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Abstract The construction and maintenance of on-

tologies is an error-prone task. As such, it is not un-

common to detect unwanted or erroneous consequences

in large-scale ontologies which are already deployed in

production. While waiting for a corrected version, these

ontologies should still be available for use in a “safe”

manner, which avoids the known errors. At the same

time, the knowledge engineer in charge of producing

the new version requires support to explore only the

potentially problematic axioms, and reduce the num-

ber of exploration steps.

In this paper, we explore the problem of deriving

meaningful consequences from ontologies which con-

tain known errors. Our work extends the ideas from

inconsistency-tolerant reasoning to allow for arbitrary

entailments as errors, and allows for any part of the on-

tology (be it the terminological elements or the facts) to

be the causes of the error. Our study shows that, with

a few exceptions, tasks related to this kind of reason-

ing are intractable in general, even for very inexpressive

description logics.

Keywords description logics · error-tolerance ·
reasoning

1 Introduction

Description logics (DLs) (Baader et al, 2007a) are a

family of knowledge representation formalisms, which

have been successfully applied to build large ontolo-

gies modelling different application domains. Among
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the members of this large family, two subfamilies of

lightweight DLs known as DL-Lite (Artale et al, 2009;

Calvanese et al, 2007) and EL (Baader et al, 2005, 2008)

are of particular interest due to the low complexity of

their standard reasoning tasks. Unfortunately, building

and maintaining large ontologies in these or other lan-

guages is error-prone, and one often encounters errors,

even after a careful pre-publication verification step.

In addition, well-maintained ontologies usually stick to

specific production cycles; for example, Snomed CT

(Price and Spackman, 2000) produces a new version

every six months. In the meantime, it should still be

possible to use this ontology, although applying a “safe”

mode that tries to avoid the (potential) causes for the

known error.

In order to tackle this goal, we follow the original
ideas from inconsistency-tolerant query answering first

developed in the database realm (Bertossi et al, 2005)

and then studied also for DLs (Bienvenu and Bourgaux,

2016; Eiter et al, 2016; Lembo et al, 2010), except that

instead of focusing on inconsistencies as the sole proxy

of erroneous modelling, we allow arbitrary consequences

to be considered erroneous. For example, EL ontologies

are always consistent, but earlier versions of Snomed

(which is modelled in this logic) wrongly entailed that

every amputation of a finger is an amputation of a

hand. Analogously to previous work, we consider error-

tolerant consequences to be those which can avoid the

errors, in three levels of generality: brave (if there is

one way to avoid the error and entail the consequence),

cautious (if any correction of the ontology entails the

consequence) and the intersection of all repairs, where a

repair refers to a maximal subset of the ontology which

avoids the error. We study the complexity of reasoning

with these three variants, and show that in most cases

the problems become intractable.
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At the end of the paper, we study the extra-logical

problem of helping the knowledge engineer in finding

the wrong axioms which caused the error in the first

place. We suggest finding an axiom that divides the

number of potential repairs in half according to its

membership in them, but show that even this task is

hard for very simple logics.

This paper collects, corrects, and improves results

which have been previously presented at conferences

(Ludwig and Peñaloza, 2014; Peñaloza, 2017, 2019).

2 Preliminaries

For this paper we focus on the lightweight families of

description logics, which are known as the DL-Lite and

EL families, using a meaningful representative of each

family.

Consider three mutually disjoint sets NC , NR, and

NI of concept-, role-, and individual names, respec-

tively. The class of EL concepts is built by the grammar

rule C ::= A | > | C u C | ∃r.C, where A ∈ NC and

r ∈ NR. The classes of DL-Lite concepts and DL-Lite

roles are defined through the grammar rules B ::= A |
∃s | > | ⊥ and s ::= r | r−, where A ∈ NC and r ∈ NR.

An EL TBox is a finite set of general concept inclusions

(GCIs) of the form C v D, where C and D are EL
concepts. A DL-LiteHorn TBox is a finite set of Horn

concept inclusions (HCIs) of the form B1u· · ·uBn v B,

where n ≥ 1, and each B,Bi is a DL-Lite concept, and

role inclusions (RIs) of the form s1 v s2, where r1 and

r2 are DL-Lite roles. An (EL or DL-LiteHorn) ABox is a

finite set of assertions of the form A(a) (concept asser-

tion) or r(a, b) (role assertion), where A ∈ NC , r ∈ NR,

and a, b ∈ NI . A knowledge base (sometimes also called

an ontology) is a pair (T ,A) where T is a TBox and A
is an ABox.

In the following, we will handle DL-Lite and EL
cases simultaneously, and hence often avoid the pre-

fix in the name, speaking of e.g. a TBox. If there are

several elements, we are implicitly assuming that they

all belong to the same logical language. We sometimes

use the term axiom to refer to GCIs, HCIs, RIs, and

assertions as a whole, when it is not relevant what kind

of element of an ontology we are referring to. In that

case, an ontology becomes simply a finite set of axioms.

