
Introduction to Probabilistic Ontologies
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Abstract. There is no doubt about it; an accurate representation of
a real knowledge domain must be able to capture uncertainty. As the
best known formalism for handling uncertainty, probability theory is of-
ten called upon this task, giving rise to probabilistic ontologies. Unfor-
tunately, things are not as simple as they might appear, and different
choices made can deeply affect the semantics and computational proper-
ties of probabilistic ontology languages. In this tutorial, we explore the
main design choices available, and the situations in which they may be
meaningful or not. We then dive deeper into a specific family of prob-
abilistic ontology languages which can express logical and probabilistic
dependencies between axioms.

1 Introduction

Ontologies, in the computer-science sense of “representations of a knowledge do-
main” present a prominent research area of interest within the general umbrella
of Artificial Intelligence, and more precisely in Knowledge Representation. In-
deed, any intelligent agent should have, in one way or another, a representation
of the knowledge of its active domain, so that it is able to react to observations
of its environment in an adequate manner.

Within the context of the Semantic Web, ontologies have been identified as
an appropriate manner to represent, combine, and in general use distributed
knowledge from different sources into specific applications. Notably, beyond the
general view of knowledge inter-connectivity, many industrial players, knowledge
domains, and other users are building specialised ontologies for fitting their own
needs. This has led not only to a large collection of ontologies dealing with all
sorts of domain areas and large repositories holding them but, more importantly,
with a plethora of languages which are used to build them. Abstracting from the
specific peculiarities of these languages (and to avoid the need to clarify at each
point which language is taken under consideration), we will see an ontology ba-
sically as a (typically finite) set of constraints that define how different elements
of the knowledge domain should relate to each other. In particular, we focus on
a setting where the ontology language has an underlying logical interpretation.
The use of logic-based formalisms allows us to provide formal semantics, and
guarantees of correctness for entailment methods. Thus, we can speak about
consequences that follow from a given ontology; informally, these are pieces of
knowledge that are implicitly (rather than explicitly) encoded in the ontology.



With the success of ontology languages and the proliferation of ontologies,
the usual limitations of classical logic for modelling expert knowledge come more
prominently to light. One particular gap is that of representing uncertainty. Un-
fortunately, in many domain areas it is simply not possible to represent adequate
knowledge without some level of uncertainty. A typical domain where uncer-
tainty is commonly found is in medicine. Indeed, there are almost no certainties
in medical sciences, when it comes to diagnose and cure a disease. This is be-
cause different people present different symptoms and express them in diverse
manners, but also due to the limits in our capacity to observe the disease itself.
Let us justify this statement with a few examples.

Suppose that a patient complains about intense abdominal pain, and very
high fever. If the patient is young, and without any other known medical is-
sues, we can expect (with a high level of certainty) that they are suffering from
appendicitis; however, without additional testing and controls, this diagnosis
cannot be certain. Another example appears in viral testing. Some viral infec-
tions are tested via a respiratory swab which has a limited precision, with a
small possibility of error. In simple terms, a positive result in the swab provides
a likelihood, but no certainty, of the infection. Finally, there exist diseases like
Chronic Traumatic Encephalopathy (CTE) which cannot be diagnosed before
death [21]. Indeed, although there are some signs and symptoms which may
indicate the development of this ailment, the only way to know that someone
suffers from CTE is to observe their brain closely.

Although medical sciences provide good and understandable examples of un-
certain knowledge, uncertainty is not intrinsic to medicine only. Manufacturing
processes occassionally produce defective pieces; the voting intentions of a pop-
ulation can be predicted by other behaviours, up to a margin of error; weather
forecasts and natural disaster predictions are never fully accurate. There are
countless examples which could be enumerated here.

Given the overall presence of uncertainty in these areas, it makes sense to try
to include a way to represent it and use it within ontology languages. The most
prominent approach for handling uncertainty is, without any doubt, probability
theory. Hence, without intending to diminish any other formalisms, in this work
we focus only on probabilities, with the goal of building probabilistic ontologies.
From a very high level point of view, the idea is very simple: just add a prob-
abilistic interpretation to the constraints forming the ontology, and adapt any
reasoning and derivation methods to handle these probabilities. But the devil,
as always, is in the details. Once we start to look closely into the formalisms, we
realise that there are many choices to be made. First and foremost, how do we
interpret these probabilities? Another important choice is how to combine dif-
ferent statements meaningfully. This is specially relevant since probabilities, in
contrast to most logical formalisms, are not truth- functional; that is, one cannot
compute the probability of a complex event based only on the probabilities of
its components.

As there are many choices to be made about the probabilistic interpretation,
several probabilistic ontology languages have been studied in the literature, many



of which will be mentioned throughout this tutorial. Indeed, each classical on-
tology language can potentially give rise to many different probabilistic ontology
languages. The field is so rich that it would be impossible to study them all in
detail in a work like this. Instead, our goal is to explain the different choices,
their motivation, their advantages, and their disadvantages in a manner that
a user interested in representing probabilistic knowledge is able to identify the
right choices. To achieve this goal, we introduce what we call the Five Golden
Rules: five high-level considerations that must be kept in mind when dealing
with probabilistic ontologies. These rules are by no means complete; they are
not even at the same level of abstraction. They are mereley intended as a sim-
ple way to remember some of the most relevant aspects which characterise the
different formalisms.

The rest of this tutorial is structured as follows. We start by providing an
abstract definition of ontology languages and ontologies, which will be the base
of the rest of the work. In the same section, we enumerate several examples of
ontology languages, to showcase the generality of our definitions, and the scope
of our work. Section 3 helps as a primer to uncertainty, and more specifically
probability theory. It introduces all the notions needed for the following sections,
including conditional and joint distributions, random variables, and Bayesian
networks. After this general introduction, we combine both formalisms to define
probabilistic ontologies in Section 4. We also briefly discuss some formalisms
that are left out from our definition. The Five Golden Rules are presented in
Section 5. The “rules” are given mnemonic names to help clarify their scope. The
last section before the conclusions focuses on a specific probabilistic ontology
language which is built by a combination of hypergraphs and databases, and
different independence assumptions. It is meant as an example of a language
which can be constructed from our notions, and the choices made following the
golden rules.

2 Ontologies

In a very abstract sense, an ontology is merely a description of the world, or
a relevant segment of it. In more practical terms, an ontology introduces all
the terms of interest within a domain, and their relationships; that is, it is a
representation of domain knowledge. This representation helps to understand,
share, improve, and in general use the domain knowledge across applications.
Depending on the domain of interest, the application at hand, and the desired
properties of the description, different kinds of languages may be more or less
suitable. This has motivated the introduction and study of many different knowl-
edge representation languages.

Nowadays, the terms ontology or ontology language in the context of knowl-
edge representation is most likely to remind us about the Web Ontology Lan-
guage (OWL) from the Semantic Web [24] or, for the younger ones among us,
of Knowledge Graphs (KGs). Already these two terms evoque a large variety
of languages, from the different formalisms used in modern KGs [4, 14], to the



existing OWL 2 profiles [54], to the many description logic [2] formalisms that
are less expressive than SROIQ [40], the logic underlying OWL 2. Despite this
variety, one can easily think of features which are not covered by any one of these
languages. For example, they cannot express temporal constraints, or limit the
number of objects that satisfy a given property.

For most of this tutorial, we will be interested in the problem of extending
ontology languages with probabilities. Since the general underlying ideas do not
depend on the specific language, we will consider an abstract notion of ontology
language which covers the examples enumerated above, but includes also other
members. To make the ideas accessible, we will instantiate them in a simple
language throughout several examples. Nevertheless, the reader should keep in
mind that different languages satisfy different properties. These properties, their
motivation, and some of the consequences of choosing them are discussed in
further detail in Section 5.

For our purposes, an ontology language is a logical language which describes
a knowledge domain by imposing constraints on how the underlying terms can
be interpreted. Looking at ontology languages in this general form allows us to
handle all these languages (and some more) simultaneously, without having to
worry about their specific properties. In this way, we can also understand how
the probabilistic component affects the notions within a language. A similar
general definition of ontology has been used before, in a different context [60].

Formally, an ontology language is a tuple L = (A,O,C, |=), where A is a
countable set of well-formed axioms, C is the set of consequences, O ⊆P(A) is
the set of acceptable ontologies—where an element O ∈ O is called an ontology—
and |= ⊆ O × C is the entailment relation, which will be written using an infix
notation. The only constraints imposed into these components are that the class
of acceptable ontologies is closed under subsets, and that the entailment relation
is monotonic. In formal terms, this means that for all O,O′ ⊆ A such that
O ⊆ O′ and all c ∈ C, (i) if O′ ∈ O, then O ∈ O, and (ii) if O′ ∈ O and
O |= c, then O′ |= c. When O |= c we say that O entails c or that c is entailed
by O. Although this definition does not require it, we will often assume that
an ontology is finite; that is, that it contains finitely many axioms. This makes
sense in the context of knowledge representation.

Some Ontology Languages

We now present some examples of ontology languages, which will help clarify
our general definition and the choices made in future sections.

Graphs. One of the simplest ontology languages one can think of is that of
graphs [29]. Formally, given a countable set V of nodes we define the ontology
language LG := (AG,OG,AG, |=) where AG := V × V , OG := P(AG), and |= is
the reachability relation; that is, for a graph G ⊆ AG and nodes u, v ∈ V , we
have that G |= (u, v) iff v is reachable from u in G.

