intuitively, each hypergraph Hi can only contain paths reaching w⊥ in which the
last edges coincide with the last n − i edges of the path P. For that reason, in
the previous example only H4 contains the edge {wC , w∃P } → w⊥; in all other
subgraphs, this edge is removed to guarantee that only paths ending with the
edge wB → w⊥ are considered. Taking this intuition into account, it is easy to
see that the following result holds.

Lemma 7. Let P be a simple path from some individual node va to w⊥ in HK,
and Hi, 1 ≤ i ≤ n := |P| constructed as above. Then, for every MinA M, if
P 6⊆ HM, then there exists exactly one i, 1 ≤ i ≤ n such that HM contains a
MinA for inconsistency in Hi.

Notice that the setsHi can be all computed in polynomial time. Hence, Lemma 7
suggests an approach for enumerating all MinAs with only polynomial delay be-
tween answers. Recall here that our interest is not in enumerating these MinAs
per se, but rather on finding their union to answer intersection repair instance
queries in any-time. Algorithm 1 shows an approach for doing this. The algo-
rithm iteratively updates the intersection of all repairs (stored in the set U) and
checks whether this KB still entails the instance query q. As soon as the answer
is no, the algorithm stops and returns this answer. Otherwise, it answers yes.
This algorithm can be stopped at any time, in which case, only an (upper) ap-
proximation of

⋂
R∈RepK

R is computed. Although the answer (yes) in this case



Algorithm 1 Any-time intersection repair instance query answering.

Procedure ic(K,q) (K inconsistent DL-LiteHorn KB, q instance query)

1: U ← K
2: all-MinAs(HK,q)
3: return “yes”

Procedure all-MinAs(HK,q)

1: M← a MinA in HK
2: U ← U \M
3: if U 6|= q then return “no”

4: for 1 ≤ i ≤ |M| do
5: compute Hi from M
6: if there is a path from an individual node to w⊥ in Hi then
7: all-MinAs(Hi,q)

is not guaranteed to be correct, the approximation gets tighter in polynomial
intervals.

We now turn our attention to inconsistency-tolerant instance query answering
when repairs are limited to removing assertions from the ABox only.

4 Instance Checking Under ABox Repairs

Answering inconsistency-tolerant instance queries under ABox repairs has been
shown to be harder, in terms of computational complexity, to standard instance
query answering over KBs [6–8]. The blame for this increase in complexity is
often laid on the exponential number of repairs available. We argue that the
issue goes deeper than this argument suggests showing that brave and cautious
instance checking are hard already for KBs having polynomially many ABox
repairs. One reason behind this result is the fact that even knowing whether a
set of repairs is equal to RepK is computationally expensive.2

Definition 8. Let K be a KB and R a set of ABox repairs of K. The problem
all-reps consists on deciding whether R = RepK.

Theorem 9. all-reps is conp-complete.

Proof. We prove conp-hardness through a reduction from the negation of the
following np-complete problem [31]: given a monotone Boolean formula ϕ (that
is, a propositional formula without negations) and a set V of valuations of the
variables in ϕ, decide whether there exists a maximal valuation V of the variables
in ϕ that falsifies ϕ and does not contain any valuation in V.3

Given an instance ϕ,V of this problem, let sub be the set of all subformulas
of ϕ, and csub the subset of sub not containing any propositional variable. For

2 Throughout this section, RepK denotes the set of all ABox repairs.
3 For simplicity, we identify a propositional valuation V with the set of variables that

it makes true.



each ψ ∈ sub, we create a concept name Aψ, and for every ψ ∈ csub define the
TBox

Tψ :=

{
{Aξ1 uAξ2 v Aψ} if ψ = ξ1 ∧ ξ2
{Aξ1 v Aψ, Aξ2 v Aψ} if ψ = ξ1 ∨ ξ2.

Let now

Tϕ,V :=
⋃

ψ∈csub

Tψ ∪ {Aϕ v ⊥}

Aϕ,V := {Ax(a) | x is a variable from ϕ}.

