
Understanding the Complexity of Axiom Pinpointing in
Lightweight Description Logics

Rafael Peñalozaa,∗, Barış Sertkayab

aKRDB Research Centre, Free University of Bozen-Bolzano, Italy
bFrankfurt University of Applied Sciences, Frankfurt, Germany

Abstract

Lightweight description logics are knowledge representation formalisms charac-
terised by the low complexity of their standard reasoning tasks. They have
been successfully employed for constructing large ontologies that model domain
knowledge in several different practical applications. In order to maintain these
ontologies, it is often necessary to detect the axioms that cause a given conse-
quence. This task is commonly known as axiom pinpointing.

In this paper, we provide a thorough analysis of the complexity of several
decision, counting, and enumeration problems associated to axiom pinpointing
in lightweight description logics.

Keywords: Description Logics, Axiom Pinpointing, Computational
Complexity, Counting Complexity, Enumeration Complexity

1. Introduction

The success of description logics (DLs) [1] as knowledge representation lan-
guages has been witnessed by the development of more, and usually larger,
ontologies based on these formalisms. In these languages, the knowledge of a
domain is represented via a set of axioms that express the relationships be-
tween the different notions being modelled. With the help of advanced ontology
editing and versioning tools [2–4], it is becoming increasingly easier for domain
experts who may not be versed in the underlying logics to model part of their
knowledge, and collaborate with other experts to represent large domains.

It is well known that ontology development is an error-prone task, where mi-
nor variations may lead to unwanted or erroneous consequences. Moreover, even
when the ontology is correct and no errors are detected, some of its (implicit)
consequences can be surprising to the knowledge engineers and domain experts.

∗Corresponding author
Email addresses: rafael.penaloza@unibz.it (Rafael Peñaloza),

sertkaya@fb2.fra-uas.de (Barış Sertkaya)

Preprint submitted to Artificial Intelligence June 20, 2017

In order to understand the reason for a consequence, it is helpful to extract only
those axioms that are responsible for it [5, 6]. This task is commonly known as
axiom pinpointing in the DL literature. Briefly, axiom pinpointing refers to the
task of finding minimal sets of axioms that are responsible for a given entail-
ment. These sets are sometimes called justifications in the literature [7–9], as
they clarify the causes for the consequence to appear. To avoid confusion with
other uses of the term, we use the more technical term MinA, which stands for
“minimal axiom set.”

Two subfamilies of DLs, namely the DL-Lite [10] and EL [11] families, have
attracted special interest due to their polynomial-time standard reasoning prob-
lems. Thus, they are typically referred to as “lightweight” DLs. Due to their
low computational complexity, these logics have been successfully used to model
large ontologies, in particular in the bio-medical domain [12]. In fact, we see
more and often larger ontologies being used in practical applications within this
domain. The most well-known of these ontologies is the Snomed CT medical
ontology [13] that contains over half a million axioms from a slight extension of
EL.

Due to their size and practical use, it is important to provide automated ax-
iom pinpointing tools that can handle these ontologies efficiently. As a first step
towards this aim, it is important to understand the theoretical limits of axiom
pinpointing for lightweight DLs. In particular, it is interesting to detect the cases
in which finding some or all MinAs with certain properties remains tractable.
For that reason, in this paper we extensively study the complexity of many de-
cision, counting, and enumeration problems related to axiom pinpointing and
its applications for ontology debugging and consequence understanding. More
precisely, we study the complexity of enumerating all MinAs with and without a
specific order, of counting the total number of MinAs, and of deciding whether
some given axioms belong or not to some or all MinAs, among other problems
(see Table 5 in page 36 for a full summary of the results).

One important thing to notice is that standard reasoning is a sub-task of
axiom pinpointing. Thus, the latter necessarily has a higher (or equal) complex-
ity than the former. By focusing on lightweight DLs, whose standard reasoning
problems are polynomial, we also gain insights in the intrinsic complexity that
is added by axiom pinpointing, as opposed to mere reasoning. For instance,
we observe that deciding whether an axiom belongs to at least one MinA is
intrinsically a hard problem, becoming np-hard even for the most basic kind of
axioms studied.

We emphasise that axiom pinpointing is relevant beyond the context of de-
scription logics and consequence understanding and repair. MinAs have also
been studied, under the name of minimal unsatisfiable subsets (MUS) [14] in
the context of propositional logic and maximal satisfiability of formulas (or
MaxSAT) [15, 16]. As for description logics, computing, counting, and enu-
merating MinAs has been shown to be fundamental for other non-standard ex-
tensions and reasoning tasks. These include, among many others, dealing with
trust, provenance, and preferences [17, 18], error-tolerant [19–21] and context-
based reasoning [22], as well as some variants of probabilistic [23–25] and fuzzy

2

logic [26]. Studying the complexity of axiom pinpointing and methods for prov-
ing their lower bounds has a direct impact on our understanding of those non-
standard reasoning problems.

Some of the results presented in this paper appeared previously in prelimi-
nary versions. Specifically, in [27, 28] we investigated the complexity of axiom
pinpointing in the propositional Horn fragment, and in EL, and in [29, 30] we
studied this complexity for the DL-Lite family, which has been very popular due
to its success in efficiently accessing large data and answering complex queries
on this data [10, 31]. For this family various aspects of finding explanations have
already been considered in [32, 33]. The main focus of those papers is on the
problem of explaining query answering and ABox reasoning, which are the most
standard types of reasoning problems considered in the DL-Lite family. In par-
ticular the authors investigate in detail the problem of determining why a value
is returned as an answer to a conjunctive query posed to a DL-Lite ABox, why
a conjunctive query is unsatifiable, and why a particular value is not returned
as answer to a conjunctive query. Complementary to the work in [32, 33] we
consider only TBox reasoning. Here, we extend the previous results by consid-
ering also inverse roles in DL-Lite. In addition, we filled several gaps regarding
the enumeration of MinAs in DL-Litecore and DL-Litekrom TBoxes, studied in
more detail the DL-Litebool case, and added a new case of ordered enumeration
that takes into account the size of the MinAs.

The paper is structured as follows. After briefly recalling the basic notions
from lightweight DLs, axiom pinpointing, and enumerating and counting com-
plexity classes, we study the complexity of decision problems associated with
axiom pinpointing (Section 3). In Sections 4 and 5 we analyse the complexity of
enumerating and counting MinAs, respectively. All these results are summarised
in Section 6, before giving conclusions and directions for future research.

2. Preliminaries

We briefly recall basic notions from propositional logic, the EL and DL-Lite
families of description logics (DLs), axiom pinpointing, and non-standard com-
plexity measures that deal with enumeration and counting problems.

In propositional logic we build formulae using a set of propositional variables
and the Boolean connectives ¬ (negation), ∨ (disjunction) and ∧ (conjunction).
A variable or its negation is called a literal, and a disjunction of literals, e.g.
¬p1 ∨ ¬p2 ∨ p3, is called a clause. Clauses like the previous one are sometimes
written as implications of the form p1 ∧ p2 → p3. A clause is called a Horn
(respectively dual-Horn) clause if it contains at most one positive (negative)
literal, and a definite Horn (definite dual-Horn) clause if it contains exactly one
positive (respectively negative) literal. Throughout the text we will call definite
Horn (definite dual-Horn) clauses just Horn (dual-Horn) clauses for short. In
other words, Horn clauses are of the form p1 ∧ . . . ∧ pn → p and dual-Horn
clauses are of the form p→ p1 ∧ . . . ∧ pn. We will call clauses with exactly one
positive and one negative literal, like p1 → p2, core clauses.

3

Table 1: Syntax and semantics of EL and DL-Lite constructors.

Syntax Semantics

> ∆I

C uD CI ∩DI
∃r.C {x ∈ ∆I | ∃y ∈ ∆I : (x, y) ∈ rI ∧ y ∈ CI}
r− {(x, y) ∈ ∆I ×∆I | (y, x) ∈ rI}

≥ q s {x ∈ ∆I | #{y | (x, y) ∈ sI} ≥ q}
¬C ∆I \ CI
⊥ ∅
C v D CI ⊆ DI

In DLs one formalizes the relevant notions of an application domain through
concepts. Concepts are inductively built from a set of concept names, role names,
and concept constructors that are allowed by the particular DL language in use.
The knowledge of the domain is then described through a set of axioms that
restrict the way in which these concepts can be interpreted.