In this case, the axioms of the ontology are the edges in the graph, and
an ontology is a set of edges. Keeping in line with the assumption mentioned



before, we often restrict to finite graphs. Note that for this language—and for
others which we will present later—the class of axioms and the class of conse-
quences coincide. However, their elements are interpreted in a different manner;
the pair (u, v), when seen as an axiom, represents an edge in the graph, while as
a consequence it represents a question about reachability. We will see in further
examples that these two classes need not coincide in general.

The attentive reader may already be wondering why we have decided to use a
class of acceptable ontologies O ⊆P(A) rather than allowing any set of axioms
to be an ontology. The reason is, of course, that for some applications, we might
want to avoid an overhead or other issues caused by arbitrary sets of axioms.
For example, if in our application we are only interested in acyclic graphs, or in
trees, we may simply restrict the class of acceptable ontologies to reflect this fact;
e.g., in the former case, we can define LAG := (AG,OAG,AG, |=) where AG and |=
are as before, but now OAG := {G ⊆ AG | G is acyclic}. Note that the class OAG

is closed under subsets as required by the definition of ontology languages; that
is, if G is an acyclic graph, then every subgraph of G is also acyclic. We will see
other examples where considering only a restricted class of acceptable ontologies
may become fundamental for the effectiveness of entailment decisions.

Prolog. Another well known formalism which can be considered an ontology
language is Prolog. Here we briefly introduce only a restricted version to give
the general idea. A (simplified) Horn clause is a logical implication of the form
∀x.(∃y.ϕ(x,y)→ p(x)) where x and y are vectors of variables, ϕ is a conjunction
of predicates using the variables in x and y, and p is a single predicate. A fact
is a term p(a), where p is a predicate and a is a vector of constant symbols. The
language LP is defined by the tuple (AP,OP,CP, |=) where AP is the class of all
Horn clauses and facts, OP := Pfin(AP) is the set of all finite subsets of AP, CP

is the class of all facts, and |= is the standard entailment relation for first-order
logic, restricted to the simple implications involved. Note that in this case, the
class of consequences is a strict subset of the class of axioms. In Prolog, we are
not interested in finding other clauses which can be derived from an ontology,
but only new facts which are implicitly encoded in it.

Databases. To include a formalism that is not typically considered an ontology
language, but still fits within our definition, we consider (relational) databases.
In this setting, we have a database, which is composed by a set of tables which
satisfy a relational schema. The tables in the database can be abstracted to a
set of ground terms p(a) (or facts, as in the previous setting), where the arity
and other properties of the predicate p are constrained by the schema, which is
essentially a set of first-order formulas. Under this view, the set ADB of axioms of
the database ontology language LDB contains all the possible facts and schema
formulas; the class of acceptable ontologies ODB includes all finite sets of axioms
where the facts comply with the schema, the class of consequences CDB is the set
of all positive Boolean queries, and |= is the standard entailment relation from
databases to queries. In this case, the classes of axioms and consequences are
different. Note also that we restrict CDB to contain only positive queries. Indeed,



if we allowed arbitrary queries, then the closed-world semantics of databases
would violate the monotonicity condition over |=; that is, a query which uses
negation may follow from a given database, and not follow anymore after a
single fact has been added to it.

HL. As a running example for this tutorial, we will consider a simple ontology
language which combines the properties of (hyper)graphs and databases, with
the semantics similar to what Prolog programs can do. The logic itself takes its
form as a very inexpressive description logic (and hence the name), and also fits
within some limited definitions of knowledge graphs (see e.g. [5]). Consider two
disjoint sets NC and NI of concept names and individual names, respectively.
An inclusion axiom is an expression of the form S → T , where S ⊆ NC is a
finite set of concept names and T ∈ NC ; a fact is of the form A(a) with A ∈ NC
and a ∈ NI . We consider both, inclusion axioms and facts as axioms of our
ontology language; that is, AHL is the set of all inclusions and facts. As acceptable
ontologies, we allow all finite subsets of AHL: OHL := Pfin(AHL). Intuitively,
an HL ontology is composed of a finite hypergraph (defined by the inclusion
axioms) and a finite set of facts; i.e., HL combines hypergraphs with data. For
that reason, we will henceforth often refer to inclusion axioms as hyperedges,
and a set of inclusion axioms as a hypergraph. The facts that form the data can
be thought of as being separated from the hypergraph, which forms a kind of
schema. As consequences, we consider the class CHL of all facts. Variants of this
inexpressive logic have been used to showcase the properties and understand the
complexity of non-standard reasoning problems in ontology languages [58,59,61].

Strictly speaking, the inclusion axioms define a special kind of directed hy-
pergraph [31], where hyperedges are formed by a set of sources and a single target
node; i.e., given a set V of nodes, a hypergraph is a set of pairs of the form (U, v)
where U ⊆ V and v ∈ V . In such a hypergraph, a path from a set U of nodes
to a node v is a sequence of hyperedges (U0, v0), (U1, v1), . . . , (Un, vn) such that
(i) vn = v and (ii) for each i, 0 ≤ i ≤ n it holds that Ui ⊆ {vj | j < i} ∪ U . The
node v is reachable from the set U iff there exists a path from U to v. In this
setting, we say that an ontology O entails the fact A(a) (i.e., O |= A(a)) iff A is
reachable from some set of concepts S in the hypergraph defined by O, such that
{B(a) | B ∈ S} ⊆ O. For example, Figure 4 shows two hypergraphs representing
HL ontologies. In both cases, if an ontology contains the facts Nausea(a) and
MemoryLoss(a), we can derive the consequence Observation(a). The details on
how to derive a consequence efficiently are explained better in Section 6. The
choice of the language LHL := (AHL,OHL,CHL, |=) as a guiding example is moti-
vated by its simplicity, and the properties it preserves in relation to other known
languages. We will make full use of all these properties in Section 6.

Others As mentioned already, there exist many other logic-based formalisms
which fit into our definition of ontology languages. For the sake of inclusiveness,
and to motivate the generality of our discourse, we briefly mention some of
them without going into much detail. The interested reader can dive deeper into
any of these formalisms consulting the references provided. Before going into



less obvious formalisms, we simply specify that all classical description logics
(DLs) [2] fall into our definition of ontology language. Typically, a DL ontology is
composed of a so-called TBox, which encodes the terminological knowledge of the
domain, and an ABox containing all the known facts about specific individuals.
Although in most cases an ontology is simply a set of axioms of these forms, it is
sometimes important to restrict the class of acceptable ontologies. For example,
to guarantee decidability of its reasoning services, SROIQ forbids combinations
of some axioms involving role names (for details, see [40]). In smaller members of
the family, limiting the TBox to be acyclic can further reduce the complexity of
reasoning as well; e.g., in ALC the complexity drops from ExpTime for general
TBoxes [66], to PSpace for acyclic ones [3]. Orthogonally, the different logics
studied under the umbrella of knowledge graphs also fit this definition [25,39].

Another natural formalism to be considered is propositional logic. In this
case, one can for example consider as axioms the set of all clauses, which makes
a CNF formula—that is, a set of clauses—an ontology. As consequences one can
consider other clauses including the empty clause used to decide satisfiability
of a formula. These consequences can be derived or tested through standard
methods from satisfiability testing [6]. It is perhaps less obvious to think of
a temporal logic like LTL as an ontology language. In [3], LTL was used as an
example of ontology language to show the power of the automata-based methods
it proposed. In this context, an ontology is a set (seen as a conjunction) of
temporal constraints. Independently, a language known as Declare was proposed
for modelling constraints and requisites in a business process [52, 62]. Declare
is a graphical language, whose underlying formal semantics is based on LTL;
specifically, a Declare model is a set of temporal constraints which is interpreted
as the conjunction of LTL formulas (over finite time bounds) which underlie the
Declare constraints. There exist, obviously, many other ontology languages that
fit within our setting. Our goal is not to enumerate them all, but rather to show
the generality of the definitions and of the solutions and settings that will be
studied later on.

Before moving on to the main topics of this tutorial, we discuss briefly the
importance of the entailment relation. In general, when studying an ontology
language, one is interested in developing methods which can decide whether
an ontology entails a given consequence or not. Although our definition does
not require so, we are usually interested in cases where this entailment rela-
tion is decidable—in fact, all the examples mentioned in this section satisfy this
property—and in developing effective methods for deciding it. When possible,
these methods are also expected to be optimal w.r.t. the computational com-
plexity of the problem. When studying ontologies languages in an abstract sense
as we are doing now, all these subtleties are often lost, but that does not mean
that they are not important. When possible, we will try to remind the reader of
these complexity issues.



3 Uncertainty

A commonly mentioned limitation of ontology languages—specially within the
context of knowledge representation—is their inability to model or handle un-
certainty. Indeed, notice that we use the axioms in an ontology as absolute infor-
mation, and the consequences follow (or not) from these axioms. This leaves no
space for statements which are not completely certain. When dealing with nat-
ural knowledge domains, and in particular when the knowledge is built with the
help of different knowledge experts and automated tools, it becomes impossible
to avoid uncertainty in some axioms of every form.

Consider for example a medical application. In a very simple scenario, one
could try to model the knowledge that patients showing a running nose and
complaining of feeling light-headed have a common cold; for instance through
an HL axiom like ({RunNose, LightHead},Cold). This rule would be correct most
of the time, but ignores the fact that there exist many different maladies—
some of them potentially serious—who share these same symptoms, and require
additional interventions. Limiting the knowledge to this simple case could be very
problematic in practice. It also ignores other potential symptoms, and additional
information by patients. It would be much better to weaken the rule to express
that these symptoms are likely associated to a common cold (with an appropriate
measure of what the term “likely” means, as we will discuss later).