As an important special case, we will also consider

the sublogic HL, in which a TBox is a finite set of HCIs

formed using concept names exclusively. We note that

HL is a notational variant of propositional Horn logic,

and that it lies at the intersection of EL and DL-Lite.

That is, every HL ontology is also an EL and a DL-Lite

ontology.

The semantics of these logics, as all DLs, is based

on first-order semantics, where concepts correspond to

unary predicates, and roles are binary predicates. For-

mally, an interpretation is a pair I = (∆I , ·I), where

∆I is a non-empty set called the domain, and ·I is

the interpretation function, which maps every individ-

ual name a ∈ NI to an element aI ∈ ∆I , every con-

cept name A ∈ NC to a set AI ⊆ ∆I , and every role

name r ∈ NR to a binary relation rI ⊆ ∆I ×∆I . The

interpretation function is extended to cover all other

constructors of DL-Lite and EL—and hence interpret

arbitrary EL and DL-Lite concepts and roles—as fol-

lows:

– (r−)I := {(y, x) | (x, y) ∈ rI};
– >I := ∆I ;

– ⊥I := ∅;
– (C uD)I := CI ∩DI ;

– (∃s.C)I := {x | ∃y ∈ CI .(x, y) ∈ sI}; and

– (∃s)I := (∃s.>)I .

The interpretation I satisfies the GCI or HCI C v D

iff CI ⊆ DI ; the RI s1 v s2 iff sI1 ⊆ sI2 ; the concept

assertion A(a) iff aI ∈ AI ; and the role assertion r(a, b)

iff (aI , bI) ∈ rI . I is a model of the TBox T , the ABox

A or the ontology O iff it satisfies all the axioms in T ,

A, or O, respectively. We denote this as I |= T , I |= A,

and I |= O, respectively. The ontology O is consistent

iff there is a model of O. Given an ontology O and an

axiom α, we say that O entails α (denoted as O |= α)

iff every model of O also satisfies α.

One of the main reasoning tasks in DLs is entail-

ment checking; that is, deciding whether a given ontol-

ogy entails an axiom. In EL and DL-Lite, entailments

can be checked in polynomial time. In some cases, the
axiom that is tested for entailment is not a wanted con-

sequence, but rather an error that one tries to avoid.

For example, if we want to check whether an ontology

is consistent, we might test whether O |= ⊥(a), which

holds only in the case the O has no models. When this

entailment holds, it is a signal of an error in the on-

tology. In these situations, if this unwanted entailment

holds, then one may be interested in identifying the

axioms that cause this consequence—in an attempt to

place the blame—or a candidate sub-ontology which

excludes it, giving rise to the following definitions.

Definition 1 (justification, repair) Let O be an on-

tology and α an axiom such that O |= α. A justifica-

tion of α w.r.t. O is a sub-ontology M ⊆ O such that

M |= α and for all N ( M, N 6|= α. A repair for α

w.r.t. O is a sub-ontology R ⊆ O such that R 6|= α and

for all Q ) R, Q |= α.

In words, a justification is a minimal (w.r.t. set inclu-

sion) sub-ontology that entails the consequence, while
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a repair is a maximal (w.r.t. set inclusion) sub-ontology

that avoids it. It is well known that there might exist

exponentially many justifications or repairs for a given

consequence. In the following, Just(O, α) and Rep(O, α)

denote the sets of all justifications and repairs for α

w.r.t. O. If the specific ontology used is irrelevant, we

often remove the first argument, and write simply e.g.

Just(α).

An interesting property of HL ontologies, which we

will use throughout this paper, is that they can be

represented as directed hypergraphs. Under this view,

nodes represent concept names or individual names,

and a hyperedge corresponds to an axiom in the on-

tology. Hence, entailment checking corresponds to the

task of deciding reachability between nodes. More im-

portantly, a justification is nothing more than a sim-

ple hyperpath. If we further restrict HL to disallow

conjunctions on the left-hand side of axioms, then this

representation collapses to classical graphs and the ex-

ploration of simple paths determines justifications.

The (hyper)graph representation can be extended

to DL-LiteHorn ontologies by allowing nodes to repre-

sent also the complex concepts provided in this lan-

guage; that is, ∃s and ⊥. However, reasoning becomes

more complex from the need to handle role inclusions,

inverse roles, and in particular, the special semantics

of ⊥ which represents a contradiction. For example, to

derive O |= A v B from a DL-LiteHorn ontology O, it

suffices to derive O |= A v ⊥.

3 Error-Tolerant Reasoning

If an unwanted consequence or error is entailed by an

ontology, then we know that this ontology must contain

some errors. That means, in particular, that we cannot

directly trust the consequences derived from it. Still,

we do not want to throw the whole ontology away and

start from scratch, or wait until a human expert has

fixed all the issues to use it. Alternatively, we want to

be able to derive some consequences that may still be

trusted. Intuitively, these are consequences that can be

derived using axioms which do not play a role in the

error. This intuition gives rise to three main semantics.

