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Abstract. Axiom pinpointing refers to the task of highlighting (or pin-
pointing) the axioms in an ontology that are responsible for a given
consequence to follow. This is a fundamental task for understanding and
debugging very large ontologies. Although the name axiom pinpointing
was only coined in 2003, the problem itself has a much older history,
even if considering only description logic ontologies. In this work, we try
to explain axiom pinpointing: what it is; how it works; how it is solved;
and what it is useful for. To answer this questions, we take a historic
look at the field, focusing mainly on description logics, and the specific
contributions stemming from one researcher, who started it all in more
than one sense.

1 Introduction

One important aspect behind any (artifically) intelligent application is the avail-
ability of knowledge about the domain, which can be accessed and used ef-
fectively. In logic-based knowledge representation, this domain knowledge is ex-
pressed through a collection of logical constraints (or axioms) that limit how the
different terms under consideration are interpreted, and related to each other.
To abstract from the specific logical language used to express these constraints,
we call any such representation an ontology.

Description logics (DLs) are a family of knowledge representation formalisms
that have been successfully applied to represent the knowledge of several appli-
cation domains. The family contains several different logical languages that are
distinguished by their expressivity and the computational complexity of reason-
ing over them. They range from the extremely inexpressive DL-Lite [24] at the
basis of ontology-based data access [72], to the expressive SROIQ(D) [36] un-
derlying the standard ontology language for the semantic web OWL2 [50]. In
between these two, many other DLs exist. Another prominent example is the
light-weight DL EL [1], which allows for polynomial time reasoning [11], and is
used for many ontologies within the bio-medical domain. In particular, we can
mention Snomed CT, an ontology providing a unified nomenclature for clinical
terms in medicine composed of approximately half a million axioms [59].

It is hardly surprising that ontology engineering—the task of building an
ontology—is a costly and error-prone task. As the size of an ontology increases,
it becomes harder to have a global perspective of its constraints and their re-
lationships. For this reason, it becomes more likely to be surprised by some



of the consequences that can be derived from them. A classical example arose
with Snomed, from which at some point it was possible to derive that every
amputation of a finger was in fact an amputation of a hand. Finding the six
axioms—out of approximately 500,000—that cause this error without the help
of an automated method would have been almost impossible.

Here is where axiom pinpointing comes into play. Essentially, axiom pinpoint-
ing refers to the task of highlighting (or pinpointing) the specific axioms that
are responsible for a consequence to follow from an ontology. Considering that
the underlying ontology language is monotonic, this task corresponds to finding
classes of minimal subontologies still entailing the consequence. The term itself
was coined by Schlobach and Cornet in 2003, in a work that triggered several
follow-up approaches dealing with logics of varying expressivity. However, the
underlying method was proposed almost a decade earlier by Baader and Hollun-
der in the context of default reasoning.1

By 2006, the field of axiom pinpointing was starting to mature to a point
that begged for general solutions, beyond the specific attempts known at the
time. With the advice of Franz, I embarked then on a trip to produce these
general solutions. That trip was supposed to end in 2009 with the defense of my
dissertation, and search for new research topics. However, the repercussions of
the work continue today.

In this paper, we attempt to present a historical perspective on axiom pin-
pointing, explaining the existing methods, its applications, and newer extensions
that have been developed throughout the years. We note that although axiom
pinpointing has been studied—with different names—for other knowledge repre-
sentation formalisms, and by several people, our focus here is constrained to DLs
and specifically to the contributions that Franz made to the field either directly,
or indirectly through the people working in his group. This work is intended
as a basic, non-technical introduction to the field, but relevant references are
provided for the reader interested in a deeper understanding.

2 Description Logics in a Nutshell

We briefly introduce the notions on description logics (DLs) [2, 6] that will be
useful for understanding the rest of this work. Although there exist more complex
and expressive DLs, here we will focus on the basic ALC [65], which is the
smallest propositionally-closed DL, and the light-weight EL [1].

DLs are knowledge representation formalisms that are specially targeted to
encode the terminological knowledge of an application domain. Their main in-
gredients are individuals, concepts (that is, classes of individuals), and roles
providing relationships between individuals. Formally, they are nullary, unary,
and binary predicates from first-order logic, respectively. The knowledge of the

1 I am an informal (some will say impolite) Mexican, who insists on using the term
Franz when referring to Franz Baader. I will do this often from now on. Please bear
with me.



domain is represented via a set of axioms that restrict the way in which those
ingredients can be interpreted.

Let NI , NC , and NR be three mutually disjoint sets of individual, concept,
and role names, respectively. ALC concepts are built following the syntactic rule
C ::= A | ¬C | C u C | ∃r.C, where A ∈ NC and r ∈ NR. A general concept
inclusion (GCI) is an expression of the form C v D, where C andD are concepts.
An assertion is an expression of the form C(a) (called a concept assertion) or
r(a, b) (role assertion), where a, b ∈ NI , C is a concept, and r ∈ NR. Historically,
DLs separate the knowledge in terminological and assertional knowledge. The
former describes general relations between the terms, encoded via a TBox, which
is a finite set of GCIs. The latter refers to the knowledge about the individuals,
which is encoded in a finite set of assertions called an ABox. Here, we use the
general term axiom to refer to both GCIs and assertions. An ontology is a finite
set of axioms; that is, the union of an ABox and a TBox.