Importantly, uncertainty is not unique to medicine. As argued in the intro-
duction, we are in fact surrounded by it. From weather reports, to potentially
defective pieces of equipment, to accidents and vehicle traffic, we continuously
consider and handle uncertain scenarios as any intelligent agent with automated
reasoning should. Consider for instance a package delivery company which needs
to schedule shipments and guarantee delivery times. All the factors just enumer-
ated would need to be taken into account to minimize the risk of delays. Hence, it
is fundamental to be able to include this uncertainty in a formal and manageable
manner into our ontology languages.

Before going forward, it is worth to discuss briefly what we mean by uncer-
tainty. Uncertainty is used to handle scenarios that happen or not but, due to a
lack of knowledge and other factors, we do not know which is the case. That is,
the outcome is precise, but our knowledge about it is not. The typical example
for uncertainty is the toss of a coin: it will land in heads or not, but before
performing the experiment one cannot know which one is. On the other hand,
uncertainty is not about imprecise or other kinds of imperfect knowledge. For
example, notions which have no precise definition such as “tall” or “close” do
not express uncertainty, but rather imprecision. It is not that we do not know
whether someone is tall or not, but rather that we cannot precisely define when
a person is tall and when they are not.

There exist many different formalisms which can be used for measuring and
handling uncertainty. Perhaps the two most prominent ones are possibility the-
ory [30] and probability theory, where probabilities tend to be better known
by average users, even though our intuitive understanding of probabilities often
tends to be wrong. Since this tutorial is about probabilistic ontologies, we will



consider only probability theory from now on. For completeness, before entend-
ing ontology languages with probabilities, we briefly introduce the main notions
of probability theory. For a gentle introduction to the topic, we suggest [69].

3.1 Basics of Probability Theory

Probability theory measures the likelihood of occurrence of potentially intercon-
nected events of which we do not have full certainty. The space forming these
events is called the sample space. Although in the context of logic-based knowl-
edge representation, one usually considers only discrete sample spaces, it makes
sense to try to understand the general view on probability theory to be able to
model also more complex scenarios. Nonetheless, we will try to preserves the
intuition of discrete spaces as much as possible, to aid the understanding of
readers who are not fully familiar with the topic.

Consider a non-empty, potentially infinite set Ω of outcomes, which is called
the sample space. A σ-algebra over Ω is a class Σ of subsets of Ω such that
Ω ∈ Σ and Σ is closed under set complementation and countable unions; that
is, for all X ⊆ Ω, if X ∈ Σ, then Ω \ X ∈ Σ as well; and for any countable
sequence of sets X0, X1, . . . ⊆ Ω the union

⋃
n∈NXn ∈ Σ. If Σ is a σ-algebra

over Ω, we call the pair (Ω,Σ) a probability space, and the elements of Σ are
called events. From now on, we consider an arbitary but fixed probability space
(Ω,Σ). For example, when we throw a die, the sample space is Ω := {1, . . . , 6}.
A potential σ-algebra over this set is the powerset P(Ω). Hence, for instance,
the set {2, 4, 6} is an event in this probability space which refers to the case
where the roll of the die lands on an even number.

A probability measure is a function P : Σ → [0, 1] such that (i) P (Ω) = 1, and
(ii) if {X0, X1, . . .} ⊆ Σ is a countable collection of pairwise disjoint events, then
P (

⋃
n∈NXi) =

∑
n∈N P (Xi). In words, these conditions state that the event of

all possible outcomes has probability 1—which is intuitively understood as being
certain—and that the probability of the union disjoint events can be computed
by adding the probabilities of each of the events. Based on these two conditions,
we can derive all of the well-known properties of probabilities. For example,
that for every two events X,Y ∈ Σ, it holds that P (Ω \ X) = 1 − P (X) and
P (X ∪ Y ) = P (X) + P (Y )− P (XY ).1

Note that probabilities are defined over events, which are sets of outcomes,
and not over individual outcomes in general. This is specially important when
the sample space is uncountable, as it avoids the need to provide a probability
value to each possible outcome. If such an assignment was required, then only
a countable amount of outcomes could receive a positive probability. A simpler
case is obtained when Ω is at most countable. In that case we can assume
without loss of generality that the σ-algebra is simply P(Ω); the class of all
subsets of Ω. Moreover, it suffices to define the probability mass function; that
is, a probability P (ω) for each outcome ω ∈ Ω. This implicitly yields the measure

1 As is standard in probability theory, we use concatenation to denote intersection.
That is, XY stands for the event X ∩ Y .



P (X) =
∑
ω∈X P (ω) for all X ⊆ Ω. This is called a discrete probability measure.

Returning to our die example, since the sample space is finite, we can define a
discrete probability measure by assigning a probability to each outcome. If the
die is fair, we can assign P (i) = 1/6 for each i, 1 ≤ i ≤ 6. In that case, we can
compute the probability of observing an even number as

P ({2, 4, 6}) = P (2) + P (4) + P (6) = 3/6.

From the point of view of discrete probabilities, it is easy to give an intuitive
reading of the notion of an event. Recall that an event is a set of outcomes, and
that in a discrete probability measure, the probability of the event is just the
sum of the probabilities of the outcomes it contains. This means that when we
speak about the probability of an event, we are in fact measuring the likelihood
of observing at least one of its outcomes.

For most notions used in ontologies and in particular in this tutorial, it
suffices to consider discrete probabilities. Hence, we suggest any reader who is
not familiar with probabilities or measure theory to think of this case mainly.
The continuous case becomes relevant in some very specific applications and
settings only.

3.2 Conditional Probabilities

A very important notion in probability theory is that of conditioning, which can
be thought of as the adaptation of logical implication to probabilities. Intuitively,
the conditional probability of X given Y (in symbols P (X | Y )) expresses the
likelihood of observing the event X under the assumption that the event Y
holds. Note that assuming the truth of Y immediately removes the possibility
of many outcomes and events; in essence, any outcome that does not belong to
Y is forbidden, as it contradicts the assumption that one of the outcomes in
Y holds. When conditioning, we redistribute the probability of the remaining
events, preserving their proportionality within the new probability space.

Formally, conditioning over an event Y defines the new probability space
of outcomes in Y (Y,Σ|Y ) where Σ|Y = {X ∩ Y | X ∈ Σ}. As said before,
the probability of the new events is considered to remain proportional, within
the remaining set of outcomes. Hence, P|Y (X ∩ Y ) = P (X ∩ Y )/P (Y ). Note,
however, that this definition creates a probability distribution over a new space,
but we would rather prefer to be able to speak about the events of the original
space. That is why the conditional probability given Y is defined, for every event
X, as P (X | Y ) := P|Y (XY ) = P (XY )/P (Y ). In particular this means that
for any two events X,Y , P (XY ) = P (X | Y )P (Y ) holds. Considering again the
example with the die, if Y = {2, 4, 6} is the event of observing an even number,
and X = {1, 2, 3} refers to observing at most a 3, then

P (X | Y ) = P (XY )/P (Y ) = P ({2})/P (Y ) =
1/6
1/2

= 1/3.



In this case, P (X) = P (X) = 1/2 but P (X | Y ) = 1/3 and P (X | Y ) = 2/3.2 That
is, conditioning over another event may increase or decrease the probability of a
given event.

We say that two events X,Y are independent iff the occurrence of one does
not affect the probability of the other one. More formally, X and Y are indepen-
dent iff P (XY ) = P (X)P (Y ). Note that this means that for independent events,
P (X | Y ) = P (X) and P (Y | X) = P (Y ). For example, the events X = {2, 4, 6}
and Y = {1, . . . , 4} are independent. Indeed, XY = {2, 4} and we can see that
P (XY ) = 1/3 = 3/6 ·4/6 = P (X)P (Y ). We extend this notion of conditional inde-
pendence as follows. The events X and Y are conditionally independent given Z
iff P (XY | Z) = P (X | Z)P (Y | Z). This extension is very natural, but requires
that the conditioning random variable is preserved through all the elements of
the equation. Through a simple computation, it is easy to verify that for any
three events X,Y, Z it holds that P (XY Z) = P (X | Y Z)P (Y | Z)P (Z). This
idea can be easily generalised to any finite set of events. Together with condi-
tional independence, equations of this kind will be fundamental in Section 3.4.

A cautious reader would have already detected an anomaly in the definition
of conditional probabilities: the conditional probability given Y is only well-
defined in case P (Y ) > 0. This anomaly can be understood from our intuitive
interpretation of probabilities. An event with probability 0 is one which is almost
impossible to be observed, and hence assuming it to be true is akin to assuming
a contradiction as the premise of a classical logical implication. In logic, this
is solved by stating that everything follows from a contradiction; in probabili-
ties, we simply disallow that special case, to guarantee that the properties of a
probability distribution still hold after conditioning.

An important property of conditioning, which does not apply for classical
implications is its reversibility: with enough information, we can change the
conditioning and the conditioned events. Specifically, recall from the definition
of conditioning that P (X | Y )P (Y ) = P (XY ), but then, obviously, it is also the
case that P (Y | X)P (X) = P (XY ). From these two equations we can deduce
that P (X | Y )P (Y ) = P (Y | X)P (X). This equation, commonly known as
Bayes’ rule when expressed as

P (X | Y ) =
P (Y | X)P (X)

P (Y )

allows us to reverse a conditioning statement if we know the probabilities of each
of the events separatedly.