Definition 2 (error-tolerant semantics) Let O be

an ontology and α, β two axioms such that O |= α. We

say that β is a cautious consequence of O w.r.t. α if for

every R ∈ Rep(O, α), R |= β. It is a brave consequence

of O w.r.t. α if there exists some R ∈ Rep(O, α) such

that R |= β. It is an intersection of all repairs (IAR)

consequence of O w.r.t. α if
⋂
R∈Rep(O,α)R |= β.1

1 Originally, the name IAR stood for intersection of ABox
repairs in the context of inconsistent-tolerant query answer-

Note that this definition considers the presence of one

error only. While in practice one should expect to ob-

serve multiple errors, for the scope of this paper we

focus on the simpler case and leave open the question

of dealing with several errors. In any case, the notion of

a repair, and by extension the error-tolerant semantics,

can be easily generalised to the case with several errors

in the obvious way: a repair is a maximal sub-ontology

from which none of the known errors follows.

In Definition 2 we consider error-tolerant semantics

based on the whole ontology. It is sometimes convenient

to consider the more general cases where a portion of

the ontology is fixed, and its axioms cannot be removed

to form a repair. Thus, we can analogously define the

notions of ABox error-tolerant semantics, where the

TBox is fixed and repairs are defined only as subsets

of the ABox, and dually TBox error-tolerant semantics

where the ABox is fixed.

Note that there is a natural strength relationship

between the three semantics from Definition 2: every

IAR consequence is also a cautious consequence, and

each cautious consequence is a brave consequence. It

is easy to build examples showing that the converse

implications do not hold in general, even for HL.

Recall that classical entailments in these logics can

be decided in polynomial time. Unfortunately, as we

will see shortly, the same cannot be said about the

error-tolerant semantics in general. But first, we con-

sider a tractable case. For the following proof we use

the notion of a directed hypergraph. While there are

many ways to define directed hypergraphs, are inter-

ested in those having singleton heads (?).

Definition 3 (directed hypergraph) A directed hy-

pergraph is a pair (V,E) where V is a set of nodes and E

is a set of directed hyperedges of the form (W, v), where

W ⊆ V and v ∈ V .

A hyperpath from X ⊆ V to x ∈ V is a sequence

(W0, v0), . . . , (Wn, vn) of hyperedges such that vn = x

and for every k, 0 ≤ k ≤ n, Wk ⊆ X ∪ {v` | 0 ≤ ` < k}.
This hyperpath is simple if for all k, 0 ≤ k ≤ n, vk /∈
X ∪ {v` | 0 ≤ ` < k}. A subpath of the hyperpath H is

a subsequence of H.

In words, a directed hyperedge connects a set of nodes

(the sources) with one node (the head). The notion of a

hyperpath generalises the idea of a path in a graph, by

using hyperedges; that is, all the sources W of a hyper-

edge (W, v) need to be reached before this hyperedge

can be followed. We sometimes see hyperpaths as sets

of hyperedges, and hence treat them as hypergraphs.

ing. We have adapted the name to this slightly more general
context to preserve the intuitive connection to existing work
on inconsistency-tolerance.
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Theorem 4 Brave entailment w.r.t. DL-LiteHorn on-

tologies can be decided in polynomial time.

Proof Let O be a DL-LiteHorn ontology. We construct

the directed hypergraph HO = (V,E) by setting V to

be the set of all DL-LiteHorn individual names and con-

cept names appearing in O, together with the concepts

>,⊥, and ∃s, where s is a role name appearing in O or

its inverse. The set E of hyperedges is defined by the

axioms as follows:

E :=

{
(W, v) |

l

B∈W
B v v ∈ O

}
∪

{({∃s1},∃s2) | s1 v s2 ∈ O} ∪
{({a}, A) | A(a) ∈ O} ∪
{({a},∃r), ({b},∃r−) | r(a, b) ∈ O}.

It is easy to verify (see also (Peñaloza and Sertkaya,

2017)) that O |= B1 u . . .uBn v B iff there is a hyper-

path from {B1, . . . , Bn} to B in HO, and O |= A(a) iff

there is a hyperpath from {a} to A in the same hyper-

graph. For the rest of the proof we consider as axioms

only HCIs, but all other cases are treated analogously.

