User-aware Explications of Ontology Consequences:
Levelling Technicality

Rafael Pefialoza!, Anni-Yasmin Turhan?

"University of Milano-Bicocca, Italy
2TU Dresden, Germany

Abstract
Explaining consequences obtained from ontological reasoning is an active research topic. Unlike the
computation of the cause of the consequence, the explication of the cause has received little attention so
far. However, as many ontologies are designed by experts, the terms and notions used in an explanation
need not be known to the user of the ontology-based system, before they can attempt to understand the
underlying logical process.

In this paper, we address the task of making an explanation of a consequence more comprehensible
to a variety of users by re-phrasing it in a vocabulary known to them. Assuming the existence of a
dictionary, we attempt to rewrite technical jargon into expressions using a simpler vocabulary. We show
that solving this problem requires taking several technical issues into account.

Keywords

Explications, Description Logics, user-awareness

1. Introduction

With the deployment of artificial intelligence (AI) approaches in industrial applications, there
is a growing need to explain the decisions made by artificial agents to external users who
might not be fully knowledgeable about the system and its internal mechanisms. This need has
given birth to the field of explainable AI (XAI) [1]. There are two main interpretations of XAl:
explain how the Al system reached its conclusions—more akin to debugging—or explain why
was the final conclusion reached. In this work, we consider the latter which, in the context of
logic-based knowledge representation and reasoning (KR), usually refers to enumerating the
logical constraints and the logical steps that yield a given consequence.

What constitutes a good explanation from the point of view of the social sciences was recently
summarized in by Miller in [2]. To build a useful explanation, one needs to solve two tasks. One
is to extract the information that we want to provide—what does the explanation say? This is
usually known as the attribution step [2]. The other is to identify how to express this information
to make it intelligible. This second step of developing an explication of the information to be
presented is at the heart of most XAI approaches in KR. During the attribution phase, most
methods identify a minimal portion of the knowledge base which yields the consequence (a

8th Workshop on Formal and Cognitive Reasoning, September 19, 2022, Trier, Germany

Q rafael.penaloza@unimib.it (R. Pefaloza); Anni-Yasmin. Turhan@tu-dresden.de (A. Turhan)

&} https://rpenalozan.github.io (R. Pefialoza)

@ 0000-0002-2693-5790 (R. Pefialoza); 0000-0001-6336-335X (A. Turhan)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

+==1 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:rafael.penaloza@unimib.it
mailto:Anni-Yasmin.Turhan@tu-dresden.de
https://rpenalozan.github.io
https://orcid.org/0000-0002-2693-5790
https://orcid.org/0000-0001-6336-335X
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

so-called justification). The explication phase then transforms this justification into a more
comprehensible version.

Some approaches generate logical proofs of different shapes, to allow the user to understand
the derivation steps made [3]. A different approach is to rewrite the logical statements from the
justification into natural language [4]. While quite promising, these approaches suffer from
two main drawbacks: (i) they are user agnostic; that is, they generate the same explication
independently of the requirements of the explainee; and (ii) they are limited to the vocabulary
explicitly appearing in an ontology. The latter issue is specially important as finding the right
words to use is a fundamental step of human explanations [5]. Indeed, the wrong terminology
may hinder understanding of otherwise simple notions. For example, a user of an ontology-based
biology application may be puzzled by the occurrence of notion “Zaglossus Bruijni”—which they
do not understand—in the explication provided to them. In particular, if the more familiar term
“Echidna” could be used instead. Importantly, we cannot expect knowledge bases or ontologies
(which are constructed and used by domain experts) to avoid technical jargon and, at the same
time, that different users have similar expertise and explanatory needs.

We propose user-aware generation of explications for ontology consequences. This general
task poses two challenges to be addressed. The first is to use terminology that is appropriate
for the explainee in terms of being neither too complex nor overly simplistic. The second
challenge is to choose an appropriate structure for the explication that does not confuse the
explainee—neither by the use of complex logical expressions nor by its sheer length. We deem
the first challenge more fundamental and address it in this paper. Our approach for user-aware
generation of explications is based on a dictionary, which allows us to transform technical
jargon appearing in a justification into logically equivalent, but easier to understand expressions.
Users can fine-tune their explication by specifying a collection of terms that they understand,
representing their “level of technicality.” Intuitively, the dictionary is stratified according to
technicality levels for different users. Our approach is orthogonal to proof generation and
translation to natural language. Indeed, an ideal explanation approach would combine all three
of them, adding further user-aware flexibility.

