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Abstract. Building large knowledge bases (KBs) is a fundamental task
for automated reasoning and intelligent applications. Needing the inter-
action between domain and modeling knowledge, it is also error-prone.
In fact, even well-maintained KBs are often found to lead to unwanted
conclusions. We deal with two kinds of decisions associated with faulty
KBs. First, which portions of the KB (and their conclusions) can still be
trusted? Second, which is the correct way to repair the KB? Our solution
to both problems is based on storing all the information about repairs
in a compact data structure.

1 Introduction

In logic-based knowledge representation, the goal is to encode the relevant knowl-
edge of an application domain through a collection of axioms, which intuitively
restrict the way in which the symbols used may be interpreted, so as to provide
them with an unambiguous and clear meaning. Such a collection of axioms is
known as a knowledge base (KB). Historically, many knowledge representation
languages have been proposed; most notably, perhaps, are propositional logic [5],
constraint systems [1], and description logics (DLs) [2]. Their success has led to
the creation of more and larger KBs.

It should come as no surprise that constructing a KB, which requires a com-
bination of domain and modeling knowledge, is an arduous and error-prone task.
As a consequence, it is not uncommon to detect errors even if well-maintained
KBs. Unfortunately, even after an error has been detected, it is also quite diffi-
cult to identify the main sources, and select the adequate correction. Moreover,
KB updates are typically subject to a production cycle that prevents them from
publishing corrected versions on-demand. For example, Snomed CT [13]—a
very large KB about medical terms—publishes two updated versions every year.
Thus, even when a KB is known to be faulty, it may be necessary to wait for
several months before a corrected version is available.

Since KBs are not static entities to be observed, but rather tools necessary
for automated reasoning in practical scenarios, users cannot simply drop a faulty
KB and wait for the next version. At the same time, they cannot ignore the fact
that some of the knowledge that they contain is wrong. Hence, they need to be
able to use the KB, but in a way that preserves some guarantees of correctness.
In this paper, we propose a method for reasoning about consequences that takes
into account the repairs of the KB. In a nutshell, the repairs correspond to



the ways in which all errors may be removed, by deleting a minimal amount of
axioms from the KB.

Our approach consists in encoding all repairs through a Boolean function
over the axioms in the KB. This function can be easily updated if new errors
are encountered, and can then be used to decide whether a consequence follows
from one or all repairs. Thus, our method can be used throughout deployment
time, collecting all known errors as they are detected, and providing guarantees
over all reasoning results.

At some point, the knowledge engineer will take control of the KB, and will
need to decide which of the many potential repairs is the right one; that is, which
axioms are indeed wrong. We emphasise that this task cannot be automated
because it needs the expert human knowledge to discern correctness. Rather
than making them verify each axiom, we devise a method that suggest to them
which axioms to control first, in order to reduce the search space efficiently. With
the help of this method, finding the right repair requires minimal human effort,
which is the most expensive resource in the repairing scenario.

2 Preliminaries

We consider an abstract logic-based knowledge representation language, where
explicit knowledge is expressed via a set of costraints (or axioms), and logical
entailments allow to derive other implicitly encoded language. For simplicity
of presentation, we will consider that axioms and implicit consequences have
the same shape, although the results can be easily generalisable to avoid this
restriction (see e.g. [3, 10]).

Formally, a knowledge representation language is defined by an infinite set
A of (well-formed) axioms and an entailment relation |= ⊆ Pfin(A) × A, where
Pfin(A) denotes the class of all finite subsets of A. In general, we call any finite
subset of A a knowledge base (KB). Thus, a knowledge representation language
provides the syntax of the axioms that form a knowledge base, and the semantics
are given through the entailment relation expressing what consequences can be
derived from which KBs. We use infix notation for the entailment relation; i.e.,
K |= α expresses that the KB K entails the axiom α. In this work, we are only
interested in monotonic knowledge representation languages; these are those
where the entailment relation is monotonic in the sense that for every two KBs
K, K′, and axiom α, if K |= α and K ⊆ K′, then K′ |= α.