The semantics of ALC is defined in terms of interpretations. These are tuples
of the form I = (∆I , ·I), where ∆I is a non-empty set called the domain, and
·I is the interpretation function that maps every individual name a ∈ NI to an
element aI ∈ ∆I , every concept name A ∈ NC to a set A ⊆ ∆I , and every role
name r ∈ NR to a binary relation rI ⊆ ∆I ×∆I . This interpretation function is
extended to arbitrary concepts in the usual manner; that is, (¬C)I := ∆I \CI ,
(C u D)I := CI ∩ DI , and (∃r.C)I := {x ∈ ∆I | ∃y ∈ CI .(x, y) ∈ rI}. The
interpretation I satisfies the GCI C v D iff CI ⊆ DI; the assertion C(a) iff
aI ∈ CI; and the assertion r(a, b) iff (aI , bI) ∈ rI. I is a model of the ontology
O, denoted by I |= O, iff it satisfies all the axioms in O.

It is often useful to consider abbreviations of complex concepts. We define
⊥ := A u ¬A for an arbitary A ∈ NC ; > := ¬⊥; C t D := ¬(¬C u ¬D); and
∀r.C := ¬∃r.¬C. In particular, in Section 4.1 dealing with these abbreviations
is fundamental for the algorithm.

Once that the knowledge of a domain has been encoded in an ontology, we
are interested in reasoning ; that is, making inferences about this knowledge,
which are implicit in the ontology. The most basic reasoning task is to decide
consistency ; i.e., whether a given ontology has at least one model. Other impor-
tant reasoning problems are: subsumption (does CI ⊆ DI hold in every model
I of O?); instance checking (does aI ∈ AI hold in every model I of O?); and
classification (finding all the subsumption relations between concept names ap-
pearing in O). It has been shown that consistency, subsumption, and instance
checking w.r.t. ALC ontologies is ExpTime-complete [31,63]. Since the number
of concept names appearing in O is bounded by the size of O, it also follows that
the ontology can be classified in exponential time.

The light-weight DL EL is the sublogic of ALC that disallows the negation
constructor ¬, but includes the special concept > that specifies a tautology;
that is >I := ∆I for all interpretations I (compare to the abbreviation defined
before). All other definitions are analogous as for ALC. Interestingly, every EL
ontology is consistent, and hence the consistency problem becomes trivial; more-



over, subsumption and instance checking are decidable in polynomial time via a
so-called completion algorithm that in fact classifies the whole ontology.

3 What is Axiom Pinpointing?

Although the term “Axiom Pinpointing” was originally coined in the context
of description logics, and the main focus in this work is on its development
in DLs as well, closely related problems have been also studied—with different
names—in other areas such as databases [47], propositional satisfiability [44],
or constraint satisfaction problems [48]. Most of the basic ideas can, in fact, be
traced to Raymond Reiter [61]. For that reason, we introduce the problem in the
most general terms possible, trying to preserve readability.

We consider an abstract ontology language, which is composed of a class A
of (well-formed) axioms, and a consequence relation |=: 2A → A.2 An ontology
is a finite set O ⊆ A of axioms. If O |= c, where c ∈ A, we say that O entails
c, or that c is a consequence of O. For reasons that will become clear later, we
focus solely on monotone ontology languages, which are such that if O ⊆ O′ and
O |= c, then also O′ |= c.

Notice that these definitions follow the typical terminology from description
logics as seen in the previous section, but they are not restricted exclusively
to DLs. For example, the set of propositional clauses

∨n
i=1 `i, where each `i,

1 ≤ i ≤ n is a literal, forms an ontology language under the standard entailment
relation between formulas. In this case, an ontology is a formula in conjunctive
normal form (CNF), and one common entailment of interest is whether such an
ontology entails the empty clause ⊥ :=

∨
`∈∅ `; that is, whether a formula is

unsatisfiable. Clearly, this ontology language is monotone as well.
Historically, most of the work on ontology languages focuses on reasoning ;

that is, on studying and solving the problem of deciding whether O |= c holds;
e.g. deciding subsumption or instance checking in ALC. For the most prominent
ontology languages, such as DLs, the computational complexity of this problem
is perfectly understood, and efficient methods have been already developed and
implemented. The number of available tools for solving these reasoning tasks is
too large to enumerate them. However, knowing that a consequence follows from
an ontology is only part of the story. Once that this fact has been established,
we are left with the issue of answering why the consequence holds.

Why do we want to answer why? Well, mainly because the consequence
relation is often far from trivial, specially when it depends on the inter-relation
of several potentially complex axioms. Hence, it might not be obvious that a
given axiom follows from an ontology. In particular, when the ontology is large,
surprising or erroneous consequences are bound to appear. Explaining them is
important to confirm their correctness or, alternatively, understand the causes of
error when they are incorrect. Other applications that are based on this general
setting are described in Section 7.

2 We use the infix notation for the consequence relation



In axiom pinpointing, we explain consequences by computing so-called jus-
tifications.3 Formally, a justification for the entailment O |= c, where O is an
ontology and c is an axioms, is a minimal (w.r.t. set inclusion) subontology
M⊆ O that still entails the consequence; more precisely, M |= c and for every
M′ ⊂ M, M′ 6|= c. We emphasise that the minimality is considered here w.r.t.
set inclusion. Notice that justifications are not unique. In fact, a single conse-
quence relation O |= c may allow for exponentially many justifications, measured
on the number of axioms in O [16]. Depending on the situation at hand, one
may want to compute one, several, or all these justifications. Axiom pinpoint-
ing approaches can be broadly grouped into three categories: black-box methods
that use unmodified reasoners as an oracle, glass-box methods that adapt the
reasoning procedure to trace the axioms used, and gray-box approaches, which
combine the benefits of the other two.