As a first step to provide user-aware explications, we consider a setting where the user
provides the vocabulary they are able to understand, and the explanation should be restricted
to this vocabulary only. From an abstract point of view, this idea is very similar to the task of
forgetting (or uniform interpolation) [6, 7], where the goal is to construct a knowledge base
that “forgets” a class of symbols—in our case, the symbols that are not understood by the user.
Uniform interpolation tries to preserve all the information of the knowledge base that refers to
the wanted vocabulary, while completely removing any explicit reference to the vocabulary to
be forgotten. In our case, though, we want to preserve the knowledge of technical terms, but
express it through a simpler vocabulary. An important difference between these two problems,
which will become clear in Section 3, is that forgetting treats the whole vocabulary equally,
while in our case we do not want to oversimplify the explication. Thus, from different potential
explications, we prefer one that is maximally “technical” while remaining understandable to
the user.

In this paper, we build the foundations needed to tackle this problem. Starting from a very
restricted first setting, based on concept equivalences, we show through a series of examples
that any available method should take into account some technicalities that may not seem

obvious at first sight. We thus show that solving the problem is not only useful for the area of
XA, but also interesting from a technical point of view in its own right.

2. Approaching the Problem of User-aware Explications

An important aspect of explaining a consequence to a user, which is not yet addressed sufficiently
in the knowledge representation and reasoning field, is to take into account who the user is, and
how to better approach them. There is certainly no universal solution to this, as different users
have varying levels of understanding and explanatory needs. This motivates our interest in
methods providing user-aware explanations; that is, methods to generate explanations targeting
different user’s needs.

We consider the case where knowledge is encoded in an ontology using a description
logic (DL) [8]. In a nutshell, DLs use as building blocks two countable disjoint sets N¢ and Np
of concept names and role names, respectively. Complex concepts, which correspond to unary
predicates of first-order logic, are built with the help of different constructors. As a prototypical
specimen we consider the light-weight DL ££ [9] whose concepts are built according to the
grammar rule

Cu=T|A|CNC|3rC,

with A € N, r € Np, and its sublogic £ which disallows the 3r.C constructor. Knowledge
in DLs is expressed through an ontology: a finite set of axioms, of which the most common are
so-called general concept inclusions (GClIs) that are statements of the form C' C D with C, D
concepts. The semantics of this logic is defined in terms of interpretations, which are pairs
T = (AT, 1) where A” is a non-empty set called the domain and -Z is the interpretation function
that maps each concept name A € N¢ to a set AZ C AT and every role name r € Ng to a
binary relation 7~ C A% x AZ. The interpretation function is extended to complex concepts by
setting T := AZ, (C D)t := CT N D%, and (3r.C)* := {5 € AT | In € CT.(6,n) € rT}.

An interpretation 7 is a model of the ontology O iff for every GCI C' C D € O it holds that
CT C D*. The GCI C C D is a consequence of the ontology O iff every model of O is also a
model of {C' C D} and is denoted by O |= C' C D. We often use the term “entailment” to refer
to consequences as well. For full details on DLs see [8].

GClIs in an ontology act as constraints on the class of relevant interpretations, i.e. on the
class of models. In particular, this means that consequences are monotonic; that is, if ¢ is a
consequence of the ontology O, then ¢ is necessarily a consequence of any ontology containing
all the GCIs in O. In the following, we also use two special kinds of GCIs. A concept equivalence
is of the form C' = D where C, D are concepts. It abbreviates the two GCIs C C D, D C C
and hence is satisfied whenever CT = DZ. A concept definition is a concept equivalence A = D
where A € Nc¢; that is, the left-hand side consists of a concept name only.

Given a consequence ¢ of the ontology O, a user may want to know why this is a consequence.
One early approach to answer this question was to provide a so-called justification; that is, a
(subset) minimal sub-ontology of O from which ¢ still follows. The existence of one or more of
such minimal subsets is guaranteed by the monotonicity of the logic. The set of axioms forming
a justification can be seen as a crude explanation for the entailment of . It provides sufficient
information about the derivation (the justification still entails the consequence) and avoids any

superfluous information given by irrelevant GCIs. Importantly, a single consequence may have
several (even exponentially many) justifications [10].