3.3 Boolean Random Variables and Joint Distributions

It is often convenient to think of events X as Boolean random variables. Although
the notion of a random variable is much more complex, it suffices for the purpose
of this tutorial to equate events and random variables. More precisely, we will

2 Again, as usual in probability theory, X denotes the event Ω\X; that is, the negation
of X.



often speak about the Boolean random variable X to refer to a given event X.
The reason is that, seen as a (Boolean) random variable, X can have two states:
t when X holds, and f otherwise; that is, f denotes the fact that the event Ω \X
holds. Then X defines a probability distribution over its two states. For brevity,
we will write X when the random variable is in state t, and X when it is in
state f. From now on, whenever we speak about a random variable, we refer to
a Boolean random variable in this sense.

Given a finite collection of random variables X1, . . . , Xn, we can build the
joint probability distribution, which assigns a probability to each possible com-
bination of states of the variables. Note that the specific distribution depends
on the events underlying the random variables, and their probabilistic depen-
dencies. Still, some general operations can be applied over the joint distribution.
One of the most important is marginalization, which allows to remove a random
variable from the distribution. Specifically,

P (X2, . . . , Xn) = P (X1, X2, . . . , Xn) + P (X1, X2, . . . , Xn)

= P (X2, . . . , Xn | X1)P (X1) + P (X2, . . . , Xn | X1)P (X1).

3.4 Bayesian Networks

Note that when building the joint probability distribution of n random vari-
ables, there is no specific pattern that the assigned probabilities should show.
In the worst case, the description of the full joint probability distribution would
require to provide a value for each of the 2n different combinations of states of
the random variables; that is, for all the variants of making some variables t
and some f. This exponential growth becomes easily unmanageable after a few
tens of variables are incorporated. For that reason, different approaches have
been proposed for describing joint probability distributions more succinctly. A
very prominent such approach, which exploits some conditional independence
assumptions, is Bayesian networks [27,57].

In a nutshell, Bayesian networks use a graphical representation, through a
directed acyclic graph (DAG) to express some conditional independence rela-
tionships between random variables (which appear as nodes in the DAG), which
allow to limit the explicit probabilistic dependencies required to express the full
joint probability. Formally, a Bayesian network is a pair B = (G, Φ) where G is
a DAG whose nodes represent Boolean random variables, and Φ is a collection
of conditional probability distribution tables, containing exactly one table for
each node X given its parents π(X) on G. Note that each of the tables in Φ
is still exponential in the number of parents π(X). However, assuming that the
maximum in-degree in G is bounded, these tables are more easily handled than
a full joint probability distribution table.

The graphical structure of the DAG G encodes an underlying conditional in-
dependence assumption between the random variables; namely, that every node
is independent of all its non-successors given its parents. In other words, if the
state of all the parent nodes π(X) is known, then knowledge about any other
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Fig. 1. A very simple Bayesian network

variable Y that is not reachable from X does not affect the likelihood of observ-
ing X itself; in formulas P (X | Y π(X)) = P (X | π(X)). Under this assumption,
the whole joint probability distribution can be factorised as the product of all
the conditional distributions appearing in Φ. That is,

P (X) =
∏
X∈X

P (X | π(X))

where X is the set of all nodes from G.
A very simple example of a Bayesian network is depicted in Figure 1. In this

case, the graph has four variables, and each node is depicted together with its
conditional probability table. Note that describing the same joint probability
distribution as a table would require 16 rows. Even at the scale of this example,
we are saving almost half the space. The graphical structure expresses that the
variable W is conditionally independent of both Y and Z given X. That is, if
we know the state of X, any further information on Y on Z will not affect the
probability of W . We can compute the probability of each possible state; for
example,

P (W,X, Y , Z) = P (W | X)P (X)P (Y | X)P (Z | XY )

= 0.4 · 0.7 · 0.9 · 1 = 0.252.

Probabilistic inferences over BNs have been thoroughly studied in the lit-
erature. The simplest inference corresponds to the update of the probability
distribution given some evidence; that is, computing the posterior distribution
under the observation of the state of some variables of the network. In a nutshell,
once we know the state of a given variable, we can use the rules of conditional
probability to update our beliefs about the rest of the network, through a sort
of message-passing mechanism. The same approach can also be used to compute
the marginals, which in BNs is called variable elimination. Recall that to ob-
tain the marginal w.r.t. a given variable X, it suffices to compute the posterior
w.r.t. to each of the two possible states of X, as well as the prior probabili-
ties of these states. Hence, it suffices to assume that we are given evidence of



each of the states, and propagate this information through the network. There
are many other inferences studied in the context of BNs; for instance, to find
whether there are instantiations of a subset of X which yield a given probability
of observing another variable (with or without evidence). We refer the interested
reader to [27] for further details.

Importantly, although in the general case making any of these inferences is
computationally hard [22,46,65], under some conditions on the structure of the
underlying graph they remain tractable. For example, if the graph is a tree, or
closely resembles a tree (formally, if it has a bounded treewidth), then there are
efficient methods for propagating evidence and deriving the posterior distribu-
tion, even reducing the complexity of inferences to linear time. For example, the
DAG in Figure 1 is not a tree, but the only situation violating the tree condition
is a join of two paths in a terminating node; thus, it has a low treewidth. From
these, other inferences become also simpler [28].

4 Probabilistic Ontologies

We have so far introduced a general notion of ontology languages, and probabili-
ties as a prominent theory for handling uncertainty. We now want to merge them
together to be able to build and use probabilistic ontologies. At first sight, this
looks as a pretty straightforward task: simply take an ontology language, and
allow for probabilistic statements. However, once we try to fill in the technical
details, we see that things are not as easy as they seem, and the road is paved
with subtleties.

There is in fact a large space of possibilities from which to choose when ex-
tending an ontology language with probabilities. This is attested by the many
different probabilistic ontology languages that can be found in the literature (see
e.g. [48] for a slightly outdated survey focusing on the Semantic Web, and [19] for
a more recent tutorial on probabilistic knowledge bases from a different perspec-
tive). It is very important, then, that one is aware of these choices and why they
are made, lest we obtain unintended consequences from our knowledge. Before
considering these choices, we introduce formally what we mean by a probabilistic
ontology in the context of this work.

Definition 1 (probabilistic ontology). Let L = (A,O,C, |=) be an ontology
language. A probabilistic ontology is a pair (O, P ) where O ∈ O is an ontology
and P : O → [0, 1] is a partial function assigning a probability degree to some
axioms in the ontology.

Note that probabilistic ontologies naturally generalise classical ones. Indeed, the
ontology O can be equivalently seen as the probabilistic ontology (O, P∅) where
P∅ is the empty partial function, which assigns a value to none of the elements
of O.

Intuitively, a probabilistic ontology is just an ontology where some of the
axioms are labelled with a value in the interval [0, 1], which will be interpreted



as their probability; that is, for a given axiom α ∈ A, P (α) expresses the proba-
bility of α being true. Importantly, the assignment of probabilities P is a partial
function, which means that not all axioms are required to get such a degree. This
is fundamental to allow for cases where parts of the ontology are required to be
certain. For example, in some probabilistic DLs one may expect to have only
uncertain data, but certain terminological knowledge; that is, only the ABox as-
sertions may be assigned a probability degree. Another prominent formalism that
makes this restriction is ProbLog [63], a probabilistic variant of Prolog which
allows facts, but not rules, to be assigned a probability. Similarly, in probabilistic
databases the data tuples are uncertain, but the database schema is not [68].

One could think it is more natural to make the probabilistic assignment a
total function, which assigns a probability degree to all the elements of O, and
using the degree 1 to express certainty. While this corresponds to the usual, in-
tuitive understanding of probabilities—where probability 1 means certainty—it
does not correspond to the mathematical properties of probabilities and, de-
pending on the semantics chosen, may in fact produce different results. Indeed,
formally speaking a probability 1 only means almost certainty, while probability
0 is assigned to almost impossible events.

Excluded Formalisms

Through our chosen notion of probabilistic ontologies, where some axioms are
labelled with a real number between 0 and 1, we have in fact excluded many
formalisms which have been—or could be—considered as probabilistic ontology
languages as well. Prominently, it leaves out all formalisms based on log-linear
interpretations of probabilities [9, 55]. In those formalisms, probabilities are not
assigned directly, but are rather implicitly encoded in weights, which can be
arbitrarily large real numbers. The resulting probability is proportional to the
weights used, but through a logarithmic factor, which makes it difficult to in-
terpret the original weights. We could easily extend Definition 1 to allow these
weights, but decided not to do so for clarity and conciseness of the presentation.

When trying to identify the likelihood of an axiom to hold, we often encounter
the problem of finding a precise number which can be used without damaging the
accuracy of the results. While the probability assigned by the function P can be
interpreted as a lower or upper bound for the actual probability, in some scenarios
it may become important to specify both bounds of a probability interval [16,23].
Expressing these bounds requires at least two labels per axiom, and hence does
not directly fit into Definition 1. Of course, it would not be difficult to allow two
functions PL and PU expressing the lower and upper bounds. We chose not to
do so to avoid the notational overhead that it induces, but most of what will be
discussed henceforth applies for this setting as well.