As mentioned already, the basic idea behind the glass-box approach is to
modify the reasoning algorithm to keep track of the axioms used throughout
the reasoning process, in order to identify the elements of the justification. As
we will see later, this process is effective for computing all justifications, but
incurs an additional cost, either in terms of complexity, or in the need of a post-
processing step. Alternatively, if one is only interested in one justification, the
cost of tracing is essentially insignificant, but the result is only an approximation
of a justification: it may contain superfluous axioms. Thus, it is often combined
with a black-box minimisation step that guarantees that the resulting set is
indeed a justification. In the following sections we describe these approaches in
greater detail.

4 Finding All Justifications

The black-box method for finding all justifications was introduced and studied
in detail by the groups in Maryland and Manchester [37, 39, 54]. Very briefly,
this method uses a sub-procedure that can compute one justification at a time
(we will see how to achieve this in the following section) and systematically
removes and restores axioms from the ontology, following Reiter’s Hitting Set
enumeration method, to find new justifications.

4.1 Tableaux-based Axiom Pinpointing

The history of glass-box methods for axiom pinpointing in DLs started more than
20 years ago, when Baader and Hollunder [5] extended the standard tableau-
based algorithm for testing the consistency of an ALC ABox by a labelling
technique that traced the application of the tableau rules, and ultimately the
axioms responsible.

3 I rather prefer the name MinA coined by Franz Baader as we started our work on
this topic. However, despite my best efforts, justification has become the de facto
standard name in DLs. Even I must admit that it is catchier.



In a nutshell, the standard tableaux-based algorithm for deciding consistency
tries to build a forest-shaped model of the input ABox, where each node rep-
resents an individual of the domain, by decomposing the complex concepts to
which each individual is required to belong to smaller pieces, until either an obvi-
ous contradiction is observed, or a model is obtained. For instance, the algorithm
will decompose the assertion Tall u LongHaired(franz) into the two simpler as-
sertions Tall(franz) and LongHaired(franz). Similarly, existential restrictions are
solved by introducing new individuals in a tree-like fashion; that is, for decom-
posing the assertion ∃hasStudent.¬LongHaired(franz), the algorithm introduces
a new (anonymous) individual x and the assertions hasStudent(franz, x) and
¬LongHaired(x). To keep all the decomposition steps positive, the algorithm
transforms the concepts to negation normal form (NNF), where negations can
only occur in front of concept names. Thus, the algorithm needs to handle ex-
plicit disjunctions as well. To decompose an assertion like SerioustAngry(franz) ,
where we do not know whether Franz is serious or angry, the ABox is duplicated,
and one of the alternatives is added to each of the copies to analyse.

Since every ABox has a finite forest-shaped model, it can be shown that
this process terminates after finitely many decomposition steps. Ultimately, the
tableaux algorithm produces a set of ABoxes A that represent the possible al-
ternatives for bulding a model of the input ABox A. An obvious contradiction
(called a clash) is observed if the decomposed ABox contains two assertions
A(a),¬A(a). It follows that A is consistent iff there is an ABox in A without
any clash; in fact, such clash-free ABox is a representation of a model of A.

The tracing extension proposed in [5] labels each assertion obtained through
the decomposition process with a value (formally a propositional variable) that
represents the original axioms responsible for it. For example, suppose that the
input ABox A contains the assertion ∃hasStudent.¬LongHaired(franz). The al-
gorithm first provides a unique name for this assertions, say a1. Then, when
the decomposition process generates the two assertions hasStudent(franz, x) and
¬LongHaired(x), it marks both of them with the label a1 to express that they
were caused by that original assertion. If an assertion is caused by more than
one original axiom, its label is modified to be the disjunction of the variables
associated with those axioms. A clash is caused by two contradictory assertions,
each of which is labelled by a disjunction of variables. The conjunction of these
labels describes the combinations of axioms required to produce this clash. Each
ABox in A may have more than one clash, but only one of them is required for
inconsistency. Hence, one can define the pinpointing formula4

ϕA :=
∧
B∈A

∨
A(a),¬A(a)∈B

lab(A(a)) ∧ lab(¬A(a)).

This formula expresses all the combinations of axioms that lead to inconsistency,
in the following way. If V is a valuation that satisfies φA, then the set of axioms

4 In the original paper [5], this was called a clash formula, since it explains the clashes
obtained by the algorithm. The name was later changed to pinpointing formula to
reflect its more general puropose.



{α ∈ A | lab(α) ∈ V} is an inconsistent sub-ABox of A. In particular, min-
imal valuations satisfying φA define minimal inconsistent sub-ABoxes. Hence,
the pinpointing formula can be seen as a (compact) representation of all the
justifications for ABox inconsistency.

This original approach considered only ABoxes, but did not use any termi-
nological knowledge in the form of GCIs. Later on, Schlobach and Cornet [64]
extended the tracing method to explain inconsistency and concept unsatisfia-
bility with respect to so-called unfoldable ALC terminologies, which allow for
only a limited use of GCIs as concept definitions. This extension required adapt-
ing an additional tableau rule, necessary for handling the concept definitions,
but followed the main steps from [5], based on the finite tree model property.
This paper, which coined the term axiom pinpointing, started a series of ex-
tensions including additional constructors or different kinds of axioms [39, 49].
The correctness of these extensions was shown on an individual basis at each
paper, despite all of them being based on the same principles: take the original
tableau-based algorithm for the logic under consideration, and include a tracing
mechanism—based on the execution of the tableau rules—that associates each
newly derived assertion with the sets of axioms responsible for its occurrence.
It was only when the notion of blocking was considered for handling arbitrary
GCIs [41] that new ideas had to be developed to avoid stopping the process
too early. As we will see, observing that the classical notion of blocking did not
suffice for axiom pinpointing was the first hint of the problems that would later
arise for this glass-box idea.