It is easy to see that R := {(Tϕ,V, {Ax(a) | x ∈ W}) | W ∈ V} is the set of all
ABox repairs of (Tϕ,V,Aϕ,V) iff every maximal valuation falsifying ϕ contains
some W ∈ V. ut

Since all repairs can be computed in exponential time, e.g. by testing all possible
sub-KBs, this theorem intuitively means that there exist KBs that have poly-
nomially many repairs, but finding them all requires super-polynomial time. In
terms of enumeration complexity theory, the set of all repairs cannot be com-
puted in output polynomial time [17].

Obviously, Theorem 9 does not imply that inconsistency-tolerant semantics
are necessarily hard on the number of repairs. However, it does give an indica-
tion that efficient algorithms cannot rely on finding all repairs. We strengthen
previous results by showing that these problems remain hard even in the number
of ABox repairs. First, we recall the notion of repair-polynomial from [22].

Definition 10. An inconsistency-tolerant decision problem w.r.t. a KB K is
called repair-polynomial if it can be solved by an algorithm that runs in polyno-
mial time on the size of both K and RepK.

Theorem 11. Cautious instance checking w.r.t. ABox repairs is not repair-
polynomial, unless p = np.

Proof. We show this result through a reduction similar to the one presented in
the proof of Theorem 9. Given ϕ and V, we construct the TBoxes Tψ and the
ABox Aϕ,V as in the forementioned proof. But now we set

T ′ϕ,V :=
⋃

ψ∈csub

Tψ ∪ {Aϕ v ⊥} ∪ {
l

x∈W
Ax v B | W ∈ V},

where B is a fresh concept name. Then a is a cautious instance of B w.r.t.
Kϕ := (T ′ϕ,V,Aϕ,V) under ABox repairs iff every maximal valuation falsifying ϕ
contains some W ∈ V. Notice that (T ′ϕ,V,Aϕ,V) has as many ABox repairs as ϕ
has maximal valuations falsifying it.

Suppose now that brave instance checking was repair-polynomial. Then,
there would be an algorithm for solving it that would run in time bounded
by p(K, |RepK|), where p is a polynomial. Then, we can decide whether there



is a new maximal valuation falsifying ϕ by running this algorithm for time
p(Kϕ, |RepKϕ

|). If it answers no or does not finish in that time bound, then
a new valuation exists. Otherwise, the no new valuation exists. ut

A similar method can be used to prove that brave instance checking is not
repair-polynomial either.

Theorem 12. Brave instance checking w.r.t. ABox repairs is not repair-poly-
nomial, unless p = np.

Proof. We use an idea similar to the proof of Theorem 11, but using a reduction
from the following np-complete problem [5, 10, 11]: given a monotone Boolean
formula ϕ and a set V of valuations, decide whether there exists a minimal
valuation V that satisfies ϕ and does not contain any valuation in V.4

Given an instance ϕ,V of this problem, we construct the TBoxes Tψ, ψ ∈ csub
and the ABox Aϕ,V as in the proof of Theorem 9. We define

T ′′ϕ,V :=
⋃

ψ∈csub

Tψ ∪ {
l

x∈W
Ax v ⊥ | W ∈ V}.

Then, a is a brave instance of Aϕ iff there exists a valuation satisfying ϕ that does
not contain anyW ∈ V. Using the same argument from the proof of Theorem 11,
this shows that brave instance checking is not repair-polynomial. ut

To the best of our efforts, we have not been able to find a similar hardness
result for IR instance checking. However, it is possible to show that the any-time
method described in the previous section cannot work when dealing with ABox
repairs. The reason behind this negative result is that ABox MinAs cannot be
enumerated with polynomial delay. In fact, they cannot be enumerated in output
polynomial time.

Theorem 13. Given an inconsistent KB K and a set M of ABox MinAs of K,
deciding whether M = MinK is conp-complete.

Proof. We show hardness through a reduction from the same np-complete prob-
lem used in the proof of Theorem 12.