An important consideration is that our notion of probabilistic ontologies is
intended to express uncertain knowledge, but not knowledge about uncertainty.
The difference, which may seem small at first sight, is clearly observable from
our definition of a probabilistic ontology: it is the knowledge (expressed through
axioms) which is assigned a probability degree, but these degrees are not directly



Table 1. The five golden rules

The Rules

1 Use probabilities
2 Use the right probabilities
3 To count or not to count
4 Understand the numbers
5 Be careful with independence

used within the axioms. For example, through a probabilistic ontology (based on
an adequate ontology language) one can express that a person with the flu has
a probability 0.8 of showing fever, but cannot express that if one has a parasitic
infection with probability 0.5, then one will show fever with probability 0.8. The
reason for our exclusion is that in the latter case the probabilities are an intrin-
sic element of the ontology language; the axioms themselves can express them
already. In other words, probabilities are fundamental in the construction of the
underlying ontology language. Thus, languages capable of expressing those state-
ments (see e.g. [33, 34, 49]) fall into the basic definition of an ontology language
from Section 2, rather than on the probabilistic extension of Definition 1.

Now that we have a syntactic definition of a probabilistic ontology language,
we need to know how interpret these probabilistic ontologies and, more im-
portantly, how to decide whether—and with which probability—an entailment
follows from them. In addition, thinking about probabilities introduces new rea-
soning problems which should also be studied in these languages. As hinted
already, depending on the requirements of the language and its inferences, there
exist many different semantics which one could choose for interpreting the prob-
abilities, each with a particular application scenario. Rather than enumerating
them all directly, we prefer to provide five directives (the Five Golden Rules)
which should be kept in mind when choosing the semantics, along with exam-
ples and the reasoning behind them. These examples will help the reader find
probabilistic ontology languages that fall into our definition, in contrast to the
excluded ones enumerated above.

5 The Five Golden Rules

Here are the five golden rules to consider when designing, choosing, or using a
probabilistic ontology or probabilistic ontology language. For ease of consulta-
tion, they are also enumerated in Table 1.

5.1 Use probabilities

This is the fundamental rule, and one who puzzles researchers and practitioners
who approach the area of imperfect knowledge representation for the first time.
As we have defined them, probabilistic ontologies assign a real number in [0, 1]



to some of the axioms. As probabilities are commonly taught at schools, and
we often hear probabilistic terminology in our daily lives, it is natural to asso-
ciate any annotations that fall within this interval the meaning of probabilities,
and this is often done in practice. However, there exist many other measures
which use the same scale, but have nothing to do with probabilities or even with
uncertainty.

Recall first that probabilities are a measure of uncertainty, meaning that they
refer to events which either hold or not, and our lack of knowledge is only about
which of these two possibilities holds. This goes in contrast with notions like
vagueness or graded truths, where there may exist many different intermediate
truth degrees, often also expressed with values in the unit interval. For example,
uncertainty can express that there is a 2/3 chance that a rolled die will fall
in a number smaller or equal to 4—it either does, or does not—but cannot
express imprecise notions such as the concept of nearness or tallness. The latter
are notions which have no precise definition, or clear-cut separations between
membership and non-membership (e.g., there is no specific height at which a
person starts being tall, and under which they are not). These are studied in
fuzzy and many-valued logics [7,8,10,11,32,35,67]. In these logics, it is possible
to express a fact like Tall(a) : 0.8 which should be interpreted as saying that a
is tall with a degree 0.8. Although it may be tempting to interpret this degree
as a probability, it would be a great mistake. To mention just one of the many
differences between these approaches, fuzzy logics are truth-functional, while
probabilities are not. That is, in fuzzy logic from the degrees of ϕ and ψ, one
can compute the degree of ϕ ∧ ψ, but in probability theory this is not possible
unless we know their conditional dependencies. Hence, before we can choose
the appropriate semantics for our approach, we need to make sure that we are
dealing with uncertainty, and not with some other kind of imperfect knowledge.

After we have confirmed that we are dealing with uncertainty, we still need
to verify that probabilities are the right formalism for it. Another formalism
for dealing with uncertainty, which was already mentioned before, is possibility
theory [30]. While it shares many properties with probability theory, there are
some important differences which make the two formalisms incompatible. With-
out going into too many details, in possibility theory one is more interested in a
qualitative expression of the degrees of uncertainty, which is implicitly encoded
by the ordering of the degrees used, rather than in the specific quantitative inter-
pretation of these values. More specifically, in possibility theory an axiom with
a degree 0.9 should only be considered more likely than one with degree, say
0.8, but without any specific reference to how much more likely it is. In addi-
tion, in possibility theory the negations are also handled differently, through an
additional measure called necessity.

After we are convinced that probabilities are indeed the formalism that serves
our purposes, we still need to make sure that we understand what these prob-
abilities mean, and how they were obtained. Answering these questions is the
focus of the remaining golden rules.



5.2 Use the right probabilities

When we are dealing with probabilistic knowledge, and in particular in scenarios
where constraints may be shared among several individuals, it is fundamental to
know how probabilities and uncertainty relate to each other and, more impor-
tantly, the scope of the uncertainty. Consider the following two statements.

1. The probability of a flight being delayed is 0.3

2. The probability of flight ZZ1900 being delayed tomorrow is 0.3

The first one can be understood as expressing that, from the whole universe
of available flights, about 30% suffer delays. The second statement, however,
cannot be interpreted this way; in fact, we cannot speak about the universe of
“tomorrows,” as there is only one such day, nor of flights ZZ1900 on that day, as
again only one exists. Instead, it should be understood as expressing that from
all the possible scenarios for the day (weighted according to their plausibility)
about 30% involve a delay of flight ZZ1900.3

This difference in interpretations was already noticed by Halpern [36, 37],
who divided probabilistic logics into two main types. Type 1 (or statistical)
probabilities are those that interpret statements about proportions of the world;
hence, give a statistical flavour in the most basic sense of the word. Type 2
(or subjective) probabilities, on the other hand, interpret the statements using
possible worlds; they usually express a degree of belief, which is applied to every
single individual without taking into account the rest of the population.

Just as they express different kinds of views on the probability statement,
they need to be interpreted differently in the semantics of a probabilistic on-
tology. In case of statistical probabilities, the usual semantics of the underlying
classical formalism need to be overhauled. Indeed, as these statistical statements
express the proportion of population elements which satisfy a given property,
they implicitly assert a negation as well. In the first example above, saying that
30% of the flights are delayed means that there are also some flights (in fact, 70%
of them) which are not delayed. This, and the semantic relationships between
properties may produce new issues not foreseen in the original semantics. The
usual approach to handle these issues is to partition the class of all domain indi-
viduals according to types (i.e., the properties they satisfy) and verify that the
proportional cardinality of each partition is compatible with the associated prob-
abilities. Some existing formalisms which use this semantics in different forms
are [17,41–43,45,47,56].

The semantics of subjective probabilities are often more intuitive both in
terms of understanding, and in the development of reasoning methods. In the
multiple-world semantics, which are at the bottom of subjective probabilities,
one builds situations in which the axiom is “believed” to be true, and others
in which it is believed to be false. Each of these situations is then treated as
a classical ontology containing all axioms which are assumed to hold, with its

3 Alternatively, read the second statement as “the probability of rain tomorrow is 0.3.”



usual semantics and entailment relation.4 At this point, every consequence can
be given a probability which is based on the probabilities of the subontologies
where the entailment holds. The only problem is to identify such probabilities,
which depend on the relationships between axioms, and might not be completely
obvious. This issue will be discussed in more detail in Section 5.5. For a more
general discussion on the differences between probabilistic interpretations, see
e.g. [38, 44].

Another important choice to make when dealing with subjective probabilities
arises from the difference between an open-world and a closed-world interpre-
tation of the probabilities and the axioms in the ontology. The simplest and
most natural view is the open-world, in which an axiom which was removed
from the ontology in one of the possible worlds may still hold if it is entailed
by the remaining axioms. In that sense, the probability associated to the axiom
serves only as a lower bound, which could be surpassed in case of knowledge
redundancy or further information. This view is the one described briefly in the
previous paragraph, and is shared by many formalisms including [20,63,64]. The
closed-world view, on the other hand, requires that in a situation where an ax-
iom α does not hold, this axiom must be interpreted as false. This guarantees
that axioms have exactly the probability assigned to them, but may introduce
many other issues. First and foremost, the ontology may become inconsistent in
the presence of redundancy. Second, it may require increasing the expressivity of
the underlying ontology language in ways in which existing methods may stop
working. An example of a probabilistic ontology language following this view are
probabilistic databases [68].

Importantly, the differences between probabilistic approaches are not always
clear-cut, and may not correspond to the first intuition, or the name chosen
by those who developed them. For example, ProbDeclare [51], the probabilistic
extension of Declare, was developed to describe business process information
extracted through a statistical analysis—each constraint is associated with the
proportion of traces where it has been satisfied. However, its semantics is based
on PLTL0

f [50], which uses a multiple-world semantics and may thus seem to
represent subjective probabilities. Another example are the so-called open-world
probabilistic databases [18], which apply an open-world view on the facts that
do not appear in the database (i.e., they are not assumed impossible, but simply
less likely than a given bound), but a closed-world for those that do appear—in
the semantics, when a fact is chosen not to belong to the current world, then
they are impossible in the given interpretation.5

5.3 To count or not to count

The next consideration arises mainly from the difference between facts and gen-
eral knowledge. While we have included them all into the name axiom, many

4 Note that by definition of ontology languages, any subset of an ontology is also an
ontology; hence this construction works without issues.