For the sake of building a simple example and improve understanding of
the results presented here, we consider a very simple knowledge representation
language consisting of directed graphs and reachability between nodes. In this
case, given an infinite set V of nodes, an axiom is of the form v → w, where
v, w ∈ V. Intuitively, this axiom expresses that w is reachable from v. A KB,
that is, a finite set of axioms, can be represented as a finite graph. The graph K
entails the axiom v → w iff the node w is reachable from v in K (see Figure 1).

An important operation for KB update and belief revision is known as con-
traction. The goal of this operation is to remove a consequence from a KB; in



other words, given the KB K and the axiom α, the contraction K − α should
yield a KB K′ such that K′ 6|= α. While it is possible to define many different
kinds of contractions, we focus on one that provides minimal syntactic changes
to the original KB, which is based on the notion of a repair.

Definition 1 (repair). A repair of K w.r.t. α is a sub-KB K′ ⊆ K such that
(i) K′ 6|= α and (ii) for all K′ ⊂ L ⊆ K, L |= α.

In words, a repair is a maximal sub-KB of K that does not entail α. It is impor-
tant to notice that repairs are not unique. In fact, removing a single consequence
from a KB can produce exponentially many such repairs [9]. To try to reduce
the number of options, some heuristics can be proposed; for example, to consider
only the repairs with the largest cardinality. However, in general, this is still in-
sufficient to identify one single solution. In order to find only one (adequate)
solution, human intervention is needed to provide the expert domain knowl-
edge that distinguishes the axioms that are in fact incorrect w.r.t. the current
knowledge and should hence be removed.

As it is well known in the area of belief revision, the problem of choosing the
right repair becomes even more crucial in the presence of an iterated contrac-
tion [7]; that is, when more than one consequence is to be removed in successive
steps. Obviously, making a wrong choice of repair in any given step will nega-
tively affect the following contraction steps. For example, suppose that we are
only interested in finding a repair of maximum cardinality that removes a set
of consequences from K. If we simply choose one maximum cardinality repair at
each step, we are not guaranteed to end up with a solution of maximum cardi-
nality. If human intervention is necessary, then asking an expert to choose the
right repair at every single contraction step becomes excessively expensive in
terms of human expert resources.

Henceforth, it is useful to consider the dual notion of a repair, called a jus-
tification, that corresponds to a minimal sub-KB entailing a consequence.

Definition 2 (justification). A justification of a consequence α w.r.t. the KB
K is a set K′ ⊆ K such that K′ |= α and for all L ⊂ K′ it holds that L 6|= α.

It is well known (see [14]) that repairs and justification are dual in the sense
that are repair can be obtained by removing at least one axiom from every
justification, and justifications are obtained similarly from the axioms that are
removed to form repairs. This duality will allow us to exploit efficient methods
developed for finding justifications to deal with repairs as well.

In the following sections, we first show how to deal with iterative contrac-
tions automatically without losing any valuable information, and then provide
a method for helping a human expert to choose the right solution among the
potentially exponentially many available, minimising the need of human effort.

3 Iterative Contractions

We are interested in an iterative process for repairing a KB. Starting from a given
KB K, we assume that a user is detecting a sequence of erroneous consequences
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Fig. 1. A KB, and its repairs w.r.t. v → w and v → y.

that they try to bypass, while waiting for an official correction by the knowledge
experts. In the meantime, the KB is still operational and new errors may be
derived. At any point in this process, the knowledge expert may attempt to find
the correct repair, for which automated support should be given.

In order to preserve all the information needed for computing the correct
repair, all possible solutions should be preserved; otherwise, we risk removing
the best option from the search plan. As mentioned already, even at the first
contraction, the number of repairs may become exponential on the size of the
KB. Moreover, suppose that we have already a set of repairs obtained after a
sequence of contractions. When the following erroneous consequence is detected,
it is necessary to contract each of these repairs. In practice, this means potentially
computing an exponential number of new KBs for each previously known repair,
with the additional cost of verifying that no set appears twice, and that they
are all actual repairs. For example, Figure 1 depicts a simple KB and its repairs
w.r.t. the consequence v → w (all the squared KBs), and w.r.t. the two errors
v → w, v → y (with a grey background). Notice that the set of axioms obtained
by removing v → y from the lower-left repair is not a repair, because it is strictly
contained in the lower-right repair.