2.1. The EL Family

Concepts of the DL EL are formed from a set of concept names NC and a
set of role names NR using the three constructors u (conjunction), ∃ (existential
restrictions) and > (top). More formally, if A is a concept name and r is a role
name, then concepts are built using the syntactic rule:

C ::= A | > | ∃r.C | C1 u C2.

The semantics of EL is defined in terms of interpretations I = (∆I , ·I), where
the domain ∆I is a non-empty set of individuals, and the interpretation function
·I maps each concept name A ∈ NC to a subset AI of ∆I and each role name
r ∈ NR to a binary relation rI on ∆I . The mapping ·I can be extended to
arbitrary EL concepts as shown in the second colum of Table 1.

An EL TBox is a finite set of general concept inclusion axioms (GCIs) of the
form C v D, where C,D are two EL concepts. The interpretation I is a model
of the TBox T if, for every GCI C v D in T it holds that CI ⊆ DI (see the
last row of Table 1). The main inference problem for EL is the subsumption
problem [34, 35], which is defined as follows: given two EL concepts C,D and
an EL TBox T , check if C is subsumed by D w.r.t. T (written T |= C v D);
that is, decide whether CI ⊆ DI holds in every model I of T .

We will call a concept description simple if it is of the form A or ∃r.A for
A ∈ NC, r ∈ NR, and a GCI a Horn-EL GCI if it is of the form C1u . . .uCn v D,
where Ci, D are simple concept descriptions, 1 ≤ i ≤ n.

4

2.2. The DL-Lite Family

DL-Lite concepts are constructed and interpreted in a similar way to EL
concepts. We briefly introduce the syntax of the DL-Lite family following the
notation in [10], restricting our attention to the members of DL-Lite that we use
in this paper only. For a full overview on DL-Lite, we refer the reader to [10].

Let A be a concept name, r a role name, and q a natural number. Then
DL-Lite concepts and roles are constructed as follows:

s := r | r−,

B ::= ⊥ | A | ≥ q s,
C ::= B | ¬C | C1 u C2,

Concepts of the form B are called basic, and those of form C are called general
concepts. The semantics of this constructors are presented in the second column
of Table 1.

A DL-LiteNbool TBox is a set of GCIs of the form C1 v C2, where C1, C2 are
general concepts. A TBox is a DL-LiteNcore TBox if its axioms are of the form
B1 v B2, or B1 v ¬B2 , where B1, B2 are basic concepts. DL-LiteNkrom TBoxes
generalize core ones by allowing also axioms of the form ¬B1 v B2. Finally,
a DL-LiteNhorn TBox is composed only of axioms of the form

d
k Bk v B with

B,Bi basic concepts.
We can drop the superscript N from the name of the languages by allowing

only number restrictions of the form ≥ 1 s for constructing basic concepts. In
this case, we will sometimes use the expression ∃s to represent ≥ 1 s with the
intuition that ≥ 1 s requires the existence of at least one s-successor. To any of
the previously defined TBoxes, we can also add role inclusion axioms of the form
s1 v s2, with s1, s2 roles. This will be denoted using the superscript H in the
name; e.g. DL-LiteHNbool . Since we are not dealing with so-called individuals in
the present work, role inclusion axioms do not add any expressivity to DL-LiteHα
TBoxes for any α ∈ {core, horn, krom}. Indeed, a basic concept B will only
make use of a role s if B is an existential restriction ∃s. As we are only interested
in concept subsumption, we can then represent the role inclusion axiom s1 v s2
through the concept inclusion ∃s1 v ∃s2. Thus, the complexity results we
present here for DL-Liteα TBoxes immediately hold also for DL-LiteHα TBoxes.
Note that this may not be true if number restrictions are allowed; that is, the
complexity results for DL-LiteNα may not transfer directly to DL-LiteHNα . One
interesting observation is that, despite increasing the expressivity of DL-Lite,
inverse roles do not seem to affect the complexity of axiom-pinpointing as will
become apparent in the following sections.

2.3. Knowledge Bases

We refer to both propositional clauses and GCIs, either from EL or DL-Lite,
as axioms, and a set of axioms as a knowledge base (KB). We say that a KB
is of type Horn (core, dual-Horn, Horn-EL, EL, DL-Litecore, DL-Litehorn,
DL-Litekrom, DL-Litebool, respectively) if it contains only Horn (core, dual-
Horn, Horn-EL, EL, DL-Litecore, DL-Litehorn, DL-Litekrom, or DL-Litebool,

5

core

DL-Litecore Horndual-Horn

DL-Litekrom DL-Litehorn Horn-EL

DL-Litebool EL

Figure 1: Relative expressivity of the different types of knowledge bases.

respectively) axioms. Throughout this paper, we formulate our problems in a
generic way without referring to a specific type of KB, but show the results for
each KB type separately. To minimize repetitions, we first show some basic
relationships between the different types of KBs presented.

Note that core axioms are a special case of all the other types of axioms
introduced above. According to the semantics of these axioms, it is easy to see
that dual-Horn KBs are not more expressive than core ones: a dual-Horn axiom
p → q1 ∧ . . . ∧ qn can be expressed by the core axioms p → q1, . . . , p → qn.
Hence, any dual-Horn KB can be transformed into an equivalent core KB in
linear time. However, as we show in this paper, the complexity of pinpointing-
related problems is in general higher for dual-Horn KBs than for core ones. The
main reason for this disparity is that in axiom pinpointing, all axioms in a KB
are considered independently (see Definition 1 below). Hence, despite being
logically equivalent, the dual-Horn axiom p → q1 ∧ . . . ∧ qn and the set of core
axioms p→ q1, . . . , p→ qn yield different pinpointing results.

Horn axioms are a special kind of Horn-EL ones, which are themselves a
(strict) subclass of EL axioms; for example, the EL axiom A v B u C is not a
Horn-EL axiom. Likewise, Horn axioms are a special case of DL-Litehorn ones,
but these are not instances of EL axioms, as the bottom concept ⊥ cannot be
expressed with the EL constructors. All these relations are depicted in Figure 1.
Notice that the figure shows the relationship between the classes of KBs that
are expressible in each language, and not their logical expressivity. For example,
every core KB is also a dual-Horn KB but the converse is not true—even though
every dual-Horn KB can be rewritten into a logically equivalent core one.

We will make use of these relationships to transfer complexity results between
the different classes of axioms in the following sections. The complexity of
reasoning in the DL-Lite family has been investigated in detail in [10] and the
complexity of reasoning in EL has been investigated in [35].

6

2.4. Axiom Pinpointing

Axiom pinpointing refers to the task of finding the specific axioms that are
responsible for a given consequence to follow from a KB. When dealing with
monotonic consequences, as in the case of DLs and propositional logic, this task
equivalently corresponds to finding the minimal subsets (w.r.t. set inclusion) of
the KB that entail the consequence. We call such a set a MinA.1

Definition 1 (MinA). Let K be a set of axioms and ϕ be a logical consequence
of it, i.e., K |= ϕ. We call a set M⊆ K a minimal axiom set or MinA for ϕ in
K if M |= ϕ and for every M′ ⊂M, it holds that M′ 6|= ϕ.

It has been shown that a single MinA for a consequence can be computed
by calling a reasoner as many times as there are axioms in the KB [37, 38].
The idea is to systematically remove one axiom at a time from the KB, while
the consequence is preserved. In particular this means that in every logic with
polynomial-time reasoning, a MinA can be computed in polynomial time, with
the degree of the polynomial increasing by one.

However, a single consequence from a KB may have several, potentially
exponentially many, MinAs, and in many cases computing only one of them
does not suffice. For instance, if the consequence is unwanted, then correcting
one of the ways in which it can be derived does not ensure that the consequence
will not follow from some other combination of axioms in the KB. It is thus
important to analyse the complexity of finding all the MinAs or deciding some
of their properties.