However, by their definition, justifications are always built using axioms appearing in the
original ontology. Developed and maintained by experts and with different agendas in mind,
the GClIs in an ontology tend to use a quite technical, or even private, terminology which might
not be intelligible to the user of the ontology requiring an explanation of the consequence.
Following the terminology that we used in the introduction of this paper, justifications realize
the attribution (or information extraction) step of explanation development. Our goal, instead,
is to provide an explication: a variant of such a justification which is understandable by the user
and information preserving. In slightly more formal terms, we are interested in the following
problem.

Problem 1 (justification explication). Given a justification J and a user u, construct an
ontology £ equivalent to J using only terms understandable by u.

Of course, the exact specification of £ depends on specifying what it means to be understandable
to a user u, their available terminology, and the capability of rewriting technical concept and
role names into more comprehensible ones. Depending on the specific scenario, an ontology &
as required by Problem 1 might not exist. This issue can be slightly alleviated by recalling that
a given consequence may have several justifications. Thus, we consider also a more general
version of the problem.

Problem 2 (consequence explication). Given an ontology O, a consequence @, and a user u,
construct an ontology €, equivalent to some justification of p on O, using only terms understandable
by u.

Importantly, Problem 2 may still have no solution, if none of the available justifications can
be “explained” in terms understandable to the user. Hence, we are also interested in finding
conditions where the problems are guaranteed to have a solution, or in efficiently identifying
whether a solution exists.

A technically simple, but not necessarily optimal method for solving Problem 2 is to enumerate
all possible justifications, and try to solve Problem 1 on them, until an adequate ontology & is
found, or it is deduced that none exists. Such an approach introduces a polynomial overhead on
the number of justifications (which, as mentioned, may be exponential) in the case of L. For
&L ontologies, an exponential overhead is unavoidable even in cases with only polynomially
many justifications [11]. In the following, we focus on Problem 1 only.

In the next section we provide a first full formalisation of this problem, starting from a formal
definition of our notion of “understandability”. We also show, through a series of examples, that
even in the limited scenario considered, one must pay careful attention to avoid sub-optimal or
plainly wrong solutions.

3. A First Solution

In order to solve the problems described in the previous section, we must first be able to express
variations of technical notions at different levels of interpretability, along with the limits of

understandability of each individual user. In this way, adequate terms to present to the user
guaranteeing that they are understood can be selected automatically.

For this first solution, we classify users by means of their technical expertise, and in particular
of the vocabulary that they can understand. Hence, for example, depending on their expertise,
users may understand better or prefer to use the (equivalent) terms “monotremata,” “oviparous
mammals,” or “egg-laying, milk-producing animals.” We thus consider two sources of knowledge.
First, we have a domain ontology Op, which encodes all the knowledge of the domain. This
ontology, which is usual encountered in knowledge-aware applications, is maintained by experts
and hence assumed to use as precise and technical a terminology as needed for an adequate
modelling of the domain knowledge. Second, we have a technical ontology T, which models
relationships between more technical (or more complex) terms, and colloquial terms often used
at lower levels of expertise. Before formally defining the technical ontology, we need to specify
the technicality classes.

A vocabulary is a finite set Voc C N U Ny, of concept and role names. A technical vocabulary
is a partially ordered vocabulary (Voc, <) where oo < 3 expresses that « is at most as technical
as (8. Thus, someone with greater expertise in the area would use terms that are larger w.r.t. <.
Importantly, the use of a partial order admits to have incomparable terms (where none is more
technical than the other) and terms that are equally technical. Each element o € Voc defines a
technicality class

[a] :={B € Voc| B 2 a}

containing all the terms from Voc which are at most as technical as a. The idea is that a
user capable of understanding « can also understand all terms in [«]. Given a concept C,
the expression V(C) denotes the set of all concept and role names appearing in C; i.e., the
vocabulary of C'. This notion is extended in the obvious manner to GCIs and ontologies: V(O)
is the set of all names appearing in the ontology O. Since users need to understand all the terms
appearing in a GCI, justification or ontology, we associate their expertise (or technicality level)
to technicality classes.

