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IKR3 Research Lab, University of Milano-Bicocca,
rafael.penaloza@unimib.it

Abstract. Axiom pinpointing refers to the task of finding the specific
axioms in an ontology which are responsible for a consequence to follow.
This task has been studied, under different names, in many research
areas, leading to a reformulation and reinvention of techniques. In this
chapter, we present a general overview to axiom pinpointing, providing
the basic notions, different approaches for solving it, and some varia-
tions and applications which have been considered in the literature. This
should serve as a starting point for researchers interested in related prob-
lems, with an ample bibliography for delving deeper into the details.

1 Introduction

Intelligent applications need to represent and handle knowledge effectively. For
that reason, many different knowledge representation languages have been de-
veloped, providing formal semantics and reasoning methods for deriving implicit
consequences from explicitly represented elements (also called axioms). As these
knowledge bases or ontologies grow, they become harder to maintain and verify;
and when—inevitably—errors occur, they are harder to understand and cor-
rect. Indeed, it is nowadays common to encounter knowledge bases with tens-of-
thousands of axioms, and detecting the handful of them responsible for a given
consequence would be impossible without the help of an automated tool.

Axiom pinpointing refers to the task of identifying the axioms in a knowledge
base that are responsible for a given consequence. Assuming that the represen-
tation language is monotonic (that is, adding new knowledge does not remove
any previous consequences), a relevant set of axioms is nothing more than a
subset-minimal subontology which still entails the consequence under consider-
ation. Such a set is called a justification. It is not difficult to see (and will be
exemplified in the following sections) that there may exist multiple justifications
for a single consequence. It is thus important to try to compute them all, for a
full understanding of the derivation.

Understanding the causes of a consequence are not just instrumental for
knowledge engineers to understand the ontologies they work on. Axiom pin-
pointing is also a relevant step for repairing modeling errors which could have
been introduced through misunderstanding, automated knowledge extraction,
or merely typing or methodological errors. Identifying the potentially faulty ax-
ioms is the first step towards correcting the error. A third usecase for axiom



pinpointing—beyond analysis and repair—is explainability: if an intelligent sys-
tem makes a decision based on a reasoning process, it is important to be able to
explain the reasoning behind this decision to all the stakeholders involved.

We provide a general overview of axiom pinpointing over many different
representation languages. Although we use terminology and results primarily
developed in the context of description logics [4], we try to keep the presentation
as general as possible to include other well-known monotonic formalisms like
databases, logic programming, and propositional logic. Our goal is to describe
what the main reasoning tasks associated to axiom pinpointing are, provide the
basic templates for solving them, and present a few variants and applications
from the literature. This general description should serve as a first step towards
a unified description of the tasks for different areas of knowledge representation,
and aid in a common development of new methods and tools.

2 Axiom Pinpointing

To make the presentation as general as possible, we consider an abstract notion
of an ontology language, which has four components: a class A of well-formed
axioms; a class C of consequences; a class O ⊆Pfin(A) of valid ontologies, where
Pfin(X) is the class of all finite subsets of X, such that if O ⊆ O′ and O′ ∈ O,
then O ∈ O (that is, every subset of an ontology is also an ontology); and an
entailment relation |= ⊆ O× C, expressed in infix notation, such that for every
two ontologies O,O′ ∈ O and consequence c ∈ C, if O |= c and O ⊆ O′, then
O′ |= c; that is, the entailment relation must be monotonic w.r.t. the ontology.

We note that in some existing work on axiom pinpointing and related topics,
an ontology is often defined to be just a finite set of axioms, which is a special
case of our definition. We decided to use this more general notion to account
for syntactic restrictions that are common in description logics. For example,
it allows for acyclic TBoxes, but also for the syntactic restrictions imposed to
guarantee decidability of reasoning in SROIQ ontologies [4, 27]. It also allows
for other languages not typically considered ontological, such as propositional
formulas in conjunctive normal form (CNF) or constraint satisfaction problems,
to name just two examples.

To aid the understanding of the notions presented here, we will use a very
simple ontology language dealing with reachability in finite graphs. Specifically,
given a countable set V of vertices, let A = C = {(v, w) | v, w ∈ V }; that is,
axioms and consequences are given by ordered pairs of vertices (called edges),
and O = Pfin(A). Intuitively, an ontology is a finite graph, and O |= (v, w) iff w
is reachable from v in the graph O. For example, the graph G in Figure 1 (a) is
one such ontology, and G |= (u,w) but G 6|= (w, u). Importantly, this is only an
example of a very simple ontology language, but many of the intuitions obtained
from it apply also to more complex langauges.