To solve this issue, it was proposed in [12] to succinctly encode the class of
all repairs by associating with each axiom in the KB a propositional formula
expressing to which repairs this axiom belongs, and to which it does not. Al-
though effective, this approach has several issues; most importantly, there is a
trade-off between the succinctness of the representation, and the readability of
the repairs. That is, reducing the size of the representation comes at the cost of
making it harder to know the axioms that belong to each repair.

We propose an alternative approach, encoding the class of all repairs by a
Boolean function over the original KB, called a repair function.

Definition 3 (repair function). Let K be a KB and C a set of consequences.
A function rep : P(K) → {0, 1} is a repair function of K w.r.t. C iff for every
K′ ⊆ K it holds that rep(K′) = 0 iff there is an α ∈ C such that K′ |= α.

Intuitively, a repair function takes as input a sub-KB K′ of K, and returns 1, if
K′ does not entail any of the (erroneous) consequences in C (that is, if K′ gets



rid of all errors), and 0 otherwise. Notice, however, that rep(K′) = 1 does not
mean that K′ is a repair, since the maximality criterion is not being considered
in the definition of this function, but it is easy to detect the repairs from it.

If we see every axiom as a propositional variable, then rep is simply a proposi-
tional formula over the variables in K. Hence, we can encode this function using
any of the existing datatypes for compact representation of formulas, such as
circuits [15], binary decision diagrams (BDDs) [8], or the more recent sentential
decision diagrams (SDDs) [6]. For the sake of an example, and to be consistent
with previous work (as should become clear later in this paper), we consider
BDDs. In a nutshell, a BDD is a directed acyclic graph with one root note and
two terminal nodes (called 0 and 1) such that every non-terminal node node is
labelled with a propositional variable and has exactly two successors called the
low and the high branch, and in every path from the root to a terminal node the
a can appear at most once. A valuation is checked by the BDD by traversing the
graph starting from the root and following the low branch if the variable is set
of false, and the high branch otherwise. The valuation is a model of the BDD iff
this traversal leads to the terminal 1.

To achieve our goal, we build a sequence of repair functions, updating the
last one whenever a new fault is found. At the beginning, we have only a KB K,
and no errors; that is, C = ∅. Hence, we have a trivial repair function that maps
every subset of K to 1. In terms of propositional formulas, we represent it as a
tautology, which corresponds to the BDD having only one node 1.

Suppose now that we have already detected a set of faults C, and that we
have computed a repair function rep for it. For simplicity, we will observe this
function as a propositional formula. Our goal now is, given a new unwanted
consequence α, to compute a repair function rep′ w.r.t. C ∪ {α}. One could, of
course, compute this new function from scratch, ignoring the properteis of rep.
We instead opt to simply update rep to exclude those sub-KBs of K that entail
α from being accepted.

Recall that a justification is a minimal sub-KB that entails α. Intuitively, if
M is a justification, then any set containingM will entail α. IfM was the only
justification, then minimality would imply that excluding at least one axiom
fromM would also get rid of the consequence α; i.e., ifM\K′ 6= ∅, then K′ 6|= α
holds for all K′ ⊆ K. Since there may exist more than one justification, we need
to ensure that none of them is contained in a set to guarantee that α is not
entailed. We do this with the help of a pinpointing formula.

Definition 4 (pinpointing formula). Let K be a KB, and α a consequence.
A pinpointing formula for α w.r.t. K is a Boolean function pin : P(K)→ {0, 1}
such that, for every K′ ⊆ K it holds that pin(K′) = 1 iff K′ |= α.

Notice that the pinpointing formula is the analogous notion to the repair func-
tion, when speaking about justifications instead of repairs. The name is chosen
to preserve consistency with existing terminology. Pinpointing refers to the task
of computing all justifications, and the notion of formula arises from considering
all axioms as propositional variables inside the Boolean function pin, as we did
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Fig. 2. A BDD for the repairs of Figure 1.

before for the repair function. It is perhaps worth noting that Definition 4 is sim-
pler than Definition 3 simply because the former refers to only one consequence,
while the later must consider a whole set of them.

Effective methods for constructing and dealing with pinpointing formulas
have been studied and implemented for different representation languages; most
notably for DLs [16]. The bottom line is that it is possible to efficiently construct
a pinpointing formula for many different cases. In particular, one can even build
a BDD encoding this formula for expressive representation languages.