Example 3. Figure 1 depicts a Hasse diagram for a technical vocabulary. For instance, Mammal <
Oviparous means that Mammal is not more technical than Oviparous. Since these notions do not
appear together in the diagram. Mammal is in fact less technical. Animal and Milk are equally
technical, and incomparable to Egg. The technicality class of Mammal is

[Mammal| := {Mammal, Egglaying, Egg, MilkProducing, Animal, Milk}.
After these preliminaries, we can now define the technical ontology.

Definition 4 (technical ontology). Let (Voc, <) be a technical vocabulary. A technical ontol-
ogy T is a finite set of concept definitions using only terms in Voc, such that for every concept
definition A = C € T it holds that V(C) C [A].

A technical ontology provides definitions for some of the terms in the vocabulary Voc, which are
based on terms of lesser or equal technicality level. In simpler terms, T is a stratified dictionary
of concept names. The idea is that through those definitions, one can “rewrite” terms that a
user may not understand into expressions using a “simpler” vocabulary. Ideally, this rewriting

Monotreme

I

Oviparous, Endothermic

[

Mammal \
Egglaying MilkProducing
Egg Animal, Milk

Figure 1: A technical vocabulary including incomparable and equivalent terms.

should contain expressions which use only concept and role names intelligible for the user,
while preserving equivalence.

Example 5. Using the technical vocabulary from Example 3, we can define the technical ontology

T := { Monotreme = Oviparous 1 Mammal,
Mammal = Animal 11 MilkProducing,
Oviparous = Animal N Egglaying },

which expresses that monotremata are oviparous mammals; mammals are milk-producing animals;
and oviparous are egg-laying animals. Note that the condition of decreasing technicality is satisfied
by these definitions.

With the technical ontology in place, we can now formalise the general problems introduced
in Section 2. To specify the level of technicality, we use the technicality classes defined by the
technical ontology. That is, a user selects a term « € Voc such that they understand all terms
in [a].

Problem 6. Let J be a justification, (Voc, =) a technical vocabulary, T a technical ontology,
and o € Voc. Construct an ontology £ such that

1. EUT and J are equivalent, i.e. have the same models and

2. V() CJal.

If it exists, the ontology £ is called an «-bounded explication of 7.

As defined, Problem 6 leaves quite some liberty on its solutions: the resulting ontology £ may
have nothing in common with the original justification .7, as long as it is logically equivalent,
modulo 7. To make it more tractable, we note that it suffices to manipulate the concept names
to an understandable form.

Proposition 7. Let J be a justification, (Voc, <) a technical vocabulary, T a technical ontology,
and a« € Voc. There exists an a-bounded explication of J if

« every role namer € V(J) is such thatr < «, and
« for every concept name A € V(J) there exists a concept C' such that T = A = C and
V(C) C [a].

The proof of this proposition is straightforward, and hence left out of this paper. The explication
can be constructed by simply substituting every concept name in 7 by their equivalent C. Note
that the converse is not necessarily true: there could exist a-bounded explications which are
not constructed through substitutions of concept names, but by substituting complex concepts.
Taking advantage of this proposition, we now focus on the simpler problem of finding a concept
explication.

Definition 8 (concept explication). Let A € N¢, (Voc, <) a be technical vocabulary, T a
technical ontology, and o € Voc. A concept C such that T = A = C and V(C) € [a/] is called

an a-bounded explication of A.
Returning to our running example, we see that
Animal M MilkProducing M Egglaying

is indeed an Oviparous-bounded explication of Monotreme—in fact, it is even a Mammal-
bounded explication. However, for a user who understands the term Oviparous, expanding out
the definitions to the point of Egglaying may be counterproductive as it makes the explication
verbose. Not to mention the possibility of taking offence from an overly simplistic explanation.
Thus, rather than presenting the user with an arbitrary a-bounded explication, we want to
find one which is as technical as possible, while remaining understandable. In our example, a
more adequate explication (from this point of view) of Monotreme is Oviparous M Mammal. In
general, we will prefer optimal explications that are as technical as possible within the selected
technicality class.

Definition 9 (optimal explication). We extend the ordering < to complex concepts by setting
C <X D iff for every termv € V(C) there is aw € V(D) such that v < w. C' is more technical
than D (denoted C < D) iff C < D but D £ C.

An a-bounded explication D of C' is optimal if there exists no a-bounded explication D' of C
which is more technical than D.