For any given ontology language, the main reasoning task is to decide en-
tailments. Formally, given an ontology O ∈ O and a consequence c ∈ C, we are
interested in deciding whether O |= c holds. Depending on the specific language
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Fig. 1. The ontology G depicted as a graph (a), and three justifications for the conse-
quence (u,w) (b)–(d).

considered, different methods can be developed to solve this reasoning task,
and its computational complexity may vary. In fact, already within the family
of description logics, we can find examples where the complexity of entailment
checking varies from polynomial time up to doubly-exponential time. Moreover,
there exist ontology languages with an undecidable entailment problem, but for
the scope of this work we focus only on cases where this problem is decidable
with complexity C. Once that adequate methods for deciding entailments have
been developed, one is often interested in solving more complex reasoning tasks.

Axiom pinpointing is a non-standard reasoning task, which focuses on iden-
tifying the axioms that are responsible for a consequence to follow from an
ontology. Formally, axiom pinpointing is the task of identifying one or all the
justifications for a given consequence, where a justification is a minimal sub-
ontology that still entails the consequence.

Definition 1 (justification). Let O be an ontology and c a consequence such
that O |= c. The sub-ontology M ⊆ O is called a justification for c w.r.t. O iff
(i) M |= c and (ii) for every M′ (M, M′ 6|= c.

Here we are using the standard name from description logics, but it is worth not-
ing that justifications are known with different names by different communities.
For example, they are also known as MUSes in SAT [36], MESCs in CSP [43],
causes in DBs [41], and MIPS, MUPS, and MinAs in DLs [45,51].

Consider for example the graph G from Figure 1 (a), which entails the con-
sequence (u,w); that is, w is reachable from u. This consequence has three jus-
tifications, which are the three subgraphs (b)–(d) of the same figure. Note that
there exist other sub-ontologies that still entail (u,w), but these contain at least
one of the justifications depicted, and hence are not subset-minimal. In general,
when an ontology corresponds to a graph, a justification for the consequence
(u, v) is a simple path from u to v.

Technically, it is not difficult to come out with algorithms which compute one
or all justifications. The simplest approach is to exploit the existing reasoners and
find justifications through repeated entailment checks. This approach is known
as black-box because it uses the reasoner without any modification. A black-box
method for computing one justification is described in Algorithm 1. It tries to
remove each axiom from the ontology, as long as it still entails the consequence.



Algorithm 1: Compute one justification

Data: Ontology O, consequence c
Result: A justification M for c w.r.t. O

1 M←O
2 for α ∈ O do
3 if M\ {α} |= c then
4 M←M\ {α}

5 ReturnM

An invariant of the for loop is that M |= c, hence the resulting set satisfies the
first condition from Definition 1. Moreover, by monotonicity of |= the resulting
set cannot have any superfluous axioms, meaning that it is a justification. The
resulting justification obtained through this algorithm depends on the order in
which the axioms are selected for removal, but independently of the order, each
axiom needs to be tested exactly once.

To find all justifications, one can simply enumerate all possible sub-ontologies
M⊆ O and verify for each of them that they entail c and that no strict subset
entails c as well. Any such M is a justification. This method requires to check
exponentially many times (i.e., once for each subset of O) whether an ontology is
a justification. Obviously, the number of checks can be greatly reduced simply by
taking into account the monotonicity of the entailment relation: if a set O′ ⊆ O
is such that O′ |= c, then there is no need to control any strict superset of O′.
Indeed, any such superset still entails c, but will not be minimal. Conversely, if
O′ 6|= c, then no subset of O′ can be a justification because it cannot entail c.
Other optimisations can be considered. For example, [29] presents an enumera-
tion method based on Reiter’s Hitting Set Tree method [49], which guides the
search for new justifications. However, as we will see later, one cannot avoid
testing exponentially many sets. In the following section we analyse this, and
other complexity issues in more detail.

3 Complexity

In this section, we consider computational complexity issues related to axiom
pinpointing. We have already seen two basic algorithms for computing one or
all justifications, but it remains unclear whether more advanced techniques can
provide improvements in terms of worst-case complexity. Although our goal is to
understand the computational problem of finding the justifications, to analyse
the complexity we consider their decision variants.