As mentioned already, the pinpointing formula can be used to update the
repair function to exclude one more consequence. Remember that, from each
repair, we need to exclude every justification. That is, the new repair function
should map a sub-KB K′ to 1 if the original rep did so (i.e., rep(K′) = 1), but the
pinpointing formula did not (pin(K′) = 0). If we see these functions as formulas,
this means that rep′ should be rep ∧ ¬pin.

Theorem 5. Let K be a KB, rep a repair function w.r.t. a set of consequence C,
and pin a pinpointing formula w.r.t. the consequence α. Then rep′ := rep ∧ ¬pin
is a repair function w.r.t. C ∪ {α}.

Proof. Let K′ ⊆ K. We need to show that rep′(K′) = 0 iff there is a β ∈ C ∪{α}
such that K′ |= β. We see that rep′(K′) = 0 iff rep(K′) = 0 or pin(K′) = 1. The
former holds iff there is a β ∈ C such that K′ |= β, while the latter holds iff
K′ |= α. Hence, overall, we get the desired result. ut

This means that the repair functions can be iteratively constructed by conjoining
the negations of the pinpointing formulas of the unwanted consequences that are
encountered during the use of the KB. At any moment, we can try to extract
some meaningful information our of this repair function. Before we describe the
kind of information that can be extracted, and the methods for doing so, we
note that the correctness of Theorem 5 depends fundamentally on the fact that
the repair function caputes all sub-KBs that do not entail the consequences in
C, and not only the repairs (i.e., not only the subset-maximal ones). Figure 2
depicts a BDD for the repairs w.r.t. {v → w, v → y} constructed this way.

Recall now that we are using, during production, a KB that is known to
contain some errors. Still, until it is completely repaired, we want to be able to
extract some meaningful information out of this KB. In particular, we would



like to be able to derive consequences with a guarantee, or at least a hint, of
correctness. This motivates the use of cautious and brave consequences.

Definition 6 (cautious, brave consequences). Let K be a KB, C a set of
consequences, and α a consequence. K cautiously entails α w.r.t. C (K |=c α)
iff for every repair K′ of K w.r.t. C it holds that K′ |= α. K bravely entails α
w.r.t. C (K |=b α) iff there exists a repair K′ of K w.r.t. C such that K′ |= α.

Intuitively, a cautious consequence is guaranteed to hold regardless of which
repair we choose, and hence we are certain that, after the errors have been fixed,
this consequence will still hold. Thus, a user can safely use this consequence,
which circumvents all the known errors.

On the other hand, brave consequences only need to hold in at least one
repair. Note that this could, in fact, be the correct repair, in which case this
consequence would still hold after the KB is fixed. However, there is no guarantee
that this will be the case. Although brave consequences are relatively weak, and
do not preserve some basic logical closure properties (e.g., K |=b a → b and
K |=b b→ c does not imply that K |=b a→ c), they can be useful to know that
the consequence is still possible after repairing. If this is a wanted consequence,
we can use this information to guide the search for the right repair. Or, if it is
an unwanted consequence, knowing that it is not bravely entailed allows us to
avoid making an additional (but irrelevant) contraction step.

We first see that brave consequences can be decided by operating over the
repair function and the pinpointing formula.

Proposition 7. Let K be a KB, rep a repair function w.r.t. a set of consequences
C, and pin a pinpointing formula for a consequence α. K bravely entails α w.r.t.
C iff rep does not entail ¬pin.

Proof. If K |=b α, then there exists a repair K′ w.r.t. C such that K′ |= α.
By definition, this means that rep(K′) = 1 = pin(K′). So, it cannot hold that
rep ⇒ ¬pin. Conversely, if K 6|=b α, then for every repair K′ we know that
K′ 6|= α. By monotonicity of the consequences, the same is true for all subsets
of a repair. That is, for every L ⊆ K, if rep(L) = 1 then L 6|= α. In terms of
the pinpointing formula, this means that if rep(L) = 1, then pin(L) = 0, or
alternatively, ¬pin(L) = 1. Hence rep⇒ ¬pin. ut

Dealing with cautious consequences requires a slightly more complex analysis.
Notice that to verify that a consequence is not cautiously entailed, it does not
suffice to simply check whether there is a set accepted by rep that is rejected by
pin (i.e., a set that avoids C and also rejects α). This is because rep also accepts
all subsets of the repairs. In particular, the empty KB is such that rep(∅) = 1
and pin(∅) = 0, assuming that α and the consequences in C are not tautologies.
Thus, we really need to be careful that the maximality of the repairs is taken
into consideration.