5 The actual semantics of open-world databases is more complex than this, but we
wanted to provide just a basic intuition.



unreliable(X) <- part-of(X,Y), unreliable(Y).

part-of(computer,chip).

part-of(chip,core).

Fig. 2. A Prolog program with one rule and two facts.

ontology languages make a clear distinction between them. In DLs one separates
the TBox (terminological knowledge) from the ABox (the facts); databases dis-
tinguish the facts from the schema, and Prolog separates facts from rules. Even
in our small language HL, one could think of distinguishing the graph from the
facts.

Facts can be either used, or not, to derive some consequences from the on-
tology. But more general knowledge, like rules or TBox axioms have a very
different behaviour: they speak about all possible instantiations, and hence may
require multiple applications within a single derivation. This behaviour is not
problematic in classical ontology languages because entailments do not count;
that is, they do not take into account the number of times an axiom may have to
be used to derive a consequence. With probabilities, things might change. One
must make a choice whether the semantics should count or not the number of
applications. This issue is easier explained through examples.

Consider first a simple production scenario where the knowledge includes
the statement that any component with an unreliable part is itself unreliable,
together with a part-of relationship between structures. This can be expressed
e.g., in Prolog through one rule and several facts as shown in Figure 2. In this
scenario it makes sense to weaken the rule into a probabilistic statement express-
ing that the rule holds with probability, say 0.9. That is, that components are
slightly resilient to errors in their parts. Suppose that we know that the core

is unreliable. What should be the probability of the computer being unreliable
as well? Intuitively, a first rule application should tell us that the chip is un-
reliable with some probability less than 1, and hence, unreliability of computer
holds with a lower probability than 0.9; assuming independence, we expect this
probability to be 0.81 = 0.9 · 0.9. Thus, the fact that the rule needed to be ap-
plied more than once to deduce unreliability of computer affects the probability
of this conclusion. Under the multiple-world semantics of Problog, one builds
several classical Prolog programs, where the rule holds in some of them, and
does not hold in others. Note that in every world that makes the rule true, the
consequence unreliable(computer) holds, and in all others, it does not hold,
yielding a probability 0.9 to this consequence. Hence this semantics would pro-
duce an unexpected result, simply because the multiple-world semantics does not
take into account the number of times the rule is applied. For such a scenario,
other semantics would be more meaningful.

Consider now a hierarchical structure expressing weather conditions, with
constraints stating that cold and wet weather produces fog, and that in cold
weather, urban areas have an increase in smog. Moreover, in situations of fog



and smog, there is low visibility. All this can be expressed through the HL
axioms ({Cold,Humid},Fog), ({Cold,Urban},Smog), and ({Fog,Smog}, LowVis).
Suppose, moreover, that we know for sure that milano is an urban area with
high humidity, and we predict with a 90% probability that it will be cold:
Humid(milano) : 1, Urban(milano) : 1, Cold(milano) : 0.9. If we are interested
in predicting the probability of low visibility, we could try to chain our axioms
to the facts, and deduce first a 90% probability for each, fog and smog, and
then we need to compute a probability of low visibility based on these two. If we
assumed independence, we would get a probability of 0.81 of low visibility. This
result has several issues, starting from the fact that fog and smog are not inde-
pendent (they both depend on the cold factor),6 but one can already see that the
probability of 0.81 is a result of “counting” twice the fact that the probability of
cold in Milano is 0.9. Even though this fact is used in two parts of the derivation,
it is a mistake to consider the use of both applications as different. All depends
on one single fact. In this case, the appropriate action is to consider a semantics
that does not take into account the number of applications of an axiom. The
multiple-world semantics would fit perfectly well in it.

5.4 Understand the numbers

One of the main criticisms that probabilistic logics receive from other areas of
knowledge representation is about the source of the probabilistic knowledge.
More specifically, how do we compute the probabilities with which the axioms
are labelled? This is a very valid criticism, and is at the heart of the applicability
of these formalisms.

In many cases, we can easily justify the use of a probability as a statistical
measure of what is expected to be observed. For example, a probabilistic rule
under the statistical semantics may express that some proportion of the popula-
tion satisfies a given property. This proportion may be computed through a full
census, or approximated through different sampling techniques. Still, in some
other cases the use of arbitrary numbers as probabilities—or as the expressed
probabilities—is not really justified. One prominent example is the automatic
population of probabilistic databases [53]. In this setting, natural language pro-
cessing (NLP) techniques are applied to large corpora to extract some facts, and
sometimes more advanced knowledge, which is written in the text. An advantage
of using NLP is that tools often return a weight associated to each fact, which
expresses the confidence on the fact. This measure can be seen as a probability,
in the sense that it describes a proportion of successes in the underlying tool for
sentences of the kind extracted. However, it does not refer to the likelihood of
the piece of knowledge itself. In other words, the tool provides a measure of its
certainty that it read the sentence correctly from the corpus, but cannot judge
the correctness of this text. To put it bluntly, a well-written but falsity ridden
text would provide facts with a higher confidence value than a well-researched

6 We will come back to this issue in Section 5.5.



piece with grammatical errors. This is natural, since it is not the scope of NLP
to do fact checking, but only to process the written text.

Other kinds of probabilities are more problematic. For example, suppose
that one is trying to model the subjective belief that a sport expert has on the
likelihood of success of a specific team in a championship. As humans, we are
not very good at providing adequate probabilities, and will often default back
to very specific numbers which we observe continuously: 0.99, 0.9, maybe 0.8.
It is very unlikely that someone would measure their confidence as, say, 0.935.
Even statistical methods should be taken with a grain of salt. For example,
sampling methods—which were used to justify probabilities just one paragraph
above—do not really yield any specific probability which can be used directly.
Rather, they can provide estimators, some of which are more likely than others,
and perhaps some certainty value or confidence interval around them. If one
does not understand the meaning of these notions and values, one will easily
fall into a rabbit hole of misleading or erroneous interpretations of probabilistic
entailments. However, this is a topic that falls outside the scope of this tutorial,
and we will not go into further details.

5.5 Be careful with independence

The fifth golden rule refers to the notion of probabilistic independence. As we
have seen throughout this section, independence is an important assumption,
which is used very often for probabilistic reasoning. The reason is very sim-
ple: independence provides a flavour of truth-functionality which is not usually
present in probability measures. To be more precise, for two arbitrary events
X,Y , knowing P (X) and P (Y ) does not suffice in general for knowing P (XY ).
However, if X and Y are independent, then we know that P (XY ) = P (X)P (Y ).
Since one does not usually have enough information to compute the probabil-
ity of the intersection of two events, and even if it is known, computing it may
require more costly operations, one can consider independence as a simplify-
ing assumption. Unfortunately, this assumption is often overlooked in formalism
descriptions, and may not be very realistic in the first place.

We have already seen in Section 5.3 an example where an independence
assumption yields a problematic result. An important aspect of that example
is that the probabilistically dependent elements are in fact hidden from the
user, and the consequence being asked. Recall that in the example we apply
two different axioms that require the same fact (Cold(milano)) to be derived.
The conclusions of these axioms then made no further reference to this fact,
but could be further combined to derive more facts. A user querying for the
probability of low visibility may have no idea that the probability of cold has
any influence on it, even if they know that low visibility depends on the presence
of fog and smog.

To try to convince the reader of the importance of analysing the indepen-
dence assumption—despite its ubiquity in probabilistic formalisms—we present
a simple example. Suppose that we are extracting information about an individ-
ual whose first name is Andrea. Andrea is a typical male name in Italy, but a



typical female name in other parts of the world. Without further information, we
cannot be certain about the gender of this individual. Suppose that one analysis
concludes that there is a 50% chance that Andrea is male, while another one
concludes that they have a 50% chance of being female. Note that, from our
meta-knowledge perspective, these two statements are perfectly consistent with
each other. They are so even if we include the constraint that Male and Female
are disjoint classes. However, the independence assumption would yield the con-
clusion that Andrea is in the intersection of Male and Female with probability
0.25 (or yield an inconsistency together with the disjointness axiom) which is
clearly wrong.

Still, one should not have the impression that it is necessarily wrong to use
an independence assumption. Depending on the application, it may indeed be
the right choice to make for different reasons. For example, when it is impossible
to obtain a better joint probability distribution between the axioms, or in cases
where representing it would be too costly. A prominent formalism where this
assumption is used are tuple-independent probabilistic databases [68]. As with
classical databases, in the probabilistic variant one expects to handle huge tables
efficiently. Obtaining and representing a full joint probability distribution for all
the tuples in the database would be prohibitive, and removing the independence
assumption results in slower derivation methods. Moreover, as only the data
is probabilistic and the goal is to answer queries, the multiple use of a single
database tuple in different parts of the derivation is seldom an issue. Hence,
while formally speaking the independence assumption is not well justified, its
use allows for a practical solution. However, one should always keep in mind the
limitations of the assumption, specially when extending the formalism to other
uses.

6 A Specific Language

After we have seen some of the most important decisions to make when dealing
with a probabilistic ontology language, we now put those notions in practice by
defining a probabilistic extension of HL and studying some of its properties.
This probabilistic ontology language can be seen as a new member of the family
of Bayesian DLs which have been studied in recent years [12,20]. It can also be
seen as a special case of ProbLog, with a simpler targetted syntax for expressing
probabilistic rules and conditional probabilistic statements. Note that this is,
in part, an artificial example for showcasing the properties and choices in the
construction of ontology languages. In practice one would likely use a different
language capable of expressing more complex properties.