Definition 2 (is-just,all-just). is-just is the problem of deciding, given an
ontology M and a consequence c, whether M is a justification of c. all-just
is the problem of deciding, given an ontology O, a consequence c, and a set
{M1, . . . ,Mn} of sub-ontologies of O, whether M1, . . . ,Mn are all the justifi-
cations of c w.r.t. O.



3.1 One Justification

Recall that the first condition for a justification is that it still entails the con-
sequence c. Hence, entailment is a sub-problem of is-just. In particular this
means that is-just is necessarily at least as hard as entailment. More formally,
if entailment is hard for the complexity class C, then is-just must be C-hard
as well. Note also that Algorithm 1 can be easily modified to decide is-just as
well: if the test in line 3 succeeds at any point, then the input ontology O is
not a justification and the method can exit with failure; if the whole loop runs
without exiting, then O was a justification. In the worst case, this algorithm
has to make one call to the entailment test for each axiom in O. This means
that is-just can be decided through polynomially many entailment tests; that
is, is-just is in PC, if entailment is in C. Note that if C is at least PSpace, then
the polynomial enumeration can be absorbed into the C oracle.

Proposition 3. If entailment is C-complete for C at least PSpace, then is-just
is C-complete as well.

The consequence of this proposition is that there is no need to analyse the
complexity of is-just for expressive ontology languages with complex entailment
relations. For example, in any propositionally closed description logic, where
entailments w.r.t. a so-called TBox are ExpTime-complete, is-just is ExpTime-
complete as well. However, the black-box method for deciding this problem still
leaves a gap when the complexity of entailment C is below PSpace; in those
cases, C is usually smaller than PC and hence C-hardness vs. in PC are not tight
bounds. The only exception is if C = P, where we again have that PC = P.

To understand the complexity of finding justifications, several ontology lan-
guages with lower-complexity entailments—mainly polynomial—have been stud-
ied. Unfortunately, the picture that arises from these studies is more complex
than what is observed in Proposition 3. For example, there are ontology lan-
guages, such as the language of propositional formulas in CNF, whose entailment
problem is NP-complete, but is-just is DP -complete [47].1

Before considering the computation of all justifications, note that there are
many important variants of is-just which may be considered. As we will see
later, it is sometimes relevant to order the justifications according to some pref-
erence (e.g., size) and is-just becomes the problem of deciding whether a sub-
ontology is the most preferred justification in terms of this ordering. This, of
course, requires additional tests, and the complexity may change accordingly.
For a study on how the complexity is affected by the preference relation and
the ontology language see [47]. In that work, several ontology languages whose
entailments can be decided in polynomial time were analysed as a means to
understand where the complexity of axiom-pinpoining tasks arises.

1 DP is the class of problems which can be solved by one NP and one coNP test. It
is believed to be strictly contained in ∆P

2 = PNP.



3.2 All Justifications

If we want to solve all-just, we can once again consider the black-box algorithm
described in the previous section. For each of the input sets M1, . . . ,Mn, we
verify in PC that they are justifications, and afterwards we need to verify that no
other set is a justification. The latter task can be performed through a PSpace
enumeration of all possible sub-ontologies, checking for each of them that they
are not a justification. Hence, overall, we can solve all-just with a PSpaceC

algorithm. As in Proposition 3, the PSpace base method can be absorbed into
the oracle C if the latter is at least PSpace itself.

Proposition 4. If entailment is C-complete for C at least PSpace, then all-
just is C-complete as well.

While this proposition is very similar to the case for one justification, the PSpace
base at the algorithm makes the gap between the lower and upper bounds, for
ontology languages having simpler entailment tests, larger. Indeed, while for
deciding whether a set is a justification we incur in a jump at most of one level
in the polynomial hierarchy (if C belongs to it), for all-just the increment goes
all the way to the limit of this hierarchy at once. The gap can be reduced by
considering the following idea: if an input is not an instance of all-just, we
can verify it by guessing (in NP) a new set N which does not contain any of the
Mis and verifying (in C) that N |= c. Thus, all-just is in coNPC.

The landscape of complexities also gets more complex in this case. There exist
ontology languages with polynomial entailment problems for which all-just
is polynomial, coNP-complete, or hard for an intermediate class, respectively.
There is also a language with NP-complete entailment problem for which the
exact complexity of all-just is unknown.