We notice that some previous work on axiom pinpointing has focused on
the computation of a so-called pinpointing formula [39–41], that provides a
compact encoding of all MinAs. However, extracting the specific MinAs and
other information from this formula is already a hard problem. For that reason,
in this paper we focus only on the computation of MinAs as subsets of the KB,
and not in the construction of an alternative characterization.

In order to analyze the complexity of enumerating and counting the (poten-
tially exponentially many) solutions to a problem, it is necessary to consider
some special complexity classes. Before presenting our results, we briefly re-
call some of the basic enumeration and counting complexity classes and their
properties.

2.5. Complexity of Enumeration

In complexity theory, we are sometimes interested not only in deciding
whether a problem has a solution or not, but also in enumerating all solutions
of the problem. We call such problems enumeration problems. For analyzing
the complexity of enumeration problems where the number of solutions can
be exponential in the size of the input, one needs appropriate measures. One

1These sets are also often called justifications in the DL literature [7], and MUSes in
propositional logic [36].

7

such measure is the notion of polynomial delay. We say that an algorithm runs
with polynomial delay [42] if the time until the first solution is generated, and
thereafter the time between any two consecutive solutions, is bounded by a
polynomial in the size of the input. An example of such an algorithm is the
one given in [43] that enumerates all maximal independent sets of a graph with
polynomial delay.

Another measure of performance is to take into account not only the size of
the input, but also the size of the output. We say that an enumeration algorithm
runs in output polynomial time (or polynomial total time) [42] if it outputs all
solutions in time polynomial in the size of the input and the output. Clearly, ev-
ery polynomial delay algorithm is also an output polynomial algorithm, i.e., the
notion of polynomial delay is stronger than the notion of output polynomial.
One advantage of an output polynomial algorithm is that it runs in polyno-
mial time whenever the problem has polynomially many solutions. However,
an output polynomial algorithm may for instance first compute all solutions
and then output them all together. With polynomial delay algorithm on the
other hand, a user needs to wait only polynomial time between each retrieved
solution, regardless of how many solutions there are in total. Such an algorithm
is especially good if one wants to enumerate the solutions one at a time and
maybe stop the execution before all of them have been found; for instance after
k solutions have been output.

An intermediate notion between polynomial delay and output polynomial
is that of incremental polynomial. An enumeration algorithm is incremental
polynomial if the time required for generating each new solution is polynomial
in the size of the input and the output generated so far. Clearly, every polynomial
delay algorithm is incremental polynomial, and every incremental polynomial
algorithm is also ouput polynomial.

A more complicated situation is when the solutions are required to be output
in some pre-specified order such as a lexicographic order (see Definition 11). In
general, the complexity of enumerating solutions in a specified order is of interest
only if polynomial delay or incremental polynomial algorithms exist. Indeed, if
all solutions can be enumerated in output polynomial time, then they can be
enumerated in output polynomial time in any desired order: one needs only to
generate all solutions, sort them and output them in the new order.

Proposition 2. If an enumeration problem can be solved in output polyno-
mial time, then it can be solved in any polynomially-computable order in output
polynomial time.

A good example of an algorithm that provides ordered solutions with poly-
nomial delay is the one introduced in [42] that generates maximal independent
sets of a graph in lexicographic order with polynomial delay.

2.6. Counting Complexity

In applications where one is interested in computing all solutions, it might
be useful to know in advance how many of them exist. In complexity theory,

8

Table 2: Complexity of basic decision problems.

Problem DL-Lite
[N]
bool all other

is-mina Dp-c [Theorem 4] p [Proposition 3]
mina-irrelevance in Σp

2 [Corollary 6] np-c [Theorem 5, Corollary 6]
mina-relevance Σp

2-c [Theorem 9] np-c [Theorem 7, Corollary 8]

problems that ask “how many solutions exist” for a given problem instance are
called counting problems. For instance the counting version of sat, called #sat
asks how many satisfying truth assignments exist for a Boolean formula given
in cnf. Obviously, a counting problem is at least as hard as its underlying
decision problem. For instance, if we could solve #sat, then we would also be
able to solve sat: an expression is satisfiable if and only if the number of truth
assignments that satisfy it is non-zero.

Complexity of counting problems was first investigated by Valiant [44]. For
systematically studying and classifying counting problems, he introduced the
counting complexity class #p, which is the class of functions that count the
number of accepting paths of nondeterministic polynomial-time Turing ma-
chines (TMs). Typical members of this class are the problems of counting the
number of solutions of np-complete problems. Valiant showed in [45] however,
that there are also #p-complete problems whose underlying decision problem
can be solved in polynomial time. It is well known that given a bipartite graph,
whether it has a perfect matching can be decided in polynomial time. How-
ever, Valiant has shown in [45] that counting the perfect matchings of a given
bipartite graph is #p-complete.

A related complexity class is #np, which is the class of functions that count
the number of solutions of nondeterministic polynomial-time TMs with an np
oracle. Intuitively, this class corresponds to counting the number of solutions of
Σp

2 problems. In order to prove hardness for counting complexity classes, reduc-
tions between problems must also preserve the number of solutions. In general,
it suffices to consider weakly parsimonious reductions [46, 47]. Intuitively, these
reductions transform in polynomial time an instance of the original problem
to an instance of the reduced problem such that the number of solutions of
the original instance is a polynomially-computable function of the number of
solutions of the reduced instance.

3. Preferred and Unwanted Axioms

In this section, we analyze the complexity of the main decision problems
that occur in axiom pinpointing, with a focus on the tractable DLs introduced
before. Specifically, we study the problems of deciding whether a KB is a MinA
(is-mina), whether there exists a MinA that does not contain any of a given
set of KBs (mina-irrelevance), and whether there exists a MinA containing a
given axiom (mina-relevance). These results are summarized in Table 2. As

9

Algorithm 1 Computing one MinA for ϕ in K
Procedure find-mina(K,ϕ) (K a KB, ϕ an axiom of the same type)

1: if K 6|= ϕ then return “no MinA”
2: else
3: M←K
4: for α ∈ K do
5: if M\ {α} |= ϕ then
6: M←M\ {α}
7: return M

it can be seen, the complexity of these problems is governed by that of standard
reasoning in the logic. In Section 4 we analyze the complexity of enumerating
MinAs, and in Section 5 we study the complexity of counting MinAs.

3.1. Deciding is-mina

We start by formalizing a result that was already hinted in Section 2.4 re-
garding the problem of deciding whether a given set of axioms is already a
MinA.

Problem: is-mina
Input: A KB K, an axiom ϕ of the same type as K such that K |= ϕ, and
M⊆ K.
Question: Is M a MinA for ϕ in K?

A simple approach for computing one MinA is presented in Algorithm 1. The
algorithm simply tries to remove axioms from the KB while preserving the
consequence. Overall, this algorithm performs |K|+1 entailment tests to output
a MinA [37, 38]. This algorithm can also be used to decide is-mina: M is
a MinA for ϕ in K iff find-mina(M,ϕ) returns M as output. Notice that
Algorithm 1 is agnostic to the type of axioms or the entailment relation used;
it requires only an oracle that decides the entailment tests within the for-loop.
Overall, this yields the following result.

Proposition 3. Consider an arbitrary logic such that deciding a logical conse-
quence is in the complexity class C; then, is-mina is in pC.

A direct consequence of this proposition is that is-mina is polynomial in
all the logics defined in the previous section, except for DL-Litebool where this
approach yields a ∆p

2 upper bound. This last complexity bound can be further
improved. In fact, we show that is-mina is Dp-complete for DL-LiteNbool KBs,
where Dp is the class of problems that can be solved by one np and one conp
test [48]. Notice that Dp contains np and conp, and is contained in ∆p

2.

Theorem 4. is-mina is Dp-complete for DL-LiteNbool KBs.