B1 u . . . u Bn v B is a brave consequence of O
w.r.t. B′1 u . . . uB′m v B′ iff there is a hyperpath from

{B1, . . . , Bn} to B that does not contain as a subpath

any hyperpath from {B′1, . . . , B′m} to B′. This can be

verified in polynomial time (on the size of the ontol-

ogy) through a generalisation of the usual reachability

algorithm, which marks nodes with three potential val-

ues: unreachable, reachable, and safely reachable mean-

ing that it is reachable through a path that does not

contain the undesired subpath. These labels are forward

propagated through the edges of the hypergraph, until

all nodes have been adequatedly marked. ut

This theorem extends the previous tractability result

known for HL (Ludwig and Peñaloza, 2014) which is a

sublogic of DL-LiteHorn. It is also in contrast with the

hardness result by Bienvenu and Rosati (2013), who

show that under the ABox error-tolerant semantics,

brave entailments in this same logic are NP-complete,

even if limited to the special case of α being an inconsis-

tency check and β an instance query (that is, a concept

assertion). Note that this latter result does not contra-

dict Theorem 4 since for the ABox semantics no axioms

from the TBox may be removed. In terms of the proof

of the theorem, this means that several hyperedges of

HO are always present and the construction of a path

avoiding some nodes does not suffice to guarantee the

existence of an adequate repair.

If we consider EL, even brave entailment checking is

NP-hard, as stated next.

Theorem 5 Brave entailment w.r.t EL ontologies is

NP-complete.

Proof The upper bound is obtained by considering the

following non-deterministic algorithm: first guess a sub-

ontology M ⊆ O and then verify that M |= β and

M 6|= α. If this is true, then there exists a repair of α,

which extends M, that entails β.

For the lower bound, we present a reduction from

the more minimal valuations (mmv) problem for mono-

tone Boolean formulas, which is known to be NP-hard

(Baader et al, 2007b; Eiter and Gottlob, 1995): given

a monotone Boolean formula ϕ and a set V of min-

imal valuations satisfying ϕ, decide whether there ex-

ists a valuation satisfying ϕ which does not contain any

valuation from V. The reduction is based on an idea

previously used in the context of the enumeration of

justifications in (Peñaloza and Sertkaya, 2017).

Let ϕ,V be an instance of mmv, and let sub(ϕ)

and csub(ϕ) denote the sets of all subformulas of ϕ and

of all complex subformulas of ϕ, respectively. That is,

csub excludes all propositional variables. For every ψ ∈
sub(ϕ), we introduce three concept names Bψ, Cψ, Dψ,

and two role names rψ, sψ. For every V ∈ V, we sim-

ilarly introduce BV , CV , DV , rV , and sV . In addition,

we introduce the concept names A,E,D, and F . Each

ψ ∈ sub(ϕ) defines a TBox Tψ as follows: if ψ is the

propositional variable p, then Tψ := {A v Bp}; if ψ =

ψ1 ∧ ψ2, then

Tψ := {A v ∃rψ.Cψ, Cψ v Bψ1
, Cψ v Bψ2

,

∃rψ.Bψ v Dψ, Bψ1
uBψ2

v Bψ },

and if ψ = ψ1 ∨ ψ2, then

Tψ := {A v ∃rψ.Bψ1
, A v ∃sψ.Bψ2

,

∃rψ.Bψ u ∃sψ.Bψ v Dψ,

Bψ1
v Bψ, Bψ2

v Bψ }.

Following the same method, we construct for every V ∈
V the TBox

TV :=

A v ∃rV .CV , ∃rV .BV v DV , l

p∈V
Bp v BV

∪
{CV v Bp | p ∈ V}.
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Finally, we set

TV := {A v ∃sV .BV , BV v F | V ∈ V} ∪{
l

V∈V

∃sV .F v D

}
T :=

⋃
ψ∈sub(ϕ)

Tψ ∪
⋃
V∈V

TV ∪ TV ∪ l

ψ∈csub(ϕ)

Dψ u
l

V∈V

DV uD uBϕ v E

 .

Notice that, for every T ′ ⊆ T , if T ′ |= A v E, then

also T ′ |= A v Dψ for all ψ ∈ csub(ϕ). It is easily seen,

exploring the axioms in Tψ, that T ′ |= A v Dψ can only

hold if T ′ contains Tψ. In particular, if ψ = ψ1 ∧ ψ2,

then Bψ1 u Bψ2 v Bψ ∈ T ′ and if ψ = ψ1 ∨ ψ2, then

{Bψ1
v Bψ, Bψ2

v Bψ} ⊆ T ′. Similarly, it must hold

that T ′ |= A v DV for all V ∈ V and T ′ |= A v D

which means that for every V ∈ V,
d
p∈V Bp v BV ∈ T ′

and also BV v F ∈ T ′.
Thus, a valuation W satisfies ϕ iff the TBox

SW := {A v Bp | p ∈ W} ∪
⋃

ψ∈csub(ϕ)

Tψ ∪
⋃
V∈V

TV ∪

TV ∪

 l

ψ∈csub(ϕ)

Dψ u
l

V∈V

DV uD uBϕ v E


entails A v E. This valuation does not contain any V ∈
V iff SW 6|= A v F . Thus, ϕ,V is a positive instance

of mmv iff A v E is a brave consequence of T w.r.t.

A v F . ut

The next step is to show that the two remaining seman-

tics are intractable as well, in general. In this case, we

show that the problems are coNP-complete and that

hardness holds already for HL, even if we disallow con-

junctions on the left of HCIs.