So far, the discussion has focused on deciding all-just, but in fact we are
more interested in being able to enumerate all the justifications (rather than
deciding whether a set of sub-ontologies is indeed the class of all of them). The
first thing to notice when dealing with the enumeration of justifications is that
it is impossible spend less than exponential time on this task. Indeed, even for
the very simple ontology language that we are using as an example (that is, for
reachability in graphs), it is easy to build an example of a consequence that has
exponentially many justifications w.r.t. an ontology [12]. For example, there are
2n justifications for (v, x) w.r.t. the graph from Figure 2. As before, this means
that a full enumeration requires at least exponential time (but only polynomial
space if found justifications are not preserved in memory). Thus, for expressive
ontology languages, the black-box algorithm for computing all justifications is
optimal in terms of complexity.

When dealing with enumeration problems, one can consider alternative com-
plexity classes which take into account also the total number of answers, and
the time needed to obtain new answers [28]. Alternatively, one may try to count
the number of justifications available [60]. Also in this case, the enumeration
complexity varies with the specific ontology language, and whether a specific
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Fig. 2. A graph which produces exponentially many justifications.

ordering is requested. For ontology languages related to directed graphs and hy-
pergraphs, the justifications can be enumerated with polynomial delay ; that is,
allowing polynomial time (on the size of the ontology) between two successive
answers if no order is required. This enumeration still requires total exponential
time, although polynomial in the number of justifications, if an order is required.
For the light-weight description logic EL, on the other hand, there is no algorithm
that can enumerate all justification in total polynomial time. This means that
there must exist consequences with polynomially many justifications, for which
the enumeration problem requires super-polynomial time. For counting, in all the
ontology languages with polynomial-time entailments studied so far (including
our example language), the complexity is #P-complete while for propositional
logic, where entailment is NP-complete, counting the number of justifications
becomes #NP-complete.

4 Glass-box Algorithms

We have seen that black-box algorithms are complexity-optimal for expressive
ontology languages, including the most common description logics—specifically,
for any DL with value restrictions—assuming that an optimal implementation
of the standard reasoning method exists. In addition, these algorithms are easy
to implement and, as they only require repeated calls to an unmodified reasoner,
can keep up to date with the newest optimisations and improvements. For that
reason, they have become the approach of choice in those settings; for example,
the explanation service in Protégé [32] is implemented as a black-box. Nonethe-
less, it is important to study more targeted approaches, which have the potential
of behaving better in practice. This is particularly true for ontology languages
whose complexity of reasoning is strictly below PSpace.

The so-called glass-box approaches to axiom pinpointing are based on a mod-
ification of the original reasoning algorithms to be able to identify the justifica-
tions. In a nutshell, any reasoning algorithm must at some point consider the
axioms in the ontology to decide whether the consequence follows. The idea of a
glass-box algorithm is to trace which axioms were used during this process, yield-



ing candidates for justifications, or the whole class of justifications, depending
on how the tracing mechanism is implemented.

In DLs, the first proposals for a glass-box algorithm for pinpointing were
based on a modification of the tableaux-based reasoning method for reasoning
in ALC. This modification was originally designed for defeasible reasoning [5].
The idea was slowly improved and generalised to allow for more expressive lan-
guages [34,44,51] until a general approach for transforming tableaux-based rea-
soning methods into pinpointing algorithms was developed in [11]. The main
drawback observed in these glass-box proposals is that, to guarantee that all
the relevant axioms have been traced, important optimisations from the original
decision algorithm have to be disabled. For example, for standard reasoning it
suffices to halt the execution of the tableaux when the desired consequence is
obtained, but for pinpointing one must continue until all possible derivations
have been explored. As a consequence, these pinpointing extensions do not be-
have well in practice. An additional disadvantage highlighted in [11] is that the
pinpointing extension of a terminating tableau algorithm is not guaranteed to
terminate in general. On the other hand, some basic properties which are sat-
isfied by all DL tableau algorithms suffice for guaranteeing termination. For a
description of these properties, and how they apply to DLs, see [11].