Proof. To show that the problem is in Dp one only needs to observe that M is
a MinA for φ if (i) M |= φ and (ii) for all N (M, N 6|= φ. The task (i) is in

10

conp [10] while (ii) is equivalent to deciding for a polynomial number of TBoxes
{N1, . . . ,Nn} (where n = |M|) that none of these TBoxes entails φ. This can
be verified by guessing a model for each Ni and verifying in polynomial time
that none of these models satisfies φ. Thus, task (ii) is in np, and is-mina is
hence in Dp.

To prove hardness, we provide a reduction from the is-mus problem, which
is known to be Dp-hard [49]. Given an inconsistent set of propositional clauses
F , a MUS is a minimal subset of F that preserves inconsistency.

Problem: is-mus
Input: An inconsistent set of propositional clauses F , and E ⊆ F .
Question: Is E a MUS for F?

Given an instance of is-mus, construct a DL-Litebool TBox as follows. For each
variable x appearing in F , introduce a concept name Bx, and define the function
ncon mapping literals to concepts as: ncon(x) = ¬Bx; ncon(¬x) = Bx. For a
clause φ = (`1 ∨ . . . ∨ `k), let tφ = A v ¬(ncon(`1) u . . . u ncon(`k)) where A is
a fresh concept name. Given a set of clauses G, then define TG = {tφ | φ ∈ G}.
It is easy to see that TE is a MinA for A v ⊥ in TF iff E is a MUS for F .

We now consider two problems that try to identify the axioms that are
relevant for a consequence. The first problem, called mina-irrelevance, cor-
responds to checking the existence of a MinA that does not contain any of the
given sets of axioms. The second one, called mina-relevance, is its dual prob-
lem, i.e., the problem of checking the existence of a MinA that contains a given
axiom. mina-relevance is of interest in a setting where the knowledge engi-
neer suspects an axiom for being the reason of the unwanted consequence and
wants to verify whether this axiom appears in any of the MinAs. On the other
hand, mina-irrelevance is of interest if one wants to avoid certain combina-
tions of axioms in MinAs. This might be the case, for instance, if the knowledge
engineer has already identified responsible axioms for an unwanted consequence
and she wants to check whether an additional MinA that does not contain these
axioms exist or not.

3.2. The Existence of New MinAs

In this section, we focus on mina-irrelevance, which is formally defined
next.

Problem: mina-irrelevance
Input: A KB K and an axiom ϕ of the same type as K such that K |= ϕ, and a
set K ⊆P(K).
Question: Is there a MinA M for ϕ in K such that S 6⊆ M for every S ∈ K ?

mina-irrelevance refers to the problem of deciding whether there is a MinA
that does not contain any of the sets in K . Intuitively, one can consider K
as a collection of sets of axioms that are already known to be faulty. Hence,

11

any MinA that is a superset of any element of K will give no further informa-
tion about the causes of an erroneous consequence. In order to decide mina-
irrelevance, it does not suffice to remove the axioms that appear in one or
all the sets that form K . There can still be a MinA that has a non-empty
intersection with each element of K , but is not a superset of any of them. The
most direct approach for solving mina-irrelevance is to test for each (min-
imal) hitting set S of K , whether there is a MinA that does not contain any
of the axioms in S.2 However, there can be exponentially many such hitting
sets in the size of K , which means that this simple approach cannot avoid an
exponential execution time in the worst case. We now show that the problem
is in fact np-complete already for core KBs.

Theorem 5. mina-irrelevance is np-complete for core KBs.

Proof. The problem is clearly in np: a nondeterministic algorithm for solving
it first guesses a set M⊆ K, and then tests in polynomial time whether it is a
MinA that does not contain any of the S in K . For showing hardness we give
a reduction from the np-hard path with forbidden pairs problem [50].

Problem: path with forbidden pairs
Input: A graph G = (V, E), two vertices s, t ∈ V and a set F ⊆ E × E .
Question: Is there a simple path P from s to t in G such that for every (e, e′) ∈ F ,
{e, e′} 6⊆ P?3

Let an instance of path with forbidden pairs be given through the graph
G = (V, E), s, t ∈ V and F ⊆ E×E . We use a propositional variable pv for every
v ∈ V , and define the core KB

K := {pv → pw | (v, w) ∈ E}.

Additionally we set ϕ := ps → pt, and define

K := {{pv → pw, pv′ → pw′} | ((v, w), (v′, w′)) ∈ F}.

It is easy to see that K, ϕ, and K form an instance of mina-irrelevance,
and are built in polynomial time. We now prove that there is a MinA M for ϕ
in K not containing any set in K iff there is a simple path in G from s to t not
using any pair of edges appearing in F .
(⇒) Let M be such a MinA, and set PM := {(v, w) | pv → pw ∈ M}. It is
a simple induction argument to show that PM is a path from s to t in G, and
hence contains a simple sub-path. Moreover, as M does not contain any pair
of axioms in K , it follows that for every pair of edges (e, e′) ∈ F , {e, e′} /∈ PM.

2Given a collection of sets K , a hitting set for K is a set S that satisfies S ∩ K 6= ∅ for
every K ∈ K .

3The original description of the path with forbidden pairs problem uses pairs of vertices,
rather than pairs of edges, as forbidden elements [51]. However, the variant presented here
has also been shown to be np-hard [50].

12

(⇐) Let P be a path avoiding the forbidden pairs, and define the set of axioms
MP := {pv → pw | (v, w) ∈ P}. By construction, MP |= ps → pt. Thus, MP

contains a MinA for ϕ. Moreover, if there is {pv → pw, pv′ → pw′} ∈ K such
that {pv → pw, pv′ → pw′} ⊆ MP , then it follows that {(v, w), (v′, w′)} ⊆ P ,
which is a contradiction, since ((v, w), (v′, w′)) ∈ F .

Recall that core KBs are special cases of all the other kinds of K that we
have introduced. This yields the following corollary.

Corollary 6. For all kinds of KBs introduced in Section 2, mina-irrelevance
is np-hard. Moreover, for all of them, except for DL-Litebool, the problem is
np-complete.

Proof. np-hardness was shown in Theorem 5. For proving that the problem is in
np, we use the same argument as in the proof of that theorem: a nondetermin-
istic algorithm for solving it first guesses a setM⊆ K, then tests in polynomial
time whether it is a MinA that does not contain any of the S in K .

Notice that the “in np” argument used in this corollary does not hold for
DL-Litebool KBs since testing whether a consequence follows from a DL-Litebool
KB is already np-hard [10]. Thus, the argument from the proof yields a Σp

2

algorithm for deciding mina-irrelevance in this logic.

3.3. The Case of mina-relevance

We now consider the dual problem of mina-irrelevance, which corre-
sponds to checking the existence of a MinA that contains a given axiom.

Problem: mina-relevance
Input: A KB K and an axiom ϕ of the same type as K such that K |= ϕ, and
an axiom ψ ∈ K.
Question: Is there a MinA M for ϕ in K such that ψ ∈M?

If we identify a specific axiom ψ as a possible culprit for an erroneous conse-
quence ϕ from a KB, mina-relevance would allow us to decide whether ψ
indeed appears in at least one MinA, and hence influences the deduction of the
consequence ϕ from the KB. We now show that this problem is np-complete
already for core KBs.

Theorem 7. mina-relevance is np-complete for core KBs.

Proof. The problem is clearly in np: a nondeterministic algorithm for solving
it first guesses a subset of K, and then tests in polynomial time whether it is
a MinA containing ψ. For showing hardness we provide a reduction from the
following np-complete problem [52]:

Problem: path-via-node
Input: A directed graph G = (V, E) and three vertices s, t,m ∈ V
Question: Is there a simple path from s to t in G that passes through m?

13

Let G, s, t,m be an instance of path-via-node. We build an instance of mina-
relevance as follows. We introduce a propositional variable pv for every node
v ∈ (V \ {m}) ∪ {m1,m2}, build the KB

K := {pv → pw | (v, w) ∈ E , v, w 6= m} ∪
{pv → pm1 | (v,m) ∈ E , v 6= m} ∪ {pm2 → pv | (m, v) ∈ E , v 6= m} ∪
{pm1 → pm2},

and set ϕ := ps → pt, ψ := pm1
→ pm2

. We now show that there is a MinA
for ϕ in K containing ψ iff there is a simple path in G from s to t that crosses
through m.
(⇒) Let M be a MinA for ϕ containing ψ. Construct the path

PM := {(v, w) | pv → pw ∈M, v, w ∈ V } ∪
{(v,m) | pv → pm1

∈M, v ∈ V } ∪ {(m, v) | pm2
→ pv ∈M, v ∈ V }.