So, what do you do when you observe several instances of a process, and un-
derstand the principles behind it? You generalise them, of course! It was at that
time that we started our attempts to develop a general notion of pinpointing
extensions of tableau algorithms. This required two steps: giving a precise defi-
nition of what an abstract tableau algorithm (what we called a general tableau
at the time) is, and describing how to implement the tracing mechanism on
top of it, while guaranteeing correctness from an axiom pinpointing perspective.
Fortunately, we could build on previous work by Franz for both steps. Indeed,
a general notion of tableau had been defined a few years earlier to study the
connections between tableau and automata reasoning methods [3]. Moreover, as
mentioned before, the tracing mechanism and its correctness for axiom pinpoint-
ing was originally presented in [5]. Putting together both ingredients, after some
necessary modifications, serious considerations on the notion and effect of block-
ing, and extension of the correctness proofs, led to the first general glass-box
approach for axiom pinpointing in DLs and other logics [12].

An obvious drawback of these pinpointing extensions, which was almost im-
mediately observed, is that the tracing mechanism requires the main optimisa-
tions of the tableau method to be disallowed. More precisely, to ensure efficiency,
tableau algorithms stop exploring an ABox in the set of alternatives once a clash
has been found. While this is correct for deciding a consequence (e.g., consis-
tency), stopping at this point is bound to ignore some of the potential causes
of the consequence, leading to an incomplete pinpointing method. In reality,



this inefficiency hid a larger problem that took some time to be understood and
solved effectively.

After Baader and Hollunder proved the correctness of their approach in full
detail, the following work took a rather abstract and simplified view on termina-
tion of the pinpointing extensions. In essence, most of the work starting from [64]
argued that termination of the pinpointing method was a direct consequence of
termination of the original tableau algorithm. This argument was convincing
enough to make us believe that it should hold in general, but we needed a for-
mal proof of this fact. After struggling for a long time, we ended up finding
out that it is not true: there are terminating tableaux whose pinpointing exten-
sion does not terminate [12].5 Fortunately for all the work coming before this
counterexample was discovered, we were later able to identify a class of tableau
methods where termination is guaranteed [15]. This class strictly contained all
the previously studied algorithms in DL. Hence, for them we were still able to
guarantee termination.

For the light-weight DL EL, polynomial-time reasoning is achieved through
a completion algorithm, which is an instance of what later became known as
consequence-based methods [66,67]. As tableau methods, consequence-based ap-
proaches apply extension rules to try to prove an entailment from an ontology.
The difference is that, while tableau algorithms attempt to construct a model of
a special kind, consequence-based methods try to enumerate the consequences
of the ontology that are relevant for the reasoning problem considered. Despite
these differences, some consequence-based algorithms—including the completion
method for EL—can be seen as simple tableau approaches that are guaranteed
to terminate. Thus, we can obtain a pinpointing formula for explaining conse-
quences of EL ontologies [16,17]. This instance is a perfect example of the cost of
adding the tracing mechanism to a tableau algorithm: while the original comple-
tion algorithm is guaranteed to terminate in polynomial time [10], its pinpointing
extension may require exponentially many rule applications, and hence can only
terminate in exponential time.

4.2 Automata-based Axiom Pinpointing

In addition to tableau-based (and consequence-based) algorithms, automata-
based techniques are often used to reason in DLs. Automata-based algorithms are
mostly considered in theoretical settings to prove complexity results, but to the
best of our knowledge, only one experimental automata-based reasoner exists [23]
(and stopped being developed long ago). The main reason for this is that, even
though automata’s worst-case behaviour is often better than for tableau-based
algorithms, their best-case behaviour matches the worst case, and for practical
ontologies tableau algorithms tend to be more efficient due to their goal-directed
nature. However, as mentioned several times already, the tracing mechanism

5 I still remember when I managed to construct the first counterexample just be-
fore the deadline for submitting the paper. Imagine a scared first-year PhD student
interrupting his supervisor’s holidays to tell him the bad news.



implemented for pinpointing reduces the efficiency of tableau methods. It is
hence worth analysing the possibility of modifying automata-based algorithms
to compute a pinpointing formula as well.

Automata-based reasoning methods for DLs exploit the fact that these logics
often allow for well-structured models. For example, as we have seen before, every
ALC satisfiable concept has a tree-shaped model. In this case, we can build an
automaton that accepts the tree-shaped models of a given concept C w.r.t. an
ontology. It then follows that C is unsatisfiable iff the language accepted by
this automaton is empty. At a very high level, the automata-based algorithm
for ALC tries to build a tree-shaped model by labelling the nodes of an infinite
tree (which will form the domain of the interpretation) with a set of concepts to
which they most belong. These sets of concepts, which form a type, correspond
to the states of the automaton. The automaton should label the root node with a
set containing the input concept C; the children of each node are then labelled in
a way that satisfies the existential and value restrictions appearing in the parent
node. Moreover, each type should be consistent with the constraints specified in
the TBox. More precisely, if the TBox contains an axiom C v D, then every type
that contains C must also contain D. The automaton accepts the infinite tree iff
such a labelling is possible. Importantly, deciding whether such a labelling exists
is polynomial on the number of states of the automaton [29]. It is also important
to notice that the automaton accepts infinite trees; hence, it does not require
any special blocking technique to search for periodicity of a model.

To transform this reasoning algorithm into a pinpointing method, we modify
the underlying automata model into a weighted automaton [33]. Very briefly,
weighted automata generalise the classical notion of automata to provide an
initial weight to each state (as a generalisation of the set of initial states), and a
weight to each transition generalising the transition relation. Weighted automata
require an algebraic structure called a semiring that has a domain S and two
binary relations ⊕ (addition) and ⊗ (product), where ⊗ distributes over ⊕ and
a few additional properties hold. Rather than dividing runs into successful and
unsuccessful, weighted automata give a weight to every run, which is computed
as the product of the weights of all the transitions used, and the weight of the
initial state. The behaviour of the automaton is a function that maps every input
tree T into a semiring value computed as the addition of the weights of all the
runs this automaton over T .