A first idea to try to find (optimal) explications of concepts would be to follow a term rewriting
approach [12]. Indeed, each concept definition A = C' in the technical ontology can be seen
as a rewriting rule which substitutes the concept name A with a complex expression using
the symbols from C'. These symbols may be further rewritten with other complex expressions,
using other concept definitions from the technical ontology. Under this view, all symbols
in [a] are terminals; that is, terms that cannot not be further rewritten using the technical
ontology 7. Such terminals are already understandable to the user. All other symbols in Voc
are non-terminals, and should be rewritten into simpler, potentially more understandable terms.

This idea, while tempting, cannot work due mainly to three properties of the technical
ontology and the rewriting:

1. concept definitions may be cyclic;
2. concepts may have multiple definitions; and
3. the equivalence in concept definitions works on both directions.

The first issue can be solved by requiring that technical ontology is acyclic or by implementing
a cycle detection method. The other two issues are worth exploring further.

3.1. Non-determinism Induced by Multiple Definitions

Since one concept name may have more than one associated definition in the technical ontology,
it is not clear a-priori which definition should be used in the rewriting of a concept. Indeed, a
wrong choice may result in a concept that is not an a-bounded explication, but which cannot
be further simplified, even in cases where adequate explications exist.

Example 10. Suppose that the technical ontology from Example 5 contains also the concept
definition Monotreme = Oviparous Il Endothermic. If we want to find a Mammal-bounded
explication of the concept name Monotreme, we can substitute the name Monotreme by either
(i) the term Oviparous M Mammal or (ii) the term Oviparous [Endothermic. In the former case,
further expanding the definition of Oviparous yields an understandable concept at the Mammal
level of technicality. The latter case, however, yields the concept Oviparous 1 Endothermic which
contains a concept name (Endothermic) that does not belong to the technicality class [Mammal],
nor has an associated concept definition. Hence no adequate explication can be derived from it.

At the same time, it is unfeasible to preserve all possible expansions in the hope of deriving
at least one a-bounded explication. A naive construction of all possibilities would generate
exponentially many such concepts, thus requiring exponential time and space to find such an
explication (or decide that it does not exist).

This issue can be at least partially solved with the help of a non-deterministic algorithm,
which guesses, for every substitution step, which definition to use. This means that we can
decide whether an a-bounded explication exists—and, indeed, construct it—in non-deterministic
polynomial time. While this solves the issue of multiple-definitions, it does not guarantee that
the constructed explication is optimal.

3.2. Sub-optimality by Limited Use of Concept Equivalences

All concept definitions in the technical ontology are required to have, in the right-hand side,
only terms that are at most as technical as the concept name in the left-hand side. However,
beyond this requirement there is no restriction about the ordering of the terms in different
definitions. Moreover, we are ultimately interested in constructing equivalent concepts, for
which the semantics of concept definitions need to be carefully considered.

Recall that the semantics of A = C guarantee that A and C are equivalent. So far, we have
used this as a unidirectional “rule” to substitute an occurrence of A by the concept C'. However,
logical equivalences also hold in the converse direction: substituting the concept C' by the
concept name A would be equally correct. At first, this may seem as an irrelevant insight as
it implies increasing—rather than decreasing—the technicality level of the resulting concept;

we are substituting a simple description with technical jargon. Still, optimal solutions might
require such an interplay of technicality decrease and increase.

Example 11. Consider once again the technical vocabulary from Example 3, but now using the
technical ontology

T := { Monotreme = Egglaying 1 MilkProducing 1 Animal,
Mammal = Animal 1 MilkProducing,
Oviparous = Animal 1 Egglaying }

that is, we have modified the first concept definition. Note that there is no non-determinism
here, since every concept name is defined only once. If we want to produce a Mammal-bounded
explication for the concept name Monotreme, we expand its definition, obtaining the complex
concept Egglaying 1 MilkProducing T Animal. This is already an explication on the right level of
technicality and can be understood by a user who understands Mammal. However, it is not optimal.

To find an optimal explication, observe that MilkProducing M Animal is equivalent to Mammal
in T. Thus, we can simplify the previously constructed concept into Egglaying 11 Mammal, which
is in fact an optimal explication for Monotreme.

The issue is more complex. Even after finding a (potentially sub-optimal) a-bounded explication,
it may still be impossible to find an optimal explication simply by increasing the technicality
through a “converse” concept rewriting. As the following example shows, it may be necessary
to further decrease the technicality of a concept, before it can be rewritten into an optimal
explication.