SinceM |= ϕ, it follows that PM contains a simple path P from s to t. Suppose
that P 6= PM; that is, there is an edge (v, w) in PM that does not appear in
P . As P is a path from s to t, this implies that M \ {pv → pw} |= ϕ, which
contradicts the assumption thatM is a MinA for ϕ. Thus, PM is a simple path
from s to t. Moreover, as M contains the axiom ψ, there must be an edge in
PM of the form (v,m) or (m, v). This implies that PM passes through m.
(⇐) Assume that there is such a simple path P . We construct the sub-KBs

MP := {pv → pw | (v, w) ∈ P, v, w 6= m} ∪
{pv → pm1

| (v,m) ∈ P} ∪ {pm2
→ pv | (m, v) ∈ P},

and M :=MP ∪ ψ. As P is a path from s to t crossing through m, it follows
that MP |= ps → pm1

and MP |= pm2
→ pt, and hence M |= ϕ. Since P is a

simple path, MP 6|= ϕ. This in particular means that every MinA for ϕ in M
must contain ψ.

As was the case for mina-irrelevance, hardness of the core case implies
hardness for all the other types of KBs we are interested in.

Corollary 8. For all kinds of KBs introduced in Section 2, mina-relevance
is np-hard. Moreover, for all of them, except for DL-Litebool, the problem is
np-complete.

Proof. np-hardness is a consequence of Theorem 7. For proving that the prob-
lem is in np, we use the same argument as in the proof of that theorem: a
nondeterministic algorithm for solving it first guesses a set M ⊆ K, then tests
in polynomial time whether it is a MinA containing ψ.

Once again, the algorithm proposed in the proof of this corollary yields a
Σp

2 upper bound for the case of DL-Litebool KBs. A matching lower bound for
this logic can be obtained through a reduction from the Σp

2-complete problem
mus-membership [53].

14

Problem: mus-membership
Input: An inconsistent set of propositional clauses F and a clause φ ∈ F .
Question: Is there a MUS M for F such that φ ∈M?

Theorem 9. mina-relevance is Σp
2-complete for DL-LiteNbool KBs

Proof. The upper bound was argued before. To show hardness, let F , φ be
an instance of mus-membership, and TF , tφ be constructed as in the proof of
Theorem 4. Then, there is a MinA for A v ⊥ in TF that contains tφ iff there is
a MUS for F that contains φ.

We now change our attention to the problem of computing all the MinAs
for a given consequence, and analyse the complexity of enumerating them with
or without a specific ordering.

4. Complexity of Enumerating All MinAs

In the previous section, we considered three decision problems related to
the computation of one MinA satisfying some additional properties. To fully
understand the axioms responsible for a consequence, however, it is important
to find all possible MinAs. The main problem we consider in this section is
thus, given a KB K and a consequence ϕ of K, to compute all MinAs for ϕ in
K. This MinA enumeration problem is formally defined as follows.

Problem: mina-enum
Input: A KB K and an axiom ϕ of the same type as K such that K |= ϕ.
Output: The set of all MinAs for ϕ in K.

Note that for core KBs, which, as we have shown in the previous section, are
essentially directed graphs, a MinA is a simple path between two given vertices,
and enumerating all MinAs corresponds to enumerating all simple paths between
two given vertices, which can easily be done with polynomial delay [54]. How-
ever, the situation is not so clear for Horn or other more expressive types of KBs.
To the best of our knowledge, only [55] considers a problem related to ours on
directed hypergraphs, but it is not exactly the one considered here. We analyse
first the case where the MinAs can be enumerated in any arbitrary order, and
then see how the complexity is affected if a specific ordering is required, by con-
sidering lexicographic and cardinality orderings. These enumeration complexity
results are summarized in Table 3.

The negative results stating that MinAs cannot be enumerated in incremen-
tal polynomial or in output polynomial time are obtained by showing hardness
of some associated decision problems. Most notably, inability to enumerate all
MinAs without order in output polynomial time arises from the hardness of the
problem all-minas, which decides whether a given set of KBs is exactly the
set of all MinAs for a given consequence (see Proposition 25). We also check
whether a set of axioms is the smallest or largest MinA (w.r.t. their cardinal-
ity), or the first or last w.r.t. a lexicographic order. The complexity of these

15

Table 3: Complexity of enumerating all MinAs. pd stands for polynomial delay, op for output
polynomial (but not incremental polynomial), and nip for not incremental polynomial.

lexicographic size
type unordered forward backward increasing decreasing

core, DL-Lite
[N]
[core|krom] pd [Cor. 24] op [Cor. 33] pd [Thm. 35] pd [Thm. 40] op [Cor. 37]

Horn, DL-Lite
[N]
horn pd [Thm. 17] op [Cor. 33] pd [Thm. 35] op [Prop. 38] op [Cor. 37]

dual-Horn te-h [Cor. 27] nip [Cor. 33] te-h [Cor. 27] te-h [Cor. 27] nip [Cor. 37]

(Horn-)EL, DL-Lite
[N]
bool not ouput polynomial [Cors. 29, 31]

Table 4: Complexity of decision problems associated with enumeration.

type all-minas first-mina last-mina largest-mina smallest-mina

core, DL-Lite
[N]
[core|krom] p [Prop. 25] conp-c [Thm. 32] p np-c [Thm. 36] p [Thm. 39]

Horn, DL-Lite
[N]
horn p [Prop. 25] conp-c [Thm. 32] p np-c [Thm. 36] np-c [37]

dual-Horn th-h [Thm. 26] conp-c [Thm. 32] p np-c [Thm. 36] p

Horn-EL, EL conp-c [Thm. 28] conp-c [Thm. 32] p np-c [Thm. 36] np-c [37]

DL-Lite
[N]
bool Dp-h [Lem. 30] Dp-h [Thm. 34] Dp-c Dp-h Σp

2-c [Thm. 41]

decision problems, which are also of interest on their own, is summarized in
Table 4. In the table, results lacking a reference to where they can be found are
consequences of previous results, and explained in the text.

4.1. Enumeration without a Specific Order

We first consider the DL-LiteNhorn setting, and show that for this kind of
KBs MinAs can be efficiently enumerated through a polynomial delay algorithm.
To achieve this goal, we start by constructing for every DL-LiteNhorn TBox T
a propositional Horn KB GT as follows: for every basic concept B create a
propositional variable pB ; for every axiom

dn
i=1Bi v B add the Horn clause∧n

i=1 pBi
→ pB ; and for each pair of number restrictions ≥ q1r,≥ q2r with

q1 > q2 appearing in T , add the Horn clause p≥q1r → p≥q2r. We will call these
latter clauses implicit axioms. For simplicity, in the following we will assume
that ⊥ does not appear in T . For handling the case where ⊥ appears in T , one
only needs to add the implicit axiom p⊥ → pC to GT whenever we are interested
in deciding a subsumption of the form

dn
i=1Ai v C

It is not difficult to see that T |=
dn
i=1Ai v C iff GT |=

∧n
i=1 pAi

→ pC .
Furthermore, every MinA M in GT gives rise to a MinA in T consisting of all
axioms representing non implicit axioms inM. However, different MinAs in GT
can give rise to the same MinA in T , as shown in the following example.

Example 10. Let T = {A v ≥ 2r,A v ≥ 3r,≥ 1r v B}. Using the construc-
tion described above, we obtain

GT = {pA → p≥2r, pA → p≥3r, p≥1r → pB ,

p≥3r → p≥1r, p≥3r → p≥2r, p≥2r → p≥1r},

16

where the implicit axioms are those appearing in the second row. It is easy to see
that there are two MinAs for A v B in T , namely {A v ≥ 3r,≥ 1r v B} and
{A v ≥ 2r,≥ 1r v B}. However, GT contains three MinAs for pA → pB . The
reason for this superfluous MinA is that the implicit subsumption ≥ 3r v ≥ 1r
is represented twice in GT : one through the direct edge p≥3r → p≥1r, and
another with a path travelling along p≥2r. This yields two different MinAs in
GT for the MinA {A v ≥ 3r,≥ 1r v B} in T .