For axiom pinpointing, we realise that the class of all propositional formulas
over a finite alphabet of variables with the logical disjunction ∨ and conjunc-
tion ∧ forms a distributive lattice, which is a specific kind of semiring. Thus,
automata-based axiom pinpointing uses formulas as weights, and the two logical
operators mentioned, to construct the pinpointing formula of a consequence. Re-
call that the states of the automaton used to decide concept satisfiability enforce
that all the GCIs in the TBox are satisfied. Instead, we now allow these types
to violate some of these constraints (e.g., even if the TBox contains the axiom
C v D, we allow a state that contains C but not D). The weights are used to
keep track of exactly which axioms are being violated while labelling the input



tree. Thus, the behaviour of this automaton tells us which axioms need to be
violated to obtain a model; i.e., a pinpointing formula for unsatisfiability. This
was precisely the approach we followed in [13,14].

At this point, we only need to find out how to compute the behaviour of
a weighted automaton. Interestingly, despite extensive work made on different
weighted automata models, by the time we were considering this issue there
was no behaviour computation algorithm, and the computational complexity
of this problem was not very well understood. So we had to develop our own
techniques.6 In the end, we developed a technique that extended the ideas be-
hind the emptiness test for unweighted automata [4,71] to track the weights; an
alternative approach was independently developed around the same time [32].
Our approach, which only works on distributed lattices [42], runs in polynomial
time on the size of the automaton, which matches the complexity of deciding
emptiness of unweighted automata.

Thus, we showed that automata-based methods can also provide tight com-
plexity bounds for axiom pinpointing, without worrying about issues like termi-
nation. There is, however, a small caveat. In order to guarantee a polynomial-
time behaviour computation, the algorithm does not really compute the pin-
pointing formula, but a compact representation of it built through structure
sharing. If the automaton is exponential on the size of the ontology, as is the
case for ALC, this representation could be expanded into a formula without any
cost in terms of computational complexity. However, for less expressive logics
such as EL, this expansion may yield an exponential blow-up. Still, this blow-up
may in fact be unavoidable in some of these logics. For example, it has been
shown that there exist EL ontologies and consequences whose smallest pinpoint-
ing formula is of super-polynomial length [55]. In particular, this pinpointing
formula cannot be generated in polynomial time.

For axiom pinpointing, the advantage of using automata-based methods over
the tableau-based approach is that the problem with termination does not show
up. Moreover, given that the computational resources needed to compute the be-
haviour are polynomially bounded on the size of the automaton, automata yield
tight complexity bounds for this problem as well. However, it preserves the dis-
advantage observed for classical reasoning; namely, that its best-case complexity
matches the worst-case one. Indeed, the first step of this approach corresponds
to the construction of the automaton from the input ontology.

Overall, we have seen two methods for computing a pinpointing formula, and
by extension all justifications, for a consequence from an ontology. In both cases,
the methods present some issues that make them impractical. In fact, this is not
very surprising given the now known complexity results for problems related to
axiom pinpointing. As mentioned already, a single consequence may have expo-
nentially many justifications, and hence it is impossible to enumerate them all

6 As a historical remark, an important reason why I ended up working with Franz
was because I fell in love with automata theory while I was doing my masters in
Dresden. Being the Chair for Automata Theory, it only made sense to ask him for
a topic. Little did I know at the time where this would take me.



in polynomial time. What is more interesting, though, is that even if a conse-
quence has polynomially many justifications, there is no guarantee that they can
be all found in polynomial time. In particular, any enumeration algorithm will
necessarily lead to a longer waiting time between any two successive solutions,
and even counting the number of justifications is a hard counting problem [57].
Given these hardness results, it makes sense to focus on the issue of computing
only one justification. This is the topic of the next section.

5 Finding One Justification

The black-box approach for finding one justification relies on a straight-forward
deletion procedure. The idea is to remove superfluous axioms from the ontology
one at a time through a sequence of entailment tests. Starting from the full
input ontology O, the method iteratively removes one axiom at a time and
checks whether the consequence c follows from the remaining ontology. If it
does, the axiom is permanently removed; otherwise, the axiom is re-inserted in
the ontology and the process continues. At the end of this process, when every
axiom has been tested for deletion, the remaining ontology is guaranteed to be
a justification for c [17,38]. Clearly, this process incurs in a linear overhead over
reasoning: a standard reasoner is called as many times as there are axioms in the
ontology. In terms of complexity, this means that as long as reasoning is at least
polynomial, finding one justification is not noticeably harder than just deciding
a consequence.

In practice, it has been observed empirically that justifications tend to be
small, containing only a few axioms. If the original ontology is large, as in the case
of Snomed CT, the linear overhead may actually make the process unfeasible.
Indeed, even if reasoning takes only a millisecond, repeating the process half a
million times would require well over 5 minutes. Thus different optimisations
have been proposed to try to prune several axioms at a time [37].

Trying to obtain a glass-box approach for computing one justification, one
can adapt the tracing technique extending tableau-based algorithms to focus
on one cause of derivation only. Recall that the idea behind the tracing tech-
nique is to keep track of the axioms used when deriving any new information
throughout the execution of the tableau algorithm. To find only a justification,
it thus makes sense to apply the same tracing technique, but ignore alternative
derivations of the same fact. In other words, rather than preserving a (monotone)
Boolean formula describing all the derivation of a given assertion, one just stores
a conjunction of propositional variables obtained by the first derivation of this
assertion. The method hence preserves one derivation of each assertion. When
a clash is found, we can immediately find out the axioms known to cause this
clash by conjoining the labels of the two assertions forming it. Likewise, to ex-
plain the presence of a clash in all the ABoxes generated by the execution of the
algorithm, we simply conjoin the labels the clashes of each of them. Overall, this
conjunction yields a set of axioms that is guaranteed to entail the consequence
under consideration; e.g., inconsistency of the input ABox.