Proposition 8. Let K be a KB, rep a repair function w.r.t. a set of consequences
C, and pin a pinpointing formula for a consequence α. K cautiously entails α



w.r.t. C iff for every set K′ satisfying rep ∧ ¬pin there exists some L ⊃ K′ that
satisfies rep ∧ pin.

Proof. Suppose that K |=c α, and let K′ be such that satisfies rep ∧ ¬pin. By
definition of pin, K′ 6|= α. Since α is cautiously entailed, K′ cannot be a repair,
but since rep(K′) = 1, it should be a subset of a repair. Let L be any repair
containing K′. By construction, L satisfies rep∧ pin. Conversely, if K 6|=c α, then
there exists some repair K′ such that K′ 6|= α. Again, by construction K′ satisfies
rep ∧ ¬pin. But since K′ is a repair, for every L ⊃ K′ we know that rep(L) = 0.
Hence, there exists no L ⊃ K′ that satisfies rep ∧ pin. ut

For the sake of completeness, we consider a third kind of entailment that has
been studied in the literature. A KB IAR entails the consequence α w.r.t. a
set C iff α follows from the intersection of all repairs of K w.r.t. C [4]. In this
case, the name IAR is an acronym for intersection of all repairs. Note that when
dealing with IAR entailments, the structure of the repairs becomes irrelevant,
and the only important information is which axioms appear in all repairs. In
fact, if we know the intersection of all the repairs, then IAR entailment becomes
just a standard entailment over this sub-KB.

To solve IAR, we simply need to identify the axioms that appear in the
intersection. This can be done in two ways: either, on demand, whenever an
IAR entailment test is required, or during the construction of the repair function,
while preserving an additional data structure: we can see that the intersection
of all repairs is the complement of the union of all justifications. Hence, as we
construct rep, every time that we compute the set of all justifications, we can
simply remove their union from the set of still active axioms. This approach
becomes more efficient if many IAR entailment tests are expected, since the
intersection is computed only once, and used for all tests.

We have so far focused on the problem of computing the repair function,
which encodes all the repairs for a sequence of unwanted consequences from a
KB, and how to use this function, together with the pinpointing formula, to
perform meaningful reasoning tasks that avoid the known errors. In the next
section, we consider a different problem; namely, helping a knowledge engineer
to find the right repair (that is, identify which are the truly faulty axioms) from
a potentially exponential class of options without having to analyse all of them
independently, and trying to minimise their effort.

4 Choosing the Right Repair

So far we have worked under the assumption that a user of the KB, while capable
of detecting errors in the consequences observed, is not knowledgeable enough—
or is not authorised—to definitely fix the KB. As we have seen, there may exist
many different repairs, and each of them is a potential solution to get rid of all
the errors. However, not all of them are equally valid. Suppose for example that
our KB refers to a concept hierarchy, where a → b means that every a is a b.
In this setting, we can consider the KB that has two axioms human→ mammal



and mammal→ plant. A consequence of this KB is that every human is a plant,
which is obviously unwanted. Each of the two axioms human → mammal and
mammal → plant is a repair, but clearly, only the former one is a valid repair
w.r.t. the domain of the KB. The task of the knowledge engineer is to identify
this right repair from the sea of all potential repairs.

It should be clear that it is completely infeasible for the knowledge engineer
to explore all the repairs one by one, and decide which is the correct one. First,
there are many such repairs, making this an overwhelming task for a human
resource. Moreover, each repair is expected to be large and, as in the original
KB, it may be very hard to spot an error in an axiom hidden within thousands
of other axioms.

Our proposal is to make the knowledge engineer verify only one axiom at
a time, rather than a full repair. Once again, one could think of checking each
axiom in the KB, which is clearly infeasible for very large KBs. Instead, what
we do is to select first those axioms that are more likely to lead to the correct
repair in the least amount of steps, regardless of the answer provided by the
knowledge engineer. More precisely, we try to find an axiom that belongs to half
of all repairs, or as close as possible to that.