As this example shows, the transformation to Horn clauses may introduce
some artificial MinAs in the constructed Horn KB GT that must not be con-
fused with MinAs of the original KB T . To solve this problem, we choose a
representative for all the MinAs in GT that correspond to the same MinA in T .
We define this representative with the help of a lexicographic ordering.

Definition 11 (Lexicographic Order). Let the elements of a set S be linearly
ordered. This order induces a linear strict order on P(S), called the lexico-
graphic order, as follows. A set R ⊆ S is lexicographically smaller than a set
T ⊆ S if R = T or the first element at which they disagree is in R.

For example, if S = {x, y, z} with x < y < z, then {x, y} is lexicographically
smaller than {x, z}, which is itself lexicographically smaller than {y}. Consider
now an arbitrary but fixed total ordering on the set of implicit axioms IT
appearing in GT . When two or more MinAs in GT agree on all non-implicit
axioms, then we choose only that one that is the lexicographically largest. This
is what we call an immediate MinA.

Definition 12 (Immediate MinA). Let T be a DL-LiteNhorn TBox and IT be
the set of implicit axioms obtained from T using the construction described
above. A MinA M in GT is called immediate if for every J ⊆ IT the following
holds: if (M \ IT) ∪ J is a MinA in GT , then J is lexicographically smaller
than M∩ IT .

For the TBox T from Example 10, suppose that the implicit axioms are
ordered as follows:

p≥2r → p≥1r < p≥3r → p≥1r < p≥3r → p≥2r.

The MinA M = {pA → p≥3r, p≥3r → p≥2r, p≥2r → p≥1r, p≥1r → pB} is not
immediate, since the set of implicit axioms J = {p≥3r → p≥1r} is lexicograph-
ically larger than M∩ IT = {p≥3r → p≥2r, p≥2r → p≥1r} according to this
ordering, and (M\ IT) ∪ J = {pA → p≥3r, p≥3r → p≥1r, p≥1r → pB} is also
a MinA.

In fact, there exists a bijection between MinAs for
dn
i=1Ai v C in T and

immediate MinAs for
∧n
i=1 pAi → pC in GT : from an immediate MinA in GT

we obtain a MinA in T by removing all implicit axioms; dually, from a MinA
in T we can build an immediate MinA in GT by adding the lexicographically
largest set of implicit axioms that forms a MinA. Thus, if we can enumerate
all immediate MinAs in GT in output polynomial time, we will also be able to

17

enumerate all MinAs in T within the same complexity bound. We now show
how to compute all immediate MinAs using the notion of a valid ordering on
the axioms in a Horn KB.

Definition 13 (Valid Ordering). Let T be a propositional Horn KB. Given a
Horn axiom φ =

∧n
i=1 ai → b, we denote the left-handside (lhs) of φ with T(φ),

and its right-handside (rhs) with h(φ), i.e., T(φ) := {a1, . . . , an} and h(φ) := b.
With h−1(b) we denote the set of axioms in T whose rhs are b.

LetM = {t1, . . . , tm} be a MinA for
∧
a∈A a→ c. An ordering t1 < . . . < tm

is valid on M if for every 1 ≤ i ≤ m, T(ti) ⊆ A ∪ {h(t1), . . . , h(ti−1)} holds.4

Intuitively, a valid ordering describes the steps that need to be made to
deduce the atom b from the set of atoms A using only the clauses in the MinA.
It is easy to see that for every immediate MinA there is always at least one such
valid ordering. In the following, we use this fact to construct a set of sub-KBs
that contain all and only the remaining immediate MinAs. Our approach is
based on the ideas originally presented in [56].

Definition 14 (Ti). Let M be an immediate MinA in GT with |M| = m, and
< be a valid ordering on M. For each 1 ≤ i ≤ m we obtain a KB Ti from
GT as follows: if ti is an implicit axiom, then Ti = ∅; otherwise, (i) for each j
s.t. i < j ≤ m and tj is not an implicit axiom, remove all axioms in h−1(h(tj))
except for tj , i.e., remove all axioms with the same rhs as tj except for tj itself,
(ii) remove ti, and (iii) add all implicit axioms.

Example 15. Consider again the KBs T and GT from Example 10, where the
implicit axioms IT are ordered as

p≥2r → p≥1r < p≥3r → p≥1r < p≥3r → p≥2r.

Then, M = {pA → p≥3r, p≥3r → p≥1r, p≥1r → pB} is an immediate MinA
with three elements. The only possible valid ordering for this MinA is

t1 := pA → p≥3r, t2 := p≥3r → p≥1r, t3 := p≥1r → pB .

Notice that t2 is in fact an implicit axiom. Thus, the construction from Defini-
tion 14 yields the three Horn KBs

T1 := {pA → p≥2r, p≥1r → pB} ∪ IT
T2 := ∅
T3 := {pA → p≥2r, pA → p≥3r} ∪ IT .

The näıve method for computing one MinA sketched in Section 2.4 (see
Algorithm 1) can be easily adapted to the computation of an immediate MinA
in polynomial time by specifying an ordering in which the axioms are selected

4That is, each variable on the lhs of ti is in A, or it is the rhs of a previous axiom.

18

for the execution of the for-loop: first considering all non-implicit axioms, and
afterwards the IT , i.e. the implicit axioms, according to the fixed ordering.
By first testing all non-implicit axioms, one minimizes the set of axioms of this
kind that will remain in the computed MinA. At that point, one needs only to
remove the superfluous implicit axioms to reach a MinA. Analyzing these axioms
in order guarantees that the set of implicit axioms kept is the lexicographically
largest such set. Hence, the computation yields an immediate MinA.

Once that we have found an immediate MinA, Definition 14 introduces a
class of sub-KBs Ti, 1 ≤ i ≤ m of GT . We show that this class induces a
partition on the set of all other MinAs in GT .

Lemma 16. Let M be an immediate MinA for φ in T , and let T1, . . . , Tm be
constructed from T and M as in Definition 14. Then, for every immediate
MinA N for φ in T , if N 6= M, then there exists exactly one i, 1 ≤ i ≤ m,
such that N is a MinA for φ in Ti.

Proof. Let t1 < . . . < tm be a valid ordering onM, and N an immediate MinA
for φ in T such that N 6= M. Then, M\ N 6= ∅. Let tk be the largest non-
implicit axiom in M \ N w.r.t. the valid ordering <. We show that N ⊆ Tk
and N 6⊆ Ti for all i 6= k, 1 ≤ i ≤ m.

Assume first that there is an axiom t ∈ N s.t. t 6∈ Tk. Since Tk contains
all implicit axioms, t should be one of the non-implicit axioms removed from
T either in step (i) or in step (ii) of Definition 14. If it was in step (ii), then
t = tk, but by construction, tk ∈ M \ N and hence t = tk /∈ N , which is a
contradiction. Thus, it should have been removed by step (i). This implies that
there exists a j, k < j ≤ m, such that tj satisfies h(t) = h(tj). Recall that we
chose k to be the largest axiom in M \ N w.r.t. the valid ordering < on M.
Then this tj should be in N . But then N contains two axioms with the rhs h(t),
which contradicts the fact that N is a MinA, and thus it is minimal. Hence,
N ⊆ Tk.

Now take an i s.t. i 6= k. If i > k, then ti ∈ N but ti /∈ Ti, and hence N 6⊆ Ti.
If i < k, then there is an axiom t ∈ N such that h(t) = h(tk) since otherwiseM
and N would not be MinAs. By construction, t /∈ Ti, hence N 6⊆ Ti.

Returning to Example 15, the only remaining immediate MinA for pA → pB
is contained in T3. Lemma 16 provides a strategy for computing all the remain-
ing MinAs, starting from a known one, in the DL-LiteNhorn setting. Algorithm 2
describes how we can use this lemma to enumerate all MinAs in a DL-LiteNhorn
TBox T by enumerating all immediate MinAs in GT .