Interestingly, the problems surrounding the glass-box approach for comput-
ing all justifications do not play a role in this case. Indeed, the execution of the
original tableau-based algorithm does not need to be modified, but only some
additional memory is required to preserve the conjunction of labels at each gen-
erated assertion. In particular, the fundamental optimisations of the classical
tableau methods are preserved: the expansion of an ABox may be stopped once
a clash is found in it, without the need to find other possible clashes. Hence, this
method runs within the same resource bounds as the original tableau method.
Moreover, termination of the method is not affected by this tracing technique,
and there is no need to adapt any blocking procedure used, since standard block-
ing remains correct for this setting. Unfortunately, as was almost immediately
noted, the set of axioms generated by this modified algorithm is not necessarily
a justification, since it might not be minimal [17]. In fact, it is not difficult to
build an example where this approach produces a result with superfluous ax-
ioms, potentially caused by the order of rule applications or other dependencies
between the assertions generated.

To obtain a justification, this glass-box approach can be combined with the
black-box method described before. After finding an approximate justification
through the glass-box approach, it can be minimised by deleting the superflu-
ous axioms via the black-box method. Empirical evaluations of this gray-box
approach show that it behaves well in practice, even for very large ontologies
like Snomed. Indeed, an intensive analysis started by Boontawee Suntisrivara-
porn7 [68] and concluded by Kazakov and Skocovskỳ [40] shows that conse-
quences in this ontology tend to have very small justifications, mostly containing
10 axioms or less. Moreover, the average number of axioms that appear in at
least one justification is less than 40 [56]. More interestingly, although the trac-
ing algorithm has no guarantee of finding a justification, it very often does; and
even when it does not, it usually gives only one or two superfluous axioms [68].
Thus, the minimisation step might not be needed in some applications.

To date, there is no automata-based method targeted to compute only one
justification. Although it is possible to imagine a way to adapt the idea used
in tableaux (i.e., rather than preserving formulas, weights are associated with
conjunctions of propositional variables), this would require larger changes in
terms of the chosen semiring and the use of the operations, and would not yield
any real benefit in terms of complexity. Indeed, the automaton would be of the
same size, and computing the behaviour requires the same resources, while still
not guaranteeing minimality of the set of axioms computed. Hence, automata-
based methods are not really meaningful in the context of computing only one
justification, and we will not cover them further.

6 Extensions

The original question of axiom pinpointing, as described at the beginning of
this chapter, deals exclusively with whole axioms. This is a reasonable approach

7 Also known, and herewith referred as Meng.



when trying to debug errors in a hand-written ontology, as one can assume that
ontology engineers follow modelling guidelines, which limit the variability in the
expression of specific piece of knowledge. However, this also makes the results
dependent on the representation chosen. For example, {Tall u Professor(franz)}
is logically equivalent to {Tall(franz),Professor(franz)}, but in axiom pinpoint-
ing both ontologies are treated differently: the first contains only one axiom, and
is thus the only possible justification, while the second has a more fine-grained
view where each of the individual axioms (or both together) may serve as a
justification. We notice that the choice of the shape of the axioms is not banal.
It may affect the underlying modelling language—and by extension the reason-
ing method chosen—among other things. Consider, for example, the difference
between the ALC GCI > v ¬LongHaired t Professor and the logically equiva-
lent EL GCI LongHaired v Professor. More importantly, it may also affect the
complexity of axiom pinpointing itself. As shown in [57], allowing conjunctions
as in the axiom Tall u Professor(franz) can increase the complexity of axiom
pinpointing related tasks, like counting or enumerating justifications.

Depending on the application, the domain, the user, and the shape of the
ontology, it may be desirable to produce a finer or a coarser view to a justifi-
cation. For instance, if the goal is to repair an error in an ontology, it makes
sense to try to view the ontology in as much detail as possible. Indeed, know-
ing that a long and (syntactically) complicated axiom is causing an error is
less helpful for correcting it than observing more precise pieces, which high-
light where the errors occur. As a simple example, knowing that the axiom
Tall u Professor u ¬LongHaired(franz) causes an error is less informative than
knowing that ¬LongHaired(franz) is causing it. On the other hand, if the goal
is to understand why a consequence follows from an ontology, then a coarser
view, where some of the irrelevant details are hidden from the user, may be
more informative.

Variations of axiom pinpointing targeting finer or coarser justifications have
been proposed throughout the years. Specifically for description logics, coarser
justifications—called lemmata—were proposed in [35]. The idea in this case is
to combine several axioms within a justification into one (simpler) axiom that
follows from them and explains their relationship to the remaining ones in the
justification. A simple example of this approach is a chain of atomic subsump-
tions A0 v A1, A1 v A2, . . . An−1 v An summarised into the lemma A0 v An.
If a user is interested in observing the details of the lemma, then it can be
expanded to its original form. Of course, the challenge is to summarise more
complex combinations of axioms going beyond simple sequences of implications.
To understand how this is done, it is worth looking at the original work in detail.