Example 12. Consider again the technical vocabulary from Example 3, along with the technical
ontology

T := { Monotreme = EgglLaying " Mammal,
Mammal = Animal 1 MilkProducing,
Oviparous = Animal 11 Egglaying H

and suppose that we want now an Oviparous-bounded explication of Monotreme. We first have no
choice but to expand Monotreme to its unique definition. The resulting concept EgglayingriMammal
is already an understandable explication to the desired level of technicality, but as we shall see, it is
not optimal. In contrast to the previous example, it is not possible to substitute part of the explication
with the concept Oviparous yet: although we have the conjunct Egglaying, we are still missing the
term Animal in it. Notice that Mammal can be substituted by Animal ™ MilkProducing yielding the
(less technical) explication Egglaying [Animal 71 MilkProducing, which can now be equivalently
rewritten into the optimal explication (at the requested level of technicality) Oviparous " Mammal.

These simple examples highlight a very general limitation of the approach that uses TBox axioms
as rewrite rules to find explications. In order to guarantee optimality of the resulting concept, it
may be necessary to cycle through several rounds of increased and decreased technicality. It is

also possible to encounter cases where the technicality of a concept needs to be increased beyond
the user-specified technicality level before it is later rewritten into an adequate explication; we
leave the construction of such an example to the interested reader.

Example 12 implicitly showcases another issue that we have so far ignored, which refers to
the idempotency of the conjunction. Note that in the last step of Example 12, we used the fact
that Animal and Animal M Animal are equivalent, in order to construct the two terms Oviparous
and Mammal; each of them requires a mention of Animal in their definition. This means that
some terms may need to be “recalled” after being used in a rewriting step to allow for another
rewriting. The following example makes the issue explicit.

Example 13. Using the technical vocabulary from Figure 1, suppose that we are interested in
explaining the concept name Monotreme to the technicality degree of Oviparous based on the
technical ontology

T := { Monotreme = Egglaying 1 Mammal,
Monotreme = Animal,

Oviparous = Egglaying M Animal }.

Using these definitions, we can transform Monotreme either to Egglaying M Mammal or to Animal.
At this point, no other rewriting step is possible. However, since Monotreme is equivalent to
Egglaying Tl Mammal, the latter concept is also equivalent to Monotreme 1 Egglaying 1 Mammal
which can now be rewritten as Animal 1 Egglaying "1 Mammal, yielding the optimal explication
Oviparous 1 Mammal.

4. Conclusions

Our goal is to explain to non-expert users the reasons why a consequence follows from a domain
ontology. In contrast to other approaches where the emphasis is in the presentation of the
axioms and explanation of the logical steps followed, we are more interested in explicating
given justifications using terms that are understandable to the user. To this end, we assume
the existence of a dictionary, which defines technical jargon through equivalent, less technical
expressions. Even at the restricted setting of this work, we have seen that finding optimal
explications requires specialised techniques, which still need to be developed.

All our examples are based on the very simple logic L. Clearly, additional issues arise if we
extend the language to L or beyond. For instance, it should be clear that deciding whether a
given concept C'is an optimal a-bounded explication of A is in co-NP for Lg: if it is not, simply
guess another concept D (which is a conjunction of concept names in [«|) and verify that it
is equivalent to A, and that C' < D. This method does not work in L because, due to the
potentially nested existential restrictions, we have no guarantee that optimal explications are
even of polynomial length.

As future work, we intend first to fully understand the properties of these problems in
Ly. Beyond finding tight complexity bounds for the decision problem and deriving effective
algorithms for constructing one or all optimal explications, we will consider a more precise
notion for a concept to be “more technical” than another. Another problem to consider is

related to user education: if a term cannot be explained to the user’s level of technicality, we
want to propose a vocabulary—as close as possible to the user’s own—which will allow them
to understand it. Afterwards, we will look at ££ and beyond to expressive DLs and other KR
formalisms and entailments.

Another road of generalisation which is worth exploring is to relax the notion of explication
and give up the requirement that it is equivalent to the original concept, but that it is similar
enough. For instance, some of the conjuncts in the explication could approximate the original
ones from above while others could be approximated from below. Finding out how to deal with
such similarity will require to explore several alternatives.

Acknowledgments

This work was partially supported by the Italian MUR under the PRIN project PINPOINT
Prot. 2020FNEB27, CUP H45E21000210001 and partially by the Al competence center ScaDS.AlI
Dresden/Leipzig.