Recall that in HL, axioms are either hyperedges or atomic facts. In our case,
we require that the probabilistic assignment of a probabilistic ontology is to-
tal; that is, every axiom in the ontology receives a probability degree. Formally,
a probabilistic HL ontology is a finite set of HL axioms, where each axiom
is assigned a probability degree in [0, 1]. For the semantics, we will choose a
multiple-world approach akin to subjective probabilities, under an open-world



point of view. In particular, in our approach the number of times an axiom is
used to derive a consequence is irrelevant. However, we do not use the stan-
dard independence assumption, but rather assume independence only in some
elements of the ontology.

Recall that we can see an HL ontology as being formed of two parts: a
hypergraph, and a data store. Our assumption, as in many ontology languages,
will be that the hypergraph will be rather small in comparison to the size of
the data. Hence, we may include assumptions to manipulate the data efficiently,
but can invest more computational resources dealing with the hypergraph. For
this reason, we will assume tuple independence on the data (as commonly done
in probabilistic databases), but provide a joint probability distribution on the
hyperedges. As it will be prohibitive to express this distribution extensionally
for moderately large hypergraphs,7 we use a more compact encoding through a
Bayesian network. Interestingly, this representation will allow us to express also
some logical dependencies between the axioms. Formally, to achieve this, we will
need to make the general notion of a probabilistic ontology slightly more precise,
adding a component to the tuple.

A probabilistic HL ontology is a tuple (O, P,B, B) whereO is anHL ontology,
P : O → [0, 1] is the probability assignment function, B = (G, Φ) is a Bayesian
network with G = (V,E), and B : O →P(V ) is the context function, which maps
every hyperedge in O to a set of random variables in the BN B. In essence, the
context function associates each hyperedge in O with a class of states in the BN
B. Intuitively, this assignment expresses that the hyperedge α is true whenever
all the variables in B(α) are made true in the BN. We require that P,B, B are
consistent in the sense that P (α) = PB(B(α)) holds for all hyperedges α.

For example, suppose that we are interested in modelling and reasoning about
the knowledge from a medical application where different co-occurring diseases
are being followed. In that case, the BN from Figure 1 represents the joint prob-
ability distribution of the diseases W,X, Y, Z. For example, variable Z could
stand for CTE and W for Alzheimer’s. We prefer to keep the names abstract
as much as possible to avoid misunderstanding caused by existing knowledge
from the user, given the artificial nature of this simplified example.8 Consider
then the probabilistic HL ontology (Oexa, Pexa,Bexa, Bexa) where Bexa is the BN
from Figure 1 and Oexa,Pexa, and Bexa are represented in Table 2. The hyper-
graph models general relationships between findings, which hold only on spe-
cific contexts. For example, in the context {X}, any patient with halucinations
presents also nausea, while the converse relation (that nausea implies haluci-
nations) only holds within the context {W,X}. Note that this means that the
presence of the latter axiom necessarily implies the presence of the former. The
probabilities associated to these axioms are given by the probability distribution
in Bexa. In fact, PBexa({X}) = 0.7. An important example is the last hyper-

7 Recall that the extensional description of a joint probability distribution requires
exponential space on the number of variables involved.

8 It should go without saying, but this is only an example and should in no way be
considered medical advice of any kind.



Table 2. An example probabilistic HL ontology. Note that the context function Bexa

applies only to the hyperedges.

Bexa Pexa Oexa

{Y } 0.28 ({Pain},Tachycardia)
{W,Y } 0.196 ({Tachycardia,Nausea},Observation)
{W,X} 0.28 ({Nausea},Halucination)
{X} 0.7 ({Halucination},Nausea)

{W,Z} 0.0432 ({Halucination,MemoryLoss},Dementia)
∅ 1 ({Dementia},Observation)

Pexa Oexa Pexa Oexa

0.5 Dementia(p1) 0.8 Pain(p1)
0.4 Halucination(p2) 1 Pain(p2)
0.9 Nausea(p3) 0.7 MemoryLoss(p3)

Pain Tachycardia

Nausea

Halucination

MemoryLoss

{W,Y }

{W,Z}

Observation

Dementia

{Y }

∅

{
W
,X

} {X
}

Fig. 3. The hypergraph portion of a probabilistic HL ontology. Each hyperedge is
labelled with the set of RVs from the BN Bexa given by the context function.

edge ({Dementia},Observation). It is associated to the empty context ∅, which
expresses that it must always hold; all the RVs in ∅ are always true. Hence,
it is also assigned the probability 1. In the lower part of the table we observe
a few facts expressing findings present in three different patients. We assume
that these finding were obtained or confirmed through imprecise indirect tests
and are thus associated to a likelihood. For an easier reading, the hypergraph
portion of this ontology, together with its context mapping, is depicted in Fig-
ure 3. If we ignore for a second the probabilities, from the ontology Oexa we can
derive that all three patients are under observation (i.e., Observation(pi) holds
for i = 1, 2, 3). For instance, p3 presents nausea, which implies halucinations.
The latter, together with memory loss implies dementia, which itself implies ob-
servation. What we are now interested in now is taking also the probabilistic
knowledge into account.
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Fig. 4. The hypergraphs from the classical HL ontologies defined by the possible worlds
(a) w1 = (Fact(Oexa), {W,X, Y, Z}) and (b) w2 = (Fact(Oexa), {W,X,Z}).

As mentioned already, we use a possible-worlds semantics to interpret the
probabilities. Specifically, let Fact(O) ⊆ O be the set of all facts in O, and let V
the set of nodes in the BN B. The set of possible worlds is P(Fact(O))×P(V );
i.e., a pair containing a set of facts and a set of nodes. Each possible world
w = (F ,X) is assigned a probability defined as P (w) :=

∏
α∈F P (α) · PB(X).

Note that for assigning the probability of a possible world, we are considering
all facts as mutually independent, and independent of the hypergraph; however,
the axioms in the hypergraph are not independent, but their relationship is
expressed through the BN B. In our example, these assumptions are meaningful:
the probabilities in facts are obtained through tests which are assumed to be
independent, but the hyperedges are probabilistically dependent according to
the relationships expressed in Bexa.

Each possible world defines a (classical) HL ontology in the obvious manner.
Specifically, the possible world w = (F ,X) defines the HL ontology

O(w) := F ∪ {α ∈ O \ Fact(O) | B(α) ⊆ X}.

In words, O(w) contains all the facts expressed by w and all the hyperedges that
comply with the set X in their context mapping. Entailment in each ontology
O(w) is defined exactly as in the classical case. For example, two possible worlds
for our example probabilistic HL ontology are w1 = (Fact(Oexa), {W,X, Y, Z})
and w2 = (Fact(Oexa), {W,X,Z}). These possible worlds define the classical HL
ontologies depicted in Figure 4, where the facts are all those from Table 2. In
the ontology defined by w2 we can no longer derive the fact Observation(p2).
Perhaps surprisingly at first sight, the probability of both possible worlds is 0.
In fact, a simple observation of the BN in Figure 1 shows that any world which
contains Z and either X or Y must have probability 0.

Recall that our semantics allows us to express a logical dependency between
hyperedges: if α, β are two hyperedges such that B(α) ⊆ B(β), then for every
possible world w it holds that if β ∈ O(w) then also α ∈ O(w). This property
is useful when trying to unify knowledge from different sources, giving a related
probability to axioms provided from the same or related sources. In technical



terms, it is also useful for maintaining the same syntax for HL axioms. Recall
that hyperedges have only one target node, but it is not unrealistic to want to
express that elements with some properties belong to the conjunction of two
classes; e.g., that a father is a male parent. In classical HL this is normalised by
introducing two separate axioms: fathers are male (({Father},Male)), and fathers
are parents (({Father},Parent)), but in the probabilistic variant this normalisa-
tion would be incorrect unless we can express that both axioms must co-appear
at all times.

Given a consequence c ∈ C, we define its probability w.r.t. (O, P,B, B) as

P (c) :=
∑

w∈P(Fact(O))×P(V ),O(w)|=c

P (w).