Given an instance ϕ,V of this problem, we construct Tϕ,V and Aϕ,V as in
the proof of Theorem 9. Then, M := {(Tϕ,V, {Ax(a) | x ∈ W}) | W ∈ V} is the
set of all ABox MinA of (Tϕ,V,Aϕ,V) iff every minimal valuation satisfying ϕ
contains some W ∈ V. ut

Using standard techniques from enumeration complexity (see e.g. [19]), it is easy
to show that Theorem 13 implies the impossibility of enumerating in output
polynomial time.

Corollary 14. All ABox MinAs of an inconsistent DL-LiteHorn KB cannot be
enumerated in output polynomial time (unless p = np).

4 One can think of this problem as the dual of the one considered in the proof of
Theorem 9.



5 Conclusions

We have studied the complexity of answering inconsistency-tolerant instance
queries under different semantics considered in the literature for the description
logic DL-LiteHorn. To the best of our knowledge, we are the first to consider any
case of inconsistent-tolerant query answering problems under KB repairs. In the
literature, the TBox is typically considered to be correct and fixed [20,21,23,24,
32,35].

We have shown that considering KB repairs reduces the complexity of incon-
sistency-tolerant instance checking. Indeed, although cautious and IR instance
checking is shown to be intractable, the brave semantics can be verified in polyno-
mial time in this case. Moreover, we provided an any-time algorithm for verifying
IR instances. The algorithm is based on enumerating all MinAs with polynomial
delay, and verifying that the complement of their union (which increasingly ap-
proximates the intersection of all repairs) still entails the desired instance query.
A simple consequence of this algorithm is that IR instance checking is MinA-
polynomial ; that is, it can be solved in time polynomial on the size of the KB
and the number of MinAs.

For the cautious semantics, it remains open whether instance checking w.r.t.
KB repairs is repair-polynomial or MinA-polynomial. Given recent work on the
enumeration of maximal consistent subformulae of a Horn formula [26], it is
likely that repairs in DL-LiteHorn can be enumerated with polynomial delay,
which would suggest a repair-polynomial algorithm for cautious instance check-
ing. In practical terms, however, a MinA-polynomial algorithm would be more
interesting. Indeed, empirical analyses have shown that realistic ontologies typ-
ically contain very few MinAs, but a very large number of repairs [2, 3, 22].

When restricting to ABox repairs, we have shown that the causes for hardness
for the inconsistent-tolerant semantics go beyond the sheer number of repairs
available, as suggested in previous work. We have shown that brave and cautious
instance checking are not repair-polynomial. This means that these problems
may take super-polynomial time, even for KBs that have a polynomial number
of repairs. In addition, the any-time algorithm proposed for IR instance checking
under KB repairs cannot work for ABox repairs, since ABox MinAs cannot be
enumerated in output polynomial time, much less with a polynomial delay.

The study of repair-polynomial and MinA-polynomial algorithms is much
in the spirit of parameterized complexity theory [9]. In this context, repair-
polynomial is analogous to fixed-parameter tractability where the number of re-
pairs is the fixed parameter. It thus makes sense to try to understand the precise
parameterized complexity class to which these problems belong. Dually, it would
be interesting to find other meaningful parameters under which tractability can
be regained.

Another important open question is the effect on the complexity when more
complex queries, such as conjunctive queries, are considered instead of the simple
instance queries that were the scope of this paper. We conjecture that brave and
cautious conjunctive query answering is not repair-polynomial even under KB
repairs. A thorough analysis of this case will be the focus of future work.



We conclude by highlighting that there exist other inconsistency-tolerant se-
mantics beyond the three studied in this paper; see [8] for some examples. These
differ mainly on the properties of the repairs that are considered for making an
inference. If our conjecture is correct and all KB repairs from a DL-LiteHorn

KB can be enumerated with polynomial delay, then most of these semantics will
be repair-polynomial under KB repairs. However, this result is unlikely to be
helpful in practice. Thus, in future work we will focus on developing specialized
techniques and finding special cases for which inconsistency-tolerant instance
checking—and conjunctive query answering in general—remains feasible.
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