Theorem 17. Algorithm 2 solves mina-enum for DL-LiteNhorn TBoxes with
polynomial delay.

Proof. The algorithm terminates since T is finite. It is sound since its outputs
are all MinAs for φ in T . By Lemma 16, every MinA that has not been com-
puted is contained in exactly one of the KBs Ti constructed, and will hence be
computed in the recursive call using Ti as input. This implies that the algorithm
is complete.

19

Algorithm 2 Enumerating all MinAs for DL-LiteNhorn TBoxes

Procedure all-MinAs(T ,φ) (T DL-LiteNhorn TBox, φ axiom s.t. T |= φ)

1: if T 6|= φ then return
2: else
3: M← an immediate MinA in GT
4: I ← {t ∈M | t is an implicit axiom}
5: output M\ I
6: for 1 ≤ i ≤ |M| do
7: compute Ti from M as in Definition 14
8: all-MinAs(Ti \ I,φ)

We now analyse the time required to output each successive answer. Every
time the procedure all-MinAs is called, it either concludes that the conse-
quence does not follow from the KB (in polynomial time) and stops, or com-
putes one immediate MinA, also in polynomial time. In the latter case, it makes
linearly many recursive calls to all-MinAs via the sub-KBs Ti. By Lemma 16,
any other immediate MinA appears in exactly one of these Tis. Thus, after
linearly many calls, the algorithm either finds out that no more MinAs exist,
or outputs a new MinA. More precisely, in each recursive call of the algorithm
there is one consequence check (line 1), and one MinA computation (line 3).
The consequence check can be done in polynomial time [10]. One MinA is com-
puted in polynomial time using Algorithm 1. Thus the algorithm spends at
most polynomial time between each output, i.e., it is polynomial delay.

This theorem shows that MinAs can be enumerated in polynomial delay for
several classes of KBs considered in this paper.

Corollary 18. All MinAs can be enumerated with polynomial delay for core,
Horn, DL-Litehorn and DL-LiteNhorn KBs.

However, this corollary does not apply to DL-Litecore and DL-Litekrom
KBs. The main reason for this is the presence of negation in the axioms. We
will adapt the previous reduction to Horn KBs by abstracting away from the
negations and considering each concept ¬B as atomic. However, this requires
some technical modifications in the construction of the Horn KB. Observe first
that the axiom B1 v ¬B2 is in fact equivalent to B2 v ¬B1. In addition,
notice that a subsumption B1 v B2 may follow from B1 being unsatisfiable
(i.e., BI1 = ∅ for all models of the KB), which is the case iff K |= B1 v ¬B1.

Given a DL-LiteNkrom TBox T , we construct a core KB as follows: for every
basic concept B create two propositional variables pB and p¬B ; for every axiom
t ∈ T define a pair of core clauses Ct as follows:

CB1vB2 := {pB1 → pB2 , p¬B2 → p¬B1},
CB1v¬B2 := {pB1 → p¬B2 , pB2 → p¬B1}, and

C¬B1vB2 := {p¬B1 → pB2 , p¬B2 → pB1};

20

and for each pair of number restrictions ≥ q1r,≥ q2r with q1 > q2 appearing in
T , define the pair Cq1,q2 := {p≥q1r → p≥q2r, p≥¬q2r → p≥¬q1r}. As before, the
latter clauses are called implicit, and IT denotes the set of all implicit axioms.
Given a DL-LiteNkrom axiom φ = B1 v B2, define the core KBs

HφT :=
⋃
t∈T
Ct ∪ IT ∪ {pB2

→ p¬B1
}.

One can see that T |= φ iff HφT |= pB1
→ p¬B1

. However, contrary to the case of

DL-LiteNhorn TBoxes, the MinAs in HφT do not necessarily correspond to MinAs
in T .

Example 19. Let T = {A v B1, A v B2, B1 v C,B2 v C,C v ¬C} and
φ = A v D. Using the previous construction, we obtain

HφT = {pA → pB1
, pA → pB2

, pB1
→ pC , pB2

→ pC , pC → p¬C

p¬B1
→ p¬A, p¬B2

→ p¬A, p¬C → p¬B1
, p¬C → p¬B2

, pD → p¬A}.

Clearly, M = {pA → pB1
, pB1

→ pC , pC → p¬C , p¬C → p¬B2
, p¬B2

→ p¬A} is

a MinA for pA → p¬A in HφT . However, this set represents all the axioms in T
and thus, contains superfluous axioms for the consequence.

In order to avoid this behaviour, we consider a different kind of MinA, in
which the two clauses corresponding to the same axiom are always required to
appear together.

Definition 20 (Paired MinA). Consider a DL-LiteNkrom TBox T and an axiom

φ = B1 v B2. We call a subsetM⊆ HφT a dualized set if for every t ∈ T either
(i) Ct ⊆ M, or (ii) Ct ∩M = ∅ holds. The dualized set M is a paired MinA if
M |= pB1

→ p¬B1
and for every t ∈ T , if Ct ⊆M, then M\ Ct 6|= pB1

→ p¬B1
.

Notice that a paired MinA is not a MinA in the strict sense since it is not
necessarily minimal. For instance for the TBox in Example 19 and φ = A v B1,
{pA → pB1

, p¬B1
→ p¬A, pB1

→ p¬A} is a paired MinA, even though the second
axiom is superfluous for the consequence. However, every paired MinA M in
HφT corresponds to a MinA in T , defined by the set of axioms t such that
Ct ⊆ M. To improve readability, in the following we will often disregard the
implicit axioms in HφT . They can be treated analogously as in the DL-LiteNhorn
case, by fixing an ordering on them and considering only the lexicographically
largest subset of IT needed.

One paired MinA can be computed in polynomial time through a slight
variant of Algorithm 1. To ensure that the resulting set of axioms is paired, the
for loop is changed to try to remove a set Ct in a single iteration, rather than
one axiom at a time. As before, we will use one paired MinA to build a set of
sub-KBs that partitions the class of all remaining paired MinAs in HφT . Given
a paired MinAM, it is always possible to choose a representative α of each Cα,
where α can either be a t ∈ T or denote an implicit axiom, and order these

21

representatives as t1 < . . . < tm such that T(t1) = pB1 and for all i, 1 < i ≤ m
T(ti) = h(ti−1). Abusing the terminology, we will call this a valid ordering. The
construction of the KBs Ti is very similar to Definition 14, but considering this
new notion of valid ordering, and the axiom derived from φ.

Definition 21 (Ti). LetM be a paired MinA in HφT and < be a valid ordering

on M of length m. For each 1 ≤ i ≤ m we obtain a KB Ti from HφT as follows:
if ti is an implicit axiom or pB2

→ p¬B1
, then Ti = ∅; otherwise, (i) for each j

s.t. i < j ≤ m and tj is not an implicit axiom or pB2
→ p¬B1

, remove all axioms
in h−1(h(tj)) except for tj , i.e., remove all axioms with the same rhs as tj except
for tj itself, (ii) remove ti, and (iii) add all implicit axioms and pB2 → p¬B1 .

Example 22. Consider again the KBs T and HφT from Example 19. Then
M = {pA → pB1

, pB1
→ pC , pC → p¬C , p¬C → p¬B1

, p¬B1
→ p¬A} is a paired

MinA, where the last two elements are the duals for the first two. The only
possible valid ordering for this paired MinA is

pA → pB1
< pB1

→ pC < pC → p¬C .

The construction from Definition 21 yields the following three KBs:

T1 = {pA → pB2
, pB1

→ pC , pC → p¬C

p¬B1
→ p¬A, p¬B2

→ p¬A, p¬C → p¬B1
, p¬C → p¬B2

, pD → p¬A},
T2 = {pA → pB1

, pA → pB2
, pB2

→ pC , pC → p¬C

p¬B1
→ p¬A, p¬B2

→ p¬A, p¬C → p¬B1
, p¬C → p¬B2

, pD → p¬A},
T3 = {pA → pB1

, pA → pB2
, pB1

→ pC , pB2
→ pC ,

p¬B1
→ p¬A, p¬B2

→ p¬A, p¬C → p¬B1
, p¬C → p¬B2

, pD → p¬A}.