Following a different idea, [10] introduced a pinpointing approach based on
weighted automata. Briefly, the approach takes an existing automata-based rea-
soning method, and transforms it into a pinpointing approach by adding weights,
belonging to the free distributive lattice, to all the transitions of this automa-
ton. The behaviour of the weighted automaton obtained this way is a compact
representation of all the justifications of the consequence. The main advantage
of this approach is that it is optimal in terms of worst-case complexity. However,
as in standard automata-based reasoning, the best-case complexity also matches
the worst case, making it impractical for real applications, at least for standard
ontology languages.2

To-date, the most successful approach which could be called glass-box is
based on a translation of the execution of a consequence-based algorithm into
a propositional formula. In essence, one tries to reduce an axiom pinpointing
problem to pinpointing in a well-known ontology language for which efficient
implementations exist. The original idea was introduced in [52,53] for the light-
weight DL EL, but can be easily generalised to other consequence-based algo-
rithms. Very briefly, consequence-based algorithms work by applying rules over
the explicitly represented knowledge (originally, the ontology) to make some
of its implicit consequences explicit. The method from [52] introduces a new
propositional variable for each consequence, and a Horn clause simulating each
possible rule application. Moreover, it adds the representative variable of each
axiom of the original ontology.

2 For some ontology languages, like the variant of linear temporal logic used in [10],
this approach could be practical. However, at the moment there is no empirical
evidence to support this claim.



As a very simple example, consider our graph ontology language, where the
entailment relation is reachability. In this case, a consequence-based algorithm
would only have the rule {(X,Y ), (Y, Z)} → (X,Z) expressing that if we have
the (explicit) knowledge that the ontology entails (X,Y ) and (Y, Z), then we
can derive that it also entails (X,Z). From this rule, and the graph in Figure 1,
we obtain a set of Horn clauses which contains, among others,

x(u,v) ∧ x(v,w) → x(u,w), x(u,v) ∧ x(v,x) → x(u,x), x(u,v) ∧ x(v,y) → x(u,y),

x(u,x) ∧ x(x,w) → x(u,w), x(u,x) ∧ x(x,y) → x(u,y), x(u,y) ∧ x(y,u) → x(u,u).

The ontology is then represented through the variables

x(u,v), x(u,w), x(v,w), x(v,x), x(v,y), x(x,w), x(x,y), x(y,u).

The conjunction of all these elements yields a Horn formula F that entails the
variable representing each relevant consequence. Hence, for example F |= x(u,w).

In order to find the justifications for a consequence c w.r.t. the ontology
O, one needs only to enumerate the justifications for the consequence variable
xc w.r.t. the set of Horn clauses F , with the difference that the Horn clauses
simulating the execution of the rules are always present; that is, a justification
may only remove from the formula variables representing the original ontology.

In essence, what this translation does is to reduce axiom pinpointing in an
arbitrary ontology language which accepts consequence-based reasoning into ax-
iom pinpointing in propositional logic (or, indeed, in Horn logic). The advantage
is that we can then focus on the development of highly-efficient pinpointing tools
for this very specific ontology language, which can be further optimised taking
the shape of the obtained problem into account. Indeed, this idea has given rise
to many axiom pinpointing tools for EL+; an extension of EL for which reasoning
remains tractable [3]. Out of these systems [2,38,39,53], the most efficient, and
only one currently capable of computing all the justifications for all the 5415670
atomic entailments from the very large ontology Snomed—is PULi [30].

The Grey-Box Approach

Before looking into different applications and variations of axiom pinpointing,
we would be amiss to ignore a popular approach for finding one justification,
which combines the glass-box tracing approach with the black-box method from
Algorithm 1; hence, it is usually called grey-box. The main idea, as with the glass-
box approach, is to trace all the axioms used to prove the entailment of a conse-
quence, through the application of an algorithm; for example, in a tableau-based
or consequence-based algorithm. However, in contrast to the case for finding all
justifications, we stop once the consequence is derived. This yields a set of ax-
ioms that is not guaranteed to be a justification, but from which the consequence
still follows. That is, it might still require some pruning of superfluous axioms
to become a justification. On the other hand, this limited tracing only imposes
a minimal overhead to the original decision algorithm, and does not affect the



existing optimisations. Moreover, the resulting set tends to be much smaller than
the original ontology, and very close to a justification. Once this smaller ontol-
ogy is found, it can be minimised by a call to the black-box method, yielding
a justification. Note that this second step needs to check potentially much less
axioms than a direct use of Algorithm 1 on the original ontology.