Theorem 6 Deciding cautious and IAR entailments

w.r.t. HL, DL-LiteHorn, or EL ontologies is coNP-com-

plete.

Proof For the upper bounds, we exploit the fact that

entailments in all these logics can be decided in poly-

nomial time, similarly to the approach used to prove

upper bounds for ABox repair semantics. If β is not

cautiously entailed by O w.r.t. α, we can guess a sub-

set R ⊆ O and verify in polynomial time that R is a

repair and that R 6|= β. Similarly, if β is not IAR en-

tailed by O w.r.t. α, we can guess a linear family of

sets R1, . . . ,Rn with n ≤ |O| and verify that each Ri
is a repair and

⋂n
i=1Ri 6|= β. Both conditions can be

checked in polynomial time.

For the lower bound, we reduce the coNP-complete

no-path-through-node (nptn) problem: given a graph

G = (V,E) and nodes s, t,m ∈ V , decide if there is no

simple path from s to t that passes through m. Given

an instance of nptn, we introduce a concept name Av
for every v ∈ (V \{m})∪{m1,m2}, where m1,m2 /∈ V ,

and construct the HL TBox

T := {Av v Aw | (v, w) ∈ E, v, w 6= m} ∪
{Av v Am1 | (v,m) ∈ E, v 6= m} ∪
{Am2 v Av | (m, v) ∈ E, v 6= m} ∪
{Am1 v Am2}.

There is no path from s to t passing through m iff every

repair of As v At w.r.t. O contains Am1
v Am2

. This

holds iff Am1 v Am2 is both, a cautious and an IAR

consequence of O w.r.t. As v At. ut

In the literature, the higher complexity observed for

the error-tolerant semantics has been often attributed

to the fact that the number of repairs may be expo-

nential on the size of the ontology. While there is some

truth in this argument, it is also incomplete; for ex-

ample, it fails to explain why brave consequences in

DL-LiteHorn remain polynomial, even though the num-

ber of repairs remains unchanged. As we will see next,

the reasons for hardness are more subtle. In fact, we

can guarantee the existence of EL ontologies having a

sub-exponential number of repairs w.r.t. a given con-

sequence, for which error-tolerant entailments are still

intractable (unless P = NP).

Theorem 7 Assuming P 6= NP, there is no algorithm

for deciding cautious or brave entailments w.r.t. an EL
ontology O and unwanted consequence α that runs in

polynomial time in the size of O and Rep(O, α).

Proof Consider the NP-complete more maximal falsi-

fiers (mmf) problem (Peñaloza Nyssen, 2009): given a

monotone Boolean formula ϕ and a set F of maximal

valuations falsifying ϕ, decide whether there exists a

valuationW falsifying ϕ such thatW 6⊆ V for all V ∈ F.

Given an instance ϕ,F of mmf, let sub(ϕ) be the set of

all subformulas of ϕ, and construct the TBoxes Tψ for

ψ ∈ sub(ϕ) as in the proof of Theorem 5. Construct

then the TBoxes

TF :=

l

p∈V
Bp v F | V ∈ F


T :=

⋃
ψ∈sub(ϕ)

Tψ ∪ TF ∪

 l

ψ∈sub(ϕ)

Dψ uBϕ v E

 .
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If there are n maximal valuations falsifying ϕ, then

|Rep(T , A v E)| ≤ 5|sub(ϕ)| + n: each maximal val-

uation defines one repair as this valuation plus the rep-

resentation of the formula ϕ; the other repairs appear

from affecting the representation of the formula.

Assume by contradiction that there exists an algo-

rithm that decides cautious entailments in polynomial

time on |T | and |Rep(T , A v E)|; that is, there exists

an algorithm A with runtime bounded by some polyno-

mial p(t, r), where t is the size of the ontology and r the

number of repairs, which decides cautious entailment.

Using this algorithm, we can decide mmf as follows: run

A on T for the cautious entailment A v F and stop af-

ter at most p(|T |, |F| + 5|sub(ϕ)|) steps. If the answer

is yes, then F is the set of all falsifying valuations, and

so there is no new one. If it answers no, or the exe-

cution of A did not terminate until this time bound,

then there must be at least one more falsifying valu-

ation. This means that A can be used to decide mmf

in polynomial time, contradicting the fact that mmf is

NP-complete.

The proof for brave entailments is analogous, but

using a construction closer to that of Theorem 5. We

leave the details as an exercise to the reader. ut
All kinds of error-tolerant entailments can be decided

in exponential time on the size of the ontology in all

the logics that we consider here. In fact, one can simply

enumerate all the 2|O| sub-ontologies of O, and for each

of them check in polynomial time on |O| that (i) it is

a repair of α and (ii) whether it entails β. This means

that whenever a consequence α has exponentially many

repairs, brave and cautious entailments can always be

decided in polynomial time on the size of |Rep(O, α)|.
Hence, the hardness from Theorem 7 must arise from a

situation with less than exponentially many repairs.