The approach for providing finer justifications originally took the form of
so-called precise and laconic justifications [34]. In a nutshell, the idea of these
justifications is to cut axioms into smaller, but still meaningful, pieces in a way
that only the relevant pieces are presented to the user. In our previous exam-
ple, instead of the (original) axiom Tall u Professor u ¬LongHaired(franz), the
piece ¬LongHaired(franz) could be used as a laconic justification. Note that in



practice, the pieces of axioms derived for these laconic justifications are gener-
alisations of the original axioms, with the additional property that they tend to
be shorter and easier to read. One can think of taking this idea a step further,
and trying to explain a consequence through the most general variants of the
axioms possible. We will explore a closely related task in the next section.

Another important extension of the original approach to axiom pinpointing
refers to the way axioms are related to each other. Recall that a justification is
a minimal set of axioms (from the original ontology) that entails a given con-
sequence. From this point of view, all axioms are independent in the sense that
their presence or absence in the ontology does not depend on the existence of any
other axiom. However, it is not difficult to find cases where this independence is
not necessary. Without going far, we can consider the completion algorithm for
EL, which requires that the input ontology is written in a special normal form.
Before calling the algorithm proper, the axioms in the ontology are transformed
to this form; for example, an axiom A v B u C is replaced by the two axioms
A v B, A v C. Note that this transformation does not affect the logical prop-
erties of the ontology, but as mentioned before, it may have an effect on axiom
pinpointing. In this case, one should notice that, as the two latter axioms origi-
nate from the same input axiom, they are also bound to appear together. That
is, whenever a justification from the normalised ontology contains A v B, then
it must also contain A v C, and vice-versa. Another example is when the axioms
are available to some users only, through an access control mechanism [7, 8]. In
this case, all axioms at the same access level should be available simultaneously,
along with those at more public levels.

One way to deal with this dependency between axioms is by means of con-
texts. From a very simplistic point of view, a context is merely a sub-ontology
containing inter-related axioms. Technically, this inter-relation is expressed by
a label associated with each axiom. In a nutshell, axioms that share the same
label should always appear together. More complex relationships can then be
expressed by a variation of the labelling language; e.g., by using propositional
formulas, one can say that an axiom is available when another one is not.

In this context-based scenario, axiom pinpointing corresponds to finding the
contexts from which a consequence can be derived, rather than just finding the
specific axioms within those contexts. Since several axioms may belong to the
same context, this provides a coarser explanation of the causes of the entailment.
Interestingly, all the methods described in Sections 4 and 5 can be adapted to
this variant of context-based reasoning, by using context labels—rather than
the representation of an axiom—within the tracing process, and by including or
removing whole contexts together in the black-box approach.

7 Applications

Now that we know what is axiom pinpointing, some of its variants, and how to
solve these issues, we will see what they are useful for. Of course, we have already



hinted to various applications, which have motivated the previous descriptions,
but now we try to cover them in larger detail.

The first obvious application is about correcting errors in an ontology. An
early motivation for axiom pinpointing—definitely one that caught the inter-
est of Franz—arose from working on the very large ontology Snomed CT.
At some point, it was observed that this ontology entailed the consequence
AmputationOfFinger v AmputationOfHand; i.e., according to Snomed, every
amputation of a finger was also an amputation of a hand (and indeed, also of
an arm, suggesting that there was something wrong with part-whole represen-
tations). This is a clearly erroneous conclusion that may have extreme conse-
quences if the ontology is used to reason about real-world events.8 So it was
important to find the cause of the error, and correct it adequately. Using the
gray-box approach for finding one justification, combined with the hitting-set
tree method for finding successive ones, Franz and Meng managed to identify
the six specific axioms that caused this error [18]. Perhaps more interestingly,
they showed that there was a systematic error in the modelling approach used
for the construction of the ontology, which was leading to these erroneous conse-
quences. Hence, they proposed to use a slightly more expressive logic than EL, in
order to provide a more direct and intuitive mechanism for modelling relations
between parts [69]. Since then, this error was erradicated from the ontology.

Staying in the context of correcting the errors in an ontology, recent efforts
consider the approach that originated with laconic justifications, but rather than
trying to find a justification over generalised axioms from the ontology, they gen-
eralise one further step to automatically remove the consequence. This line of
research started from the idea of finding a consensus between mutually inconsis-
tent ontologies by different agents [58]. It has then been continued by the research
group in Bolzano [70] and, through a differnt motivation based on privacy, by
Franz and his group [9].

Understanding and correcting the causes for an unwanted consequence to
follow is a hard and time-consuming task that often requires the involvement of
experts to decide which of the potentially exponentially many options to choose.
In addition, updates to ontologies are often planned according to a stable calen-
dar; for example, new versions of Snomed are published twice per year. Hence,
one should expect to wait some time before a known error is corrected in an
ontology. In the meantime, one should still be able to use the ontology deriv-
ing meaningful consequences that avoid the potentially erroneous parts. This
is the basic idea underlying inconsistency tolerant [19, 43], and more generally
error tolerant reasoning [45]. Essentially, suppose that one knows that an ontol-
ogy entails an erroneous consequence; the goal is to derive other consequences
that would still hold in the absence of this error, and hence would still make
sense after the ontology is repaired. To this end, three main semantics have been

8 Imagine someone making an insurance claim after having a finger amputated. If the
insurer makes this kind of error, they might end of paying a larger lump for an
amputated arm.



defined, based on the notion of a repair [43]:9 brave semantics consider conse-
quences that follow from at least one repair; cautious semantics require that the
conclusion is entailed by all repairs; and the intersection semantics, originally
proposed for efficiency reasons, uses as a correct ontology the intersection of all
the repairs [20]. In DLs, this aspect was originally motivated by the analogous
notion in databases. From a similar motivation, currently the idea of tracing the
provenance of a consequence in an ontology is gaining interest in the DL world.
The difference with axiom pinpointing is that for provenance, the minimality
assumption is relaxed; in fact, one is rather interested in finding all the possible
ways in which a consequence can be derived [52].