This grey-box approach was used originally by the CEL system [9] to find
justifications efficiently for EL, where the goal was not to find them all, but
only a relevant subset. A similar idea is followed in the database community to
trace the facts which provide an answer to a query. Although, to the best of
our knowledge, there is no implementation of the grey-box approach for more
complex ontology languages, or based on other kinds of algorithms, it should be
relatively straightforward to modify a tableaux-based tool for this purpose.3

An important drawback of the grey-box algorithm as described above is that
the sub-ontology obtained by the tracing step is only guaranteed to contain one
justification. This means that if one is interested in potentially finding more
justifications, then the whole process needs to be started anew for each succes-
sive solution. To alleviate this problem, some work has focused on computing
justification-preserving modules; that is, sub-ontologies which are still guaranteed
to contain all the justifications for a given consequence. Ideally, these modules
should be fast to compute and still be small enough to guarantee that all jus-
tifications can be extracted from them following, e.g. the black-box approach,
efficiently. It has been observed that different modularization methods yield ad-
equate solutions in this direction. Usually, these modules are based on syntactic
or semantic relationships between the axioms of the ontology [20, 57, 58]. More
recently, a modularization method based on a modification of a consequence-
based reasoning algorithm was proposed first for formulas in propositional logic,
and later extended to description logics [33, 40, 42, 46]. These approaches mod-
ify the tracing technique of the glass-box method. As usual, they keep track of
the axioms that are being used during the execution of the algorithm for de-
riving new knowledge, but instead of distinguishing between different derivation
paths, they are all stored in one single set. This simple modification avoids the
problems with termination of the original glass-box approach, but provides more
information than just following one derivation as in the description of the grey-
box approach above. In empirical analyses, this approach has shown to be very
helpful for solving axiom-pinpointing related tasks.

5 Applications and Variations

The task of axiom pinpointing as defined in Section 2 has been extended to cover
a large class of variations, and can be used to solve different reasoning tasks.

The simplest generalisation which we can consider is to allow some parts
of the ontology to be fixed; that is, consider a justification to be a minimal
subontologyM that, when added to a fixed ontology Of , entails the consequence.

3 Although a grey-box algorithm was described for the DL reasoner Pellet [56], to our
knowledge the pinpointing tools in this reasoner are fully black-box.



This application makes sense in the context of debugging, when we trust some
axioms, and we do not want to look into them when trying to understand or
correct an erroneous consequence. We have also observed its use in the reduction
from consequence-based algorithms to axiom pinpointing in SAT in Section 4.
Further generalising this idea, one can consider the atomic elements to be not
axioms, but rather sets of axioms. In the literature, these have been called group-
MUSes [36] or contexts [7]. Note that these contexts may appear implicitly in
several applications. For example, in consequence-based algorithms [54, 55], a
common pre-processing step is to modify the ontology into a given normal form.
In those cases, several separated axioms may have been produced by a single
original statement, and thus should all be considered together. Another setting
where considering sets of axioms makes sense is to find classes of modules of
different kinds where a consequence can be derived. In this case, we can group
axioms according to the atomic decomposition of the ontology [61].

Returning justifications at the granularity of (sets of) axioms from the origi-
nal ontology is not always satisfactory. These may hide some relevant information
or, conversely, be too complex to be understood or managed adequatedly by do-
main experts. Hence some research—specially in DLs—has considered building
different representations. One direction produces so-called laconic and precise
justifications [25] which, from a very abstract point of view, provide only the
specific pieces of the axioms which are really responsible for the consequence,
removing any superfluous information. The other direction combines several ax-
ioms into lemmas, which remove excessive detail and become easier to read [26].
More recently, single justifications of partial entailments have been used to pro-
vide understandable explanations for a derivation [1].

In a similar direction, more recent work has focused on the goal of minimally
modifying ontologies through weakening [8,59]. Very briefly, after a justification
has been found, its axioms are modified to weaker ones in order to get rid of the
consequence. Hence, this process goes one step beyond pinpointing by further
identifying the strongest possible weakenings which yield the desired result. Note
that axiom pinpointing is a special step of this idea, where the only possible
weakening an axiom is to replace it by a tautology.

Regarding the computation of all justifications, it is sometimes convenient
to try to enumerate them in a specific order. For example, one may want to
observe the smallest (w.r.t. cardinality) justifications first, or alternatively have
a pre-specified order for accessing them. Obviously, once that we can compute
all the justifications, it is also possible to order them before showing them to the
user, but this brings a large overhead in general. To understand the issue better,
the complexity of enumerating justifications w.r.t. some natural orderings has
also been studied, with the unsurprising result that it depends not only on the
ontology language, but also on the chosen order [47].