Definition 9 (cut axiom). Let K be a KB, and R the set of all repairs of K
w.r.t. a set of consequences C. Given an axiom α ∈ K, we define the sets

R+
α := {L ∈ R | α ∈ L},
R−α := {L ∈ R | α /∈ L}.

The axiom α is called a cut axiom iff for every β ∈ K it holds that

|R+
α | − |R−α | ≤ |R+

β | − |R−β |.

The idea behind the cut axiom is that, by verifying its correctness, we can
immediately cut the search space (almost) in half. Specifically, if α is correct,
then we know that the right repair is among R+

α , and if it is wrong, we should
focus only on R−α . Hence, the first question is how to compute such an axiom.
Unfortunately, it turns out that deciding whether an axiom is a cut axiom is
coNP-hard already for the very simple representation language that we are using
as an example, and only one unwanted consequence is known.

Theorem 10. Given a graph K, an edge v → w ∈ K, and an unwanted reacha-
bility entailment x→ y, deciding whether v → w is a cut axiom is coNP-hard.

Proof. We prove this by a reduction from the following coNP-hard problem: is
there a repair L for K w.r.t. x → y such that v → w /∈ L? [11]. Let n := |K|.
We notice that there can exist at most 2n−1 repairs that contain v → w and at
most 2n−1 that do not contain this axiom. Assuming w.l.o.g. that there are at
least two repairs, we construct the new KB M, which extends K by adding 2n
new vertices z1, . . . , z2n, and the edges

E′ := {v → zi, zi → w | 1 ≤ i ≤ 2n}.



Clearly, the size of M is linear on the size of K.
This new KB has the following property. For every repair K′ of K w.r.t.

x→ y, (i) if v → w ∈ K′ then K ∪ E′ is the only repair of M w.r.t. x→ y that
contains K′ (that is, there is a one-to-one correspondence between the repairs of
K and of M that contain x → y); and (ii) if v → w /∈ K′, then there exist 22n

different repairs ofM w.r.t. x→ y that contain K′; in particular, exactly 22n−1

of those repairs contain the axiom v → z1.
In particular, if K has m repairs that contain v → w and ` that do not

contain this axiom, then M will have m + ` · 22n−1 repairs containing v → z1
and ` · 22n−1 repairs not containing the axiom. Moreover, every other axiom of
K will appear in at most 2n−1 repairs of M, and all the axioms in E′ will be
in exactly the same number of repairs as v → z1. Thus, x → z1 is a cut axiom
w.r.t. M iff ` ≥ 1; that is, iff there is at least one repair of K that does not
contain v → w. ut

What this theorem shows is that it is in general hard to detect which axiom is the
best option to verify first in order to guarantee a reduction of the search space.
In fact, it is very unlikely that the exact complexity coincides with this lower
bound. It is known that counting the number of justifications, and the number of
justifications to which an axiom belongs are #P-complete problems. Although
such hardness results have not been shown, to the best of our knowledge, also
for the problem of counting repairs, the duality between both problems strongly
suggests that this is the case as well.

On the other hand, notice that not all knowledge representation languages
are as inexpressive as our example. Indeed, even if we restrict to decidable cases,
there are some mainstream languages where reasoning is at least NExpTime-
hard. In such cases (and indeed in any language where reasoning is PSpace-
hard), finding a cut axiom is as expensive, in terms of computational complexity,
as merely deciding whether a consequence follows.

Suppose that we have found a cut axiom α. The next step is to use it to
prune the search space in a way that the process can be iterated until the right
repair is found. After we propose this axiom to the knowledge engineer, they
will respond either that the axiom is (i) correct, or that it is (ii) incorrect. In
the second case, we know that α cannot appear in the right repair. Thus, we
simply eliminate it from the KB K. In practical terms, this means updating the
repair function to ignore α, considering it as being always false. If the repair
function is expressed as a BDD, this operation corresponds simply on removing
the nodes representing α from the diagram, and updating every edge pointing
to those nodes to now point to their lower children—that is, to the node reached
when α is evaluated to false at that node.