That is, we sum the probability of all possible worlds which entail the conse-
quence c. Importantly, this semantics follows an open-world view of the possible
world semantics: if a hyperedge or a fact is implicitly entailed by other axioms in
the ontology, it might hold also in worlds where it is not explicitly required. This
means that in general the probability assigned by the function P is only a lower
bound, which may increase due to other dependencies. In our running exam-
ple, we can see that P (Observation(p1)) = 0.5 because ({Dementia},Observation)
holds in all possible worlds, but Dementia(p1) only in worlds with probability
0.5. Similarly, P (Observation(p3)) = 0 because for nausea and memory loss to
cause dementia, both X and Z should hold which, as explained before, can only
happen with probability 0. We leave as an exercise to the reader the computation
of P (Observation(p2))

In the construction of HL and its semantics, we have made several design
choices. All these design choices limit the applicability of our logic to some spe-
cific scenarios, and follow the guidelines from Section 5. Before continuing the
technical details of this language, we expand on these choices and argue about
its application scenario. First of all, we repeat that we assume that the hyper-
graph is proportionally much smaller than the data. Hence, to allow effective
reasoning, we need to be more careful about the resources involved in handling
the data, than in those handling the hypergraph (reachability) task. For that
reason, we have chosen to use tuple-independence within the data, which will
allow us to handle the relationships between data efficiently. Although this as-
sumption is not justified in all possible datasets, there exist situations like, e.g.,
when facts are being produced by sensors in a complex machinery or when in-
dividuals are being sampled, where the independence assumption is justified.
On the other hand, a full independence assumption between hyperedges is par-
ticularly excessive due to the limited expressivity of the language. Indeed, in-
expressive languages usually require more than one axiom to encode a single
constraint. For example, suppose that we do not only want to diagnose, but
also describe and explain diseases in our ontology. Then, following the exam-
ple from the beginning of Section 3, we would like to express that a common
cold usually presents a running nose and light-headedness; that is, an axiom
which would look like (Cold, {RunNose, LightHead}). However, this is not ex-
pressible in HL. Our only choice is to divide the knowledge into two axioms



({Cold},RunNose), ({Cold}, LightHead) but, clearly, these two axioms cannot be
considered independent; in fact, they should always appear together because
they form an atomic piece of knowledge. In our setting, both axioms will share
a common context which guarantees this logical dependency. Finally, we have
chosen to interpret the probabilities following the multiple-world semantics. This
means that we are considering hyperedges as absolute, if they hold, but we are
just not certain about the truth of the edge. This case commonly arises if the
edges are being mined or extracted through automated methods from e.g., text or
other web resources. In our case, we use the contextual interpretation commonly
followed by Bayesian ontology languages. In this setting, we see a valuation of
the variables in the BN as an uncertain context, and associate certain axioms to
each context. That is, our knowledge is fully certain given the context in which
it is applied, but the context itself may be uncertain. For example, we may know
that in the context of osteoporosis, the bone mineral density is low, but we may
not know (before a precise diagnosis) whether a patient has osteoporosis or not.

To compute the probability of a consequence c, one could simply follow the
structure hinted by the definition: compute all possible worlds w = (F ,X), and
for each of them, compute P (w) (linear in F but PP in the size of X) and decide
whether O(w) |= c. This of course requires exponential time in the size of each
of the components used, but by analysing each possible world independently,
it is possible to limit the space usage to a polynomial bound. Although this
algorithm is simple to understand and implement, it is without doubt also far
from optimal in terms of the computational resources used. In order to find a
better approach, we need to study deeper the properties of the language.

A slightly better approach is the following. Rather than trying to construct
a classical ontology for every possible world, we produce a probabilistic ontology
for each Bayesian world ; that is, for every X ⊆ V , but such that this ontology
preserves adequate properties for probabilistic reasoning. Specifically, for each
X ⊆ V , let O(X) := (O′, P ′) be the probabilistic ontology where

O′ := Fact(O) ∪ {α ∈ O \ Fact(O) | B(α) ⊆ X}

and P ′ is the restriction of P to Fact(O). In a nutshell, O(X) includes the hy-
pergraph that is compatible with the choice X, but preserves the probabilistic
facts as they are. Note that according to our semantics, these probabilistic facts
are a probabilistic database with tuple independence. The hypergraph in O(X)
still entails some implicit facts which are not explicitly encoded in the database,
and need to be handled. Given a consequence c, we can compute its probabil-
ity PX(c) w.r.t. O(X) by asking a simple UCQ over the probabilistic database
(Fact(O), P ′), where the information of the hypergraph is encoded through a
backwards propagation. For example, if X = {W,X, Y, Z} (see Figure 4 (a)) and
we are interested in the consequence Observation(p3), we can construct the union
of conjunctive queries by traversing the hyperedges backwards, as shown in Ta-
ble 3. The first four lines (before the separation) are those from the UCQ built
by X = {W,X,Z} (Figure 4 (b)). For more details see [1, 15]. Note that all the
components of this UCQ are simple queries with only one constant, and are thus



Table 3. Construction of a UCQ through backward traversing of a hypergraph.

Observation(p3)
Dementia(p3)
Halucination(p3) ∧MemoryLoss(p3)
Nausea(p3) ∧MemoryLoss(p3)

Tachycardia(p3) ∧ Nausea(p3)
Tachycardia(p3) ∧ Halucination(p3)
Pain(p3) ∧ Nausea(p3)
Pain(p3) ∧ Halucination(p3)

easily manageable by modern probabilistic database systems [26]. To compute
the probability of the consequence w.r.t. the original probabilistic ontology, we
need to accumulate over all Bayesian worlds, taking into account their relative
likelihood by means of an arithmetic sum. Indeed, it can be shown that for every
consequence c ∈ C, P (c) =

∑
X⊆V PB(X) · PX(c).

Note that this second approach would still require exponential time on the
size of the probabilistic ontology; at the very least, it needs to enumerate all
Bayesian worlds (i.e., all subsets of V ). However, this blowup is restricted to the
elements of the Bayesian network, which is assumed to be the smallest component
of the whole ontology. At each Bayesian world, the probability of the consequence
can be computed in polynomial time. Thus, the overall complexity of computing
the probability is bounded by a polynomial on the size of the database. This
is called the data complexity. Moreover, using a probabilistic database system
allows us to make slightly more advanced derivations. One simple example is
that we could substitute the constant p3 with a variable x in the UCQ generated
by our model. This would return all individuals that are under observation (with
their respective probability), without having to query them explicitly.

7 Conclusions

In this tutorial we have introduced the basic schema of probabilistic ontologies.
Our goal was not to consider a specific (probabilistic) ontology language, but
rather to allow for a general view which includes as many of the existing ontology
languages as possible. As a side benefit, our formalisation includes languages
which may not be typically considered as ontology languages, but which can
still be analysed under this view.

Just as there exists a plethora of ontology languages, which have been de-
veloped to satisfy specific needs, there are also many different possibilities for
extending these languages to deal with probabilities. To get a feeling about the
variety of the existing languages, one can consider the survey by Lukasiewicz
and Straccia [48], which is already over a decade old. If one is interested in
developing—or using—a probabilistic ontology, it is important to understand
the design choices behind the underlying language and their motivations, and



to ensure that these coincide with the task at hand. As a mnemonic device for
the main notions to consider, we have developed The Five Golden Rules, which
are presented in Section 5. The intention of these rules is to remain informed
about the properties of the formalism, and the kind of consequences one should
expect from them. They are, however, far from complete; a detailed analysis of
each formalism, which also takes into account the properties of the underlying
ontology language is always necessary. Still, if there is only one message that
the reader takes home from this work, is that there is no one-size-fits-all
solution. Each variation has its advantages and disadvantages, and they must
be balanced for the applicatoin at hand. But, importantly, all the factors need
to be taken into account. We often tend to focus our attention too much on
the computational complexity of a problem, which in this case means ignoring
important information from our knowledge domain.

As a case scenario, we have looked in some detail into a probabilistic exten-
sion of the ontology language HL which combines hypergraphs with a database.
When building the probabilistic extension, we considered the choices to be made,
and finished with the multiple-world semantics under an open-world view. We
also combined an independence assumption (for all the facts in the database)
with a more complex joint probability distribution on the hyperedges, which
is capable of expressing probabilistic dependencies (encoded in a Bayesian net-
work) and logical dependencies, through a mapping from the axioms to the BN.
Again, we emphasise that this language is not intended to be better (or worse)
than other proposals in the literature, but rather showcase the development of
a probabilistic extension. Although it is possible to make blanket statements
about all probabilistic extensions with some choices—e.g., that w.r.t. subjective
probabilities under an open-world view, the probability of a consequence can
be reduced to multiple classical entailments—being able to look at the specific
formalism will usually lead to better results. In our example language, we were
able to improve the overall complexity simply by knowing how the reasoning
techniques work in the classical case, and adapting them for the probabilistic
scenario. In general, the analysis is not so straightforward, but it is worth the
effort. The example also shows that often probabilistic ontologies require more
information than just a probability assignment to axioms.

In our effort to provide a general view to probabilistic ontologies without
restricting to specific languages, but at the same time trying to keep the pre-
sentation simple, we had to exclude some prominent formalisms. Some of them
(for example, those described at the beginning of Section 4) could be included
without major conceptual changes, but we decided against it mainly to avoid
saturating the notation, and confusing the reader with elements which only be-
come relevant in specific cases. However, there are other languages which could
not be fitted for more fundamental reasons. For example, non-monotonic log-
ics [13], where new knowledge may defeat previously derived consequences, do
not fit into our definition of ontology language. They could be problematic for
the way we describe the semantics of probabilistic entailments.



Probabilities are a very natural way to represent uncertainty. There are per-
haps two main causes for this naturality: first, the daily bombardment of prob-
abilistic language to which we are submitted; and the fact that we have a solid
theoretical background for obtaining and reasoning about probabilities in many
different contexts. But this familiarity can also be dangerous. Typical users who
are not probability experts have a faulty intuition of the meaning of probabilities,
and in particular do not know the subtleties of the results of statistical methods.
Case in point, the use of a sampling result as a fixed probability, ignoring the
underlying sampling error, and the variability of the studied phenomenon. We
thus encourage all readers to go forward, use probabilities, use them profusely,
but use them carefully.
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9. Borgwardt, S., Ceylan, İ.İ., Lukasiewicz, T.: Ontology-mediated query answering
over log-linear probabilistic data. In: Proceedings of The Thirty-Third AAAI Con-
ference on Artificial Intelligence (AAAI’19). pp. 2711–2718. AAAI Press (2019).
https://doi.org/10.1609/aaai.v33i01.33012711
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