Axiom pinpointing is not only useful for understanding and potentially cor-
recting consequences from an ontology, but it has also found applications aiding
different kinds of supplemental and non-standard reasoning tasks. Perhaps the
most studied and applied to date is related to the representation and handling



of uncertain knowledge. When dealing with probabilities, several semantics and
applications use axiom pinpointing, albeit often implicitly. In probabilistic logic
programming [48], the probability of an inference is given by the probabilities
of combinations of facts that entail it (together with a fixed program) which
correspond to the justifications of an ontology. This idea was generalised to de-
scription logics under the so-called Disponte semantics [50]. In these approaches,
it is assumed that all the uncertain elements are probabilistically independent.
To lift this assumption, newer approaches include a Bayesian network which
expresses the joint probability distribution of the axioms (or more in general,
contexts) of the ontology [16,19,21]. For all these approaches, axiom pinpointing
provides a helpful intermediate step which can be exploited also for approximat-
ing solutions. For example, finding the justification with the highest probability
can often yield a good approximation for the full probability. In terms of possi-
bility theory, when using the standard min-max semantics, it is well known that
it suffices to find one justification with the highest possibility degree [13].

Another application is in the context of access control, where one wants to
provide only partial views to an ontology to different users [6]. Here, axiom
pinpointing is not only useful to find out the access levels (that is, the contexts)
where a consequence is derivable, but also to suggest changes in the access level
of axioms in order to hide or open implicit consequences to some users [31].

There is a current interest in being able to reason in the presence of inconsis-
tencies or errors in an ontology [14, 15, 35, 37]. In this case, we are interested in
finding so-called repairs, which correspond to the dual notion of a justification;
that is, maximal subontologies which do not entail the consequence under con-
sideration. Axiom pinpointing comes into place in this case in two different ways.
On the one hand, repairs can be computed from justifications through a hitting
set computation. On the other hand, most of the techniques developed for axiom
pinpointing (and in particular, the black-box methods) can be easily adapted to
compute repairs directly, usually leading to the same complexity bounds [45].
Still, keeping this dual view is often helpful for finding new research problems.

To finish this brief overview on applications, we mention provenance [18,
22–24], which has a similar motivation, but different development, to axiom
pinpointing. Originally developed for databases, and later extended to DLs, the
goal of provenance is to track the origins for an answer to a query, in terms of
the facts used to derive it. The main difference with axiom pinpointing is that
with provenance one is also interested in finding how often an axiom (or group
of axioms) is used in the derivation, and that minimality is replaced by a weaker
notion, where all axioms need to be relevant, but they may be superfluous.

6 Conclusions

We have presented a general overview on axiom pinpointing: what it is about,
how it is usually tackled, and its main applications and variations. We insist
here that, although most of the terminology used was originally introduced in
the context of description logics, we have tried to keep the presentation as general



as possible to include the notions developed in many other areas of knowledge
representation and reasoning. This general presentation is a first step towards
a unified view of the problem of finding the axiomatic causes for consequences
in different languages, which should ultimately lead towards an exchange of
techniques, problems, and tools between areas.

Clearly, the work on axiom pinpointing does not finish with this content.
There exist many applications and variations to the problem which have not been
mentioned, or commented only briefly, and which would require much more space
to explore in detail. Even for the ones which were more thoroughly commented,
there are usually many open problems which still require some additional work.
Moreover, even at its basic state, axiom pinpointing is not fully resolved. For
example, in terms of its practical application, the development of efficient tools
for more expressive languages—or, even better, for general use—is still missing.
A new line of research was also introduced very recently with the notion of
strong inconsistency [17], which allows extending some of the notions of axiom
pinpointing to non-monotonic logics as well.

There are many specialised techniques developed in areas other than descrip-
tion logics (e.g., databases, CSP, and SAT). Some of these techniques are general
enough to allow their applicability across other areas with minor modifications.
Alternatively, it may be possible to reduce problems between areas as done in
the reduction to propositional logic described here. This allows to focus on one
specific problem, and using advanced engineering techniques for its effective so-
lution.
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11. Baader, F., Peñaloza, R.: Axiom pinpointing in general tableaux. Journal of Logic
and Computation 20(1), 5–34 (2010). https://doi.org/10.1093/logcom/exn058
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