Other important applications use axiom pinpointing as a background step for
doing other complex inferences that depend on the combinations of axioms that
entail some consequence. These applications are usually, although not always,
based on the context-based generalisation described in the previous section. The
first one, which we have already mentioned, is about access control. In this sce-
nario, axioms have an access degree that limits the class of users that are able
to retrieve them. These access degrees are extended also to the implicit conse-
quences of the ontology in the obvious way: a user can observe a consequence
iff they have access to a set of axioms that entail this consequence. Hence, for
a given consequence, the problem is now to identify the access levels that can
observe it, so that it remains hidden from all others. This becomes a problem
of axiom pinpointing at the context level, where each access degree defines one
context, and one is not interested in the specific axioms entailing the conse-
quence, but rather their contexts. In [8] this problem is solved through a purely
black-box approach using expressive DLs as underlying ontology language.

In order to handle uncertainty about the knowledge in an ontology, proba-
bilistic extensions of DLs have been proposed [46]. A relevant example for this
chapter are the DLs with so-called distribution semantics originally proposed
for probabilistic logic programming [60, 62]. In this semantics, every axiom is
associated with a probability of being true, and all axioms are assumed to be
probabilistically independent. Then, the probability of a consequence is derived
from the probabilities of all the combinations of axioms that entail the conse-
quence. The most recent implementation of a reasoner for these logics uses the
tableau-based glass-box method to compute a pinpointing formula, which is later
fed to a propositional probabilistic reasoner [73]. While this approach seems to
work well in empirical evaluations, the assumption of probabilistic independence
is too strong to model realistic situations. For that reason, a more general for-
malism based on contexts was proposed. The idea of these newer probabilistic
logics is to model certain knowledge that holds in uncertain contexts. That is,
axioms are interrelated via context labels as described before, but the contexts
are associated with a probability distribution, which in this case is expressed via
a Bayesian network. Hence, these logics are often known as Bayesian logics. The

9 Formally, a repair is a maximal subontology that does not entail the consequence.
This is the dual notion of a justification, which is also studied in variations of axiom
pinpointing in different fields.



first Bayesian DL was studied, as a variant of another probabilistic extension
of DL-Lite [30], as an extension of EL [26], but it was immediately clear that
the underlying ideas could be extended to other ontology languages as well [28].
The reasoning methods proposed for Bayesian EL included a black-box approach,
and reductions to pure Bayesian networks [27] and to probabilistic logic program-
ming with distribution semantics [25]. Later on, a glass-box approach based on
a modification of the tracing algorithm for ALC was considered in [21,22].

To conclude this section, and without going into excessive detail, we note
that axiom pinpointing is also an effective sub-procedure for dealing with other
extensions of logical reasoning. Examples of this are reasoning about preferences,
possibilistic reasoning, and belief revision. More generally, whenever a reasoning
problem can be expressed as a sum of products of weights from a semiring,
where weights are associated with axioms, the weights of axioms in an ontology
entailing a consequence are multiplied, and the results of different derivations
are added, axiom pinpointing is a perfect companion to any reasoning method.

8 Conclusions

We have attempted to explain what is axiom pinpointing in the context of De-
scription Logics, as studied by Franz Baader, and his academic successors. As
mentioned throughout this work, the idea of axiom pinpointing is not restricted
to the DL community, and pops out whenever people study some kind of mono-
tonic entailment relation in detail. Unfortunately, each area chose a different
name for this task, thus causing confusions and hindering communication about
techniques, successes, and failures.

After finishing my dissertation, I have been trying to collect names and exam-
ples of axiom pinpointing in the wild, and keep on finding them in many different
places. I guess it is true that when all you have is a hammer, then everthing looks
like a nail. But this work is not about me, but about Franz, who not only pro-
posed this topic to me as I started working with him, but was also the first to
propose a solution to a special case, well before the name axiom pinpointing was
coined by Schlobach and Cornet. Since Franz has a vested interest in DLs, and
my work together with him has mainly focused on this area as well, this chapter
does not go in much detail about other logical languages. Still, it would be wrong
to leave anyone with the impression that the work presented here is exclusive
for DLs. Many of the ideas are applicable to, and have often been independently
developed for, other ontology languages as well. Famous examples are databases,
propositional satisfiability, and constraint satisfaction problems; but there are
many more. Even some that I have not yet encountered.

Perhaps more importantly, axiom pinpointing is not dead. Throughout the
years, I have tried to leave aside the topic a couple of times, thinking that there
cannot possibly exist much more to explore. And each time it came knocking
back to my door, under different disguises. It is a fortune to us all that Franz
continues exploring these topics as well. I am looking forward to the next years
of axiom pinpointing-related research, in DLs and in other fields. And to the



results that Franz, and those of us that grew under him, will still be able to
contribute.
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42. Lehmann, K., Peñaloza, R.: The complexity of computing the behaviour of lat-
tice automata on infinite trees. Theoretical Computer Science 534, 53–68 (2014).
https://doi.org/10.1016/j.tcs.2014.02.036



43. Lembo, D., Lenzerini, M., Rosati, R., Ruzzi, M., Savo, D.F.: Inconsistency-tolerant
semantics for description logics. In: Hitzler, P., Lukasiewicz, T. (eds.) Proc. 4th Int.
Conf. on Web Reasoning and Rule Systems (RR 2010). Lecture Notes in Computer
Science, vol. 6333, pp. 103–117. Springer (2010). https://doi.org/10.1007/978-3-
642-15918-3 9

44. Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable
subsets of constraints. Journal of Automated Reasoning 40(1), 1–33 (2008).
https://doi.org/10.1007/s10817-007-9084-z
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