References

[1] D.Doran, S. Schulz, T. R. Besold, What does explainable Al really mean? A new conceptual-
ization of perspectives, CoRR abs/1710.00794 (2017). URL: http://arxiv.org/abs/1710.00794.
arXiv:1710.00794.

(2] T. Miller, Explanation in artificial intelligence: Insights from the social sciences, Artificial
Intelligence 267 (2019) 1-38. doi:10.1016/j.artint.2018.07.007.

[3] C. Alrabbaa, F. Baader, S. Borgwardt, P. Koopmann, A. Kovtunova, Finding good proofs for
description logic entailments using recursive quality measures, in: A. Platzer, G. Sutcliffe
(Eds.), Proceedings of the 28th International Conference on Automated Deduction (CADE-
28), volume 12699 of Lecture Notes in Computer Science, 2021, pp. 291-308. doi:10.1007/
978-3-030-79876-5_17.

[4] L Androutsopoulos, G. Lampouras, D. Galanis, Generating natural language descriptions
from OWL ontologies: the naturalowl system, J. Artif. Intell. Res. 48 (2013) 671-715. URL:
https://doi.org/10.1613/jair.4017. doi:10.1613/jair.4017.

[5] M. Bolognesi, Where Words Get their Meaning: Cognitive processing and distributional
modelling of word meaning in first and second language, John Benjamins, 2020. URL:
https://www.jbe-platform.com/content/books/9789027260420.

[6] T. Eiter, G. Kern-Isberner, A brief survey on forgetting from a knowledge represen-
tation and reasoning perspective, Kinstliche Intell. 33 (2019) 9-33. doi:10.1007/
s13218-018-0564-6.

[7] C. Lutz, F. Wolter, Foundations for uniform interpolation and forgetting in expres-
sive description logics, in: T. Walsh (Ed.), Proceedings of the 22nd International Joint
Conference on Artificial Intelligence, IJJCAI/AAAI 2011, pp. 989-995. doi:10.5591/
978-1-57735-516-8/1JCAI11-170.

(8] F.Baader, D. Calvanese, D. McGuinness, D. Nardi, P. Patel-Schneider (Eds.), The Description

http://arxiv.org/abs/1710.00794
http://arxiv.org/abs/1710.00794
http://dx.doi.org/10.1016/j.artint.2018.07.007
http://dx.doi.org/10.1007/978-3-030-79876-5_17
http://dx.doi.org/10.1007/978-3-030-79876-5_17
https://doi.org/10.1613/jair.4017
http://dx.doi.org/10.1613/jair.4017
https://www.jbe-platform.com/content/books/9789027260420
http://dx.doi.org/10.1007/s13218-018-0564-6
http://dx.doi.org/10.1007/s13218-018-0564-6
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-170
http://dx.doi.org/10.5591/978-1-57735-516-8/IJCAI11-170

Logic Handbook: Theory, Implementation, and Applications, second ed., Cambridge
University Press, 2007.

[9] F. Baader, S. Brandt, C. Lutz, Pushing the ££ envelope, in: Proceedings of IJCAI'05,
Professional Book Center, 2005, pp. 364-369.

[10] F. Baader, R. Pefialoza, B. Suntisrivaraporn, Pinpointing in the description logic ££,
in: Proc. of KI'07, volume 4667 of LNCS, Springer, 2007, pp. 52-67. doi:10.1007/
978-3-540-74565-5_7.

[11] R.Perialoza, B. Sertkaya, Understanding the complexity of axiom pinpointing in lightweight
description logics, Artificial Intelligence 250 (2017) 80-104. doi:10.1016/j.artint.
2017.06.002.

[12] F. Baader, T. Nipkow, Term Rewriting and All That, Cambridge University Press, 1998.

http://dx.doi.org/10.1007/978-3-540-74565-5_7
http://dx.doi.org/10.1007/978-3-540-74565-5_7
http://dx.doi.org/10.1016/j.artint.2017.06.002
http://dx.doi.org/10.1016/j.artint.2017.06.002

	1 Introduction
	2 Approaching the Problem of User-aware Explications
	3 A First Solution
	3.1 Non-determinism Induced by Multiple Definitions
	3.2 Sub-optimality by Limited Use of Concept Equivalences

	4 Conclusions