Corollary 8 It is intractable to decide cautious and

brave consequences of EL ontologies, even if the number

of repairs is sub-exponential.

Obviously, we cannot have an analogue of Theorem 7

for DL-LiteHorn, since brave entailments are already

known to be decidable in polynomial time. However,

if we restrict to ABox repairs (that is, where the TBox

is fixed, and only assertions from the ABox can be re-

moved to avoid an error) then hardness arises again.

In the following theorem, we call ABox-cautious and

ABox-brave the error-tolerant semantics obtained by

restricting to ABox repairs only.

Theorem 9 Assuming P 6= NP, there is no algorithm

for deciding ABox-cautious or ABox-brave entailments

w.r.t. a DL-LiteHorn ontology O and unwanted conse-

quence α that runs in polynomial time in the size of O
and the number of ABox repairs.

Proof The proof follows a similar idea as that of Theo-

rem 7, but the ontology is slightly adapted to this case.

Let ϕ,F be an instance of mmf. For each ψ ∈ sub(ϕ)

we create a concept name Aψ, and for each ψ ∈ csub(ϕ)

build the TBoxes

Tψ :=

{
{Aψ1

uAψ2
v Aψ} ψ = ψ1 ∧ ψ2

{Aψ1
v Aψ, Aψ2

v Aψ} ψ = ψ1 ∨ ψ2

T :=
⋃

ψ∈csub(ϕ)

Tψ ∪ {Aϕ v ⊥} ∪l

p∈V
Ap v B | V ∈ F

 ,

and the ABox A := {Ap(a) | p is a variable of ϕ}. The

ontology O = (T ,A) has as many ABox repairs w.r.t.

> v ⊥ as there are maximal valuations falsifying ϕ,

and B(a) is an ABox-cautious entailment of O w.r.t.

> v ⊥ iff every valuation falsifying ϕ is contained in

some V ∈ F. If there was an algorithm that could decide

cautious entailments in time p(|O|, |Rep(O,> v ⊥)|),
where p is a polynomial, then we can solve mmf by

running this algorithm for time p(|O|, |F|).
For brave entailments, we reduce mmv. Given an

instance ϕ,V of mmv, construct Tψ and A as in the

previous part of the proof and define

T :=
⋃

ψ∈csub(ϕ)

Tψ ∪

l

p∈V
Ap v ⊥ | V ∈ V

 .

Then, Aϕ(a) is a brave consequence of O = (T ,A)

w.r.t. > v ⊥ iff there is a valuation satisfying ϕ that

does not contain any V ∈ V. Using the same argument

from the case of cautious consequences, this shows that

brave entailments cannot be decided in polynomial time

on the number of ABox repairs. ut

4 IAR Repairs

For the hardness results presented at the end of the pre-

vious section, we did not consider the IAR semantics. In

this section we show that, despite the complexity of the

problem in general, some practical approaches can still

be implemented for DL-LiteHorn. To achieve this, we

exploit the duality between repairs and justifications,

and results on enumeration complexity.

It was previously shown that the simple hyperpaths

of a directed hypergraph can be enumerated with poly-

nomial delay (Peñaloza and Sertkaya, 2017); that is,

through a method that requires only polynomial time

(on the size of the hypergraph) between the output of

successive answers (Johnson et al, 1988). This fact was
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Algorithm 1: Anytime algorithm for IAR en-

tailments w.r.t. DL-LiteHorn ontologies.

Data: DL-LiteHorn ontology O, axioms α, β
Result: Is β IAR-entailed by O w.r.t. α?
U ← O
while more-justifications (α) do
N ← next-justification
U ← U \ N
if U 6|= β then

Return false

Return true

used to prove that all justifications for a DL-LiteHorn

TBox (when the ABox is empty) can be enumerated in

polynomial delay, using the reduction to hypergraphs

sketched before. The result (and its proof) trivially ex-

tends to general ontologies by including the hyperedges

that represent assertions from the ABox.

Proposition 10 All the justifications for an axiom α

w.r.t. the DL-LiteHorn ontology O can be enumerated

with polynomial delay.

From the duality between justifications and repairs, we

know that the union of all justifications and the inter-

section of all repairs complement each other. In other

words, to compute the intersection of all repairs, as a

step to deduce IAR entailments, it suffices to remove

from the ontology the union of all justifications. From

our complexity results (Theorem 6), it follows imme-

diately that the latter task—finding the union of all

justifications—is also intractable. Still, we can devise

an anytime algorithm, which iteratively computes one

justification at a time—over-approximating the inter-

section of all repairs—and stop when either the con-

sequence does not follow, or no more justifications are

available. This approach is described in Algorithm 1,

where more-justifications is a Boolean function that

verifies whether there are still more justifications for α

w.r.t. O that have not yet been enumerated, and next-

justification in that case outputs the next justifica-

tion in the enumeration.