In the case (i)—i.e., when α is marked as correct—then we should ignore
all repairs that do not contain α, and focus only on those that include it. In
principle, we could do as before and remove all α nodes, but now assuming that
it is always true within the repair function. However, we want to preserve the
knowledge that α must appear in all repairs. Hence, rather than removing the
variable from the formula, we enforce the repair function to exclude any set that



does not contain α. In an OBDD, this is achieved by substituting the lower
branch of every α node with the 0-terminal.

Importantly, after these operations the resulting structure is still a repair
function, but which now accepts only those repairs that comply with the infor-
mation provided by the knowledge engineer. Hence, we can repeat the process,
reducing at each step the total number of repairs remaining. Note that once that
an axiom has been analysed by the knowledge engineer, it will never be proposed
by the system again. Hence, in the worst case, it will need as many tests as there
are axioms in the KB; i.e., it is not worse than the näıve approach of testing
all axioms in order. In fact, many less axioms will be tested. First, notice that
all axioms that appear either in all repairs, or in none of them will never be
proposed by the method: the only way they become cut axioms is if there is only
one repair left, in which case the process has already finished. Second, every time
that we test an axiom, we reduce the class of remaining repairs, which in turn
increases both, the class of axioms that belong to all repairs, and the class of
axioms that belong to none. Thus, more axioms will be excluded from testing.

5 Conclusions

We have proposed a methodology for helping knowledge engineers to make de-
cisions in relation to faulty knowledge bases. The premise of this work is based
on the idea of preserving all the information regarding all the possible ways in
which errors, which may be detected while a KB is in use, may be avoided.
For this purpose, we propose to store a Boolean function, which accepts only
those sub-KBs that are free of all known errors. If new faults are encountered,
this Boolean function—called the repair function—can be updated using known
techniques from the area of consequence explanation (or axiom pinpointing).

The importance of this repair function is that it can be used to decide different
properties of the consequences of the original KB. Specifically, one can verify
whether a consequence can still be derived from any possible repair (cautious
reasoning), or from at least one of them (brave reasoning). As we have no precise
notion a priori of the actual repair that will be obtained after the knowledge
engineer has verified the correctness of the axioms, brave consequences have also
a place as ones that can potentially remain.

More interestingly, we introduced the notion of a cut axiom, which is the one
that appears in half the repairs, or as close to that as possible. Although finding
a cut axiom is computational hard, it is an effective tool for guiding the search
for the right repair that fixes all the faults encountered. The computational effort
needed to find the cut axiom is a good investment in reducing the human cost
of verifying the correctness of a repair. We notice that a full repair plan can be
computed offline before any intervention by the human expert, so that they are
given a sequence of questions without delay.

One line of future research is to try to extend the notion of a cut axiom into
a cut consequence; that is, using potentially complex consequences to better
separate the space of repairs. The challenge in this direction is to adequately



restrict the class of consequences that may be used, and to develop an effective
method that does not need to enumerate them all. Another goal is to improve
the notion of a cut axiom so that it also takes into account the improvements
on the following steps; for instance, to consider those that minimise the average
number of questions that need to be asked overall. Finally, we will implement
a prototypical system for a well-known knowledge representation language, and
test the effectiveness of our methods on realistic KBs.
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9. Ludwig, M., Peñaloza, R.: Error-tolerant reasoning in the description logic EL. In:
Proc. 14th European Conference on Logics in Artificial Intelligence (JELIA 2014).
Lecture Notes in Computer Science, vol. 8761, pp. 107–121. Springer (2014).
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12. Peñaloza, R., Thuluva, A.S.: Iterative ontology updates using context labels. In
Proceedings of the Joint Ontology Workshops 2015. CEUR Workshop Proceedings,
vol. 1517. CEUR-WS.org (2015),

13. Price, C., Spackman, K.: Snomed clinical terms. British Journal of Healthcare
Computing and Information Management 17(3), 27–31 (2000)

14. Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32(1),
57–95 (1987). https://doi.org/10.1016/0004-3702(87)90062-2

15. Shannon, C.E.: The synthesis of two-terminal switching circuits. Bell System Tech-
nical Journal 28(1), 59–98 (1949).

16. Zese, R., Bellodi, E., Riguzzi, F., Cota, G., Lamma, E.: Tableau reasoning for
description logics and its extension to probabilities. Annals of Mathematics and
Artificial Intelligence 82(1-3), 101–130 (2018).