Note that Algorithm 1 stops as soon as it is obvi-

ous that β cannot be entailed by the intersection of all

repairs: at each iteration of the while loop, the set U
monotonically decreases, hence further iterations would

only remove more consequences, but never adds new

ones. When the loop finishes, we know that we have

enumerated all justifications, and hence U is exactly

the intersection of all repairs, which guarantees the cor-

rectness of the algorithm. An important property of this

algorithm is that the order of the enumeration can be

manipulated to try to add justifications with previously

unseen axioms first, so that the set U shrinks as fast

as possible. However, one can only guarantee that the

IAR entailment holds after all justifications have been

found.

The practical benefit of Algorithm 1 resides not only

in its anytime nature, but also in the fact that it deals

with the enumeration of justifications, rather than re-

pairs. Indeed, although in theory an entailment may

also have exponentially many justifications, it has been

empirically verified that in human-developed ontolo-

gies the number of justifications, and their size, tends

to be small (Kazakov and Skocovský, 2018; Sebastiani

and Vescovi, 2009; Suntisrivaraporn, 2009). In contrast,

the number of repairs does grow exponentially in well-

maintained ontologies (Ludwig and Peñaloza, 2014).

As an alternative to over-approximating the inter-

section of all repairs, one can try to under-approximate

it. One way to do this is to use modularisation tech-

niques to efficiently compute a so-called justification-

preserving module. In essence, these modules are sub-

ontologies that contain the union of all justifications.

Different techniques balancing the computation time

and the quality of the approximation have been pro-

posed (Cuenca Grau et al, 2007, 2008; Peñaloza et al,

2017; Suntisrivaraporn, 2008), but in general the meth-

ods based on a syntactic analysis of the ontology tend

to behave better.

As a final remark on this aspect, we note that the

computation of a justification preserving module M is

also useful to improve the efficiency of Algorithm 1:

during the while loop, rather than computing the jus-

tification w.r.t. the original ontology O, one can restrict

to the axioms in the moduleM. This allows the execu-

tion to avoid paths that will not lead to a justification,

reducing the time and space required during runtime.

5 Correcting Errors

So far in this paper, we have considered the problem of

dealing automatically with ontologies that are known

to contain some errors by trying to avoid the causes

of these errors during reasoning. Beyond this, there is

not much that can be achieved in a fully automated

manner. Indeed, from the purely logical point of view,

all possible repairs are equal in the sense that they all

remove the undesired consequence. From the knowledge

representation point of view, however, we expect only

one of them to be correct in the sense that their axioms

all represent truths from the domain being modelled.

Note that this is true even if multiple errors occur: there

is one maximal sub-ontology that avoids all the known

errors; and this is the one we are interested in finding.

Following approaches from belief revision, consider-

ing the postulate of minimal change, one could propose
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to focus on repairs of maximum cardinality. Alterna-

tively, one could associate a degree of trust or preference

to each axiom, and focus on the most trusted or pre-

ferred repairs. These, and other similar solutions that

have been proposed, not only still suffer from the prob-

lem of a multiplicity of solutions (in the worst case, still

exponentially many), but in addition cannot guarantee

that the correct repair is among those selected; e.g., the

correct repair might in fact be one with minimal cardi-

nality. The issue is that correctness is an extra-logical

property, which does not depend on the shape or inter-

relation of axioms, but rather on the domain that the

ontology is modelling. In fact, the only way to know

whether an axiom—and by extension, an ontology—is

a correct representation of the domain knowledge is to

ask a domain expert.

The process of consulting with a domain expert is

the most expensive part of the process of error resolu-

tion in an ontology. Not only are these experts a limited

resource, but they need to understand what the axioms

say before they can make a determination on their cor-

rectness. For that reason, one would like to provide the

expert with as few questions as possible in order to find

the repair that resolves the error. To achieve this goal,

one potential idea is to find an axiom β, called cut ax-

iom, that partitions the space of repairs into two halves

according to whether they contain β or not.

Definition 11 (cut axiom) LetO be an ontology and

α an unwanted consequence. For an axiom β ∈ O, we

define the sets

R+
β := {R ∈ Rep(O, α) | β ∈ R},

R−β := {R ∈ Rep(O, α) | β /∈ R}.

The axiom β is called a cut axiom iff for every γ ∈ O
it holds that |R+

β | − |R
−
β | ≤ |R+

γ | − |R−γ |.

Note that this definition allows a flexibility in that the

set of repairs might not be partitioned in half, but the

cut axiom gets as close to it as possible. The idea be-

hind the cut axiom is that, by verifying its correctness,

we can immediately cut the search space (almost) in

half. Specifically, if α is correct, then we know that

the right repair is among R+
α , and if it is wrong, we

should focus only on R−α . Hence, the first question is

how to compute such an axiom. Unfortunately, it turns

out that deciding whether an axiom is a cut axiom is

coNP-hard already for the very simple sublogic of HL
which disallows conjunctions.

Theorem 12 Let O be an HL ontology, β ∈ O an

axiom, and α an unwanted consequence of O. Deciding

whether β is a cut axiom is coNP-hard.

Proof We prove this by a reduction from the coNP-

complete repair without edge (rwe) problem (Peñaloza,

2017): given a graph G = (V,E), nodes s, t ∈ V , and an

edge (v, w) ∈ E, decide if there is a maximal subgraph

G′ = (V, F ) of G such that t is not reachable from s

and (v, w) /∈ F .

Let n := |E|. Note that there can exist at most 2n−1

maximal subgraphs of the form we seek that contain

(v, w) and at most 2n−1 that do not contain this edge.

Assuming w.l.o.g. that there are at least two maximal

subgraphs, we construct an ontology M, which sim-

ulates an extension of G obtained by adding 2n new

vertices z1, . . . , z2n, and the edges

E′ := {v → zi, zi → w | 1 ≤ i ≤ 2n}.

Formally, for every u ∈ V ∪ {z1, . . . , z2n}, we create

a concept name Au, and construct the TBox M :=

{Au v Au′ | (u, u′) ∈ E ∪ E′}. Clearly, the size of M
is linear on the size of G. For a subgraph (V, F ) of G,

we define MF to be the sub-ontology of M restricted

to edges appearing in F .

This ontology has the following property. For every

maximal subgraph (V, F ) of G where t is not reachable

from s, (i) if (v, w) ∈ F , then MF is the only repair

of As v At w.r.t. M that contains all edges from F ;

that is, there is a one-to-one correspondence between

the maximal subgraphs of G that remove reachability

and the repairs ofM that contain Av v Aw; and (ii) if

(v, w) /∈ F , there exist 22n different repairs of As v
At w.r.t. M that contain all edges in F ; in particular,

exactly 22n−1 of them contain the axiom Av → Az1 .

In particular, if G has m maximal subgraphs that

contain (v, w) and ` that do not contain this edge, then

M will have m+ ` · 22n−1 repairs containing Av v Az1
and ` · 22n−1 repairs not containing the axiom. More-

over, every other edge of G will appear in at most 2n−1

repairs of M, and all the edges in E′ will be in ex-

actly the same number of repairs as Av v Az1 . Thus,

Av v Az1 is a cut axiom w.r.t. M iff ` ≥ 1; that is, iff

there is at least one maximal subgraph of G avoiding

the paths from s to t which does not contain (v, w). ut

In summary, this theorem tells us that it is not possible

to efficiently construct a decision tree about the ax-

ioms proposed to the domain expert for analysis, which

minimises the overall number of questions needed to

guarantee that a repair is obtained. Still, as explained

already, the most expensive resources are exactly those

of the domain expert. The decision tree could, in fact,

be constructed in advance, as a preprocessing step, or

even in parallel as the expert is understanding and ver-

ifying the first proposed culprits.
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6 Conclusions

We have studied the problem of dealing with and man-

aging errors in lightweight description logic ontologies.

For the former problem, we extend the idea of incon-

sistency-tolerant reasoning—defining different kinds of

semantics depending on the use of the repairs—to deal

with arbitrary errors that may, or may not, be con-

nected to inconsistency. Analysing the complexity of

three error-tolerant semantics, we have shown that in

most cases this kind of reasoning becomes intractable,

although we identified a few tractable cases and pro-

vided effective algorithms for handling them. Interest-

ingly, we have shown that the cause for intractability is

more subtle than just the number of potential repairs

as previously argued.

For the second problem, we proposed to partition

the space of all repairs as closely as possible in halves,

to help a knowledge engineer (KE) to find the correct

repair through a binary search-like process. While a de-

cision plan can be constructed offline before being pre-

sented to the KE, just deciding whether an axiom pro-

duces an adequate partition of the repairs is NP-hard.

One issue that was not considered in this paper

is the multiplicity of errors. Indeed, it is likely that

more than one unwanted consequence is detected be-

tween two consecutive versions of an ontology. We note

that the notions of justification and repair can be easily

extended to consider several consequences, and all the

hardness results still apply to the more general situa-

tion. Whether the tractable cases remain so is still to

be verified.

As future work we want to pursue two different

goals. On the one hand, we plan to extend our study to

more complex entailments (e.g., conjunctive queries),

while searching for conditions to regain tractability. On

the other hand, we will develop methods for dealing

efficiently with these error-tolerant reasoning tasks, de-

spite their computational complexity. One potential ap-

proach to achieve this is to exploit the properties of very

efficient SAT solvers. We note that SAT-based tech-

niques have already shown promising results in the ar-

eas of axiom pinpointing and inconsistent query answer-

ing (Arif et al, 2016; Bienvenu et al, 2019; Sebastiani

and Vescovi, 2009).
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