The proof of the following lemma is very similar to that of Lemma 16.

Lemma 23. LetM be a paired MinA for pB2
→ p¬B1

in HφT , and let T1, . . . , Tm
be constructed from HφT and M as in Definition 21. Then, for every paired

MinA N for pB2
→ p¬B1

in HφT , if N 6=M, then there exists exactly one i,
1 ≤ i ≤ m, such that N is a paired MinA for pB2 → p¬B1 in Ti.

Proof. Let t1 < . . . < tm be a valid ordering on M, and N a paired MinA for
pB2
→ p¬B1

in HφT such that N 6=M. Then, M\N 6= ∅. Let tk be the largest
non-implicit axiom inM\N w.r.t. the valid ordering <. We show that N ⊆ Tk
and N 6⊆ Ti for all i 6= k, 1 ≤ i ≤ m.

Assume first that there is an axiom t ∈ N s.t. t 6∈ Tk. Since Tk contains
all implicit axioms, t should be one of the non-implicit axioms removed from
T either in step (i) or in step (ii) of Definition 21. If it was in step (ii), then
t = tk, but by construction, tk ∈ M \ N and hence t = tk /∈ N , which is a
contradiction. Thus, it should have been removed by step (i). This implies that
there exists a j, k < j ≤ m, such that tj satisfies h(t) = h(tj). Recall that we
chose k to be the largest axiom in M \ N w.r.t. the valid ordering < on M.

22

Then this tj should be in N . But then N contains two different axioms with
the rhs h(t). These two axioms cannot belong to the same set Cα. But then,
N cannot be a paired MinA, as it contradicts the minimality criterion. Hence,
N ⊆ Tk.

Now take an i s.t. i 6= k. If i > k, then ti ∈ N but ti /∈ Ti, and hence
N 6⊆ Ti. If i < k, then there is an axiom t ∈ N such that h(t) = h(tk) since
otherwiseM and N would not be paired MinAs. By construction, t /∈ Ti, hence
N 6⊆ Ti.

Using this result, and Algorithm 2 it follows directly that all the paired
MinAs in HφT can be enumerated with polynomial delay. In particular, this
means that MinAs for DL-LiteNkrom and DL-LiteNcore KBs are also polynomial
delay enumerable.

Corollary 24. All MinAs can be enumerated with polynomial delay for KBs in
DL-Litecore, DL-LiteNcore, DL-Litekrom and DL-LiteNkrom.

We now consider mina-enum for dual-Horn KBs. For this, we first inves-
tigate the following decision problem which is closely related to mina-enum.
As we will see, determining its complexity is important for determining the
complexity of mina-enum.

Problem: all-minas
Input: A KB K and an axiom ϕ of the same type as K such that K |= ϕ, and a
set of KBs K ⊆P(K).
Question: Is K precisely the set of all MinAs for ϕ in K?

As Proposition 25 below shows, if all-minas cannot be decided in polyno-
mial time, then mina-enum cannot be solved in output polynomial time. The
proof of this fact is based on a generic argument, which can also be found in
Theorem 4.5 of [57], but for the sake of completeness and clarity we present it
here once more.

Proposition 25. If all-minas cannot be decided in polynomial time, then
unless p = np, mina-enum cannot be solved in output-polynomial time.

Proof. Assume we have an algorithm A that solves mina-enum in output-
polynomial time. Let its runtime be bounded by a polynomial p(IS,OS) where
IS denotes the size of the input KB and OS denotes the size of the output, i.e.,
the set of all MinAs.

In order to decide all-minas for an instance given by K, ϕ, and K ⊆P(K),
we construct another algorithm A′ that works as follows: it runs A on K and
ϕ for at most p(|K|, |K |)-many steps. If A terminates within this many steps,
then A′ compares the output of A with K and returns yes if and only if they
are equal. If they are not equal, A′ returns no. If A has not yet terminated
after p(|K|, |K |)-many steps, this implies that there is at least one MinA that
is not contained in K , so A′ returns no. It is easy to see that the runtime of
A′ is bounded by a polynomial in |K| and |K |, that is A′ decides all-minas in
polynomial time.

23

This proposition shows that the complexity of all-minas is indeed closely
related to the complexity of mina-enum. We now present some hardness results
for enumerating MinAs when other types of KBs different from DL-Litehorn or
DL-Litekrom are used. It is not difficult to see that, for all types of axioms
considered in this paper except for the DL-Litebool family, all-minas is in
conp: given an instance of all-minas, a nondeterministic algorithm can guess
a subset of K that is not in K , and in polynomial time verify that this is a
MinA, thus proving that K is not the set of all MinAs. In the following we
show that for dual-Horn KBs all-minas is at least as hard as recognizing the
set of all minimal transversals of a given hypergraph. Whether the problem
is conp-hard remains unfortunately open. We later show that all-minas is
conp-complete if Horn-EL axioms are considered and Dp-hard for DL-Litebool
TBoxes.

First we briefly recall some basic notions on hypergraphs. A hypergraph
H = (V, E) consists of a set of vertices V = {vi | 1 ≤ i ≤ n}, and a set of
(hyper)edges E = {Ej | 1 ≤ j ≤ m} where Ej ⊆ V . We assume w.l.o.g. that the
set of edges as well as the set of vertices is nonempty, and the union of all edges
yields the vertex set. A set W ⊆ V is called a transversal of H if it intersects
all edges of H, i.e., ∀E ∈ E . E ∩W 6= ∅. A transversal is called minimal if
no proper subset of it is a transversal. The set of all minimal transversals of
H constitutes another hypergraph on V called the transversal hypergraph of
H, which is denoted by Tr(H). Generating Tr(H) is an important problem
which has applications in many fields of computer science [58]. The well-known
decision problem associated to this computation problem is defined as follows:

Problem: transversal hypergraph (trans-hyp)
Input: Two hypergraphs H = (V, EH) and G = (V, EG).
Question: Is G the transversal hypergraph of H, i.e., does Tr(H) = G hold?

trans-hyp is known to be in conp, but its lower bound is a prominent open
problem. More precisely, so far neither a polynomial time algorithm has been
found, nor has it been proved to be conp-hard. In a landmark paper [59] Fred-
man and Khachiyan proved that trans-hyp can be solved in no(log n) time,
which implies that this problem is most likely not conp-hard. More recently,
Gottlob and Malizia have further improved this upper bound [60]. It is con-
jectured that this problem, together with several computationally equivalent
problems, forms a class properly contained between p and conp [59].

Theorem 26. all-minas is trans-hyp-hard for dual-Horn KBs.

Proof. Let an instance of trans-hyp be given by the hypergraphs H = (V, EH)
and G = (V, EG). From H and G we construct an instance of all-minas as
follows: for every vertex v ∈ V we introduce a propositional variable pv, for every
edge E ∈ EH a propositional variable pE , and finally one additional propositional
variable a. For constructing a dual-Horn KB from H and a set of vertices
W ⊆ V , we define the following operator, which is also going to be used in later

24

proofs:

KW,H := {pv →
∧

v∈E,E∈EH

pE | v ∈W} ∪ {a→
∧
v∈V

pv}.

Using these sets, we can then construct the KB K := KV,H, a set of KBs
K := {KE,H | E ∈ EG} ⊆ P(K), and the axiom ϕ := a →

∧
E∈EH pE that

follows from K. Obviously this construction creates an instance of all-minas
for dual-Horn KBs and it can be done in time polynomial in the sizes of H and
G.

We claim that G is the transversal hypergraph of H if and only if K is
precisely the set of all MinAs for ϕ in K. Note that a →

∧
v∈V pv is the only

axiom in K such that a appears on the lhs, which implies that every MinA must
contain this axiom. Hence, every MinA is of the form KW,H for some W ⊆ V .
To prove our claim, it suffices to show that a set of vertices W ⊆ V is a minimal
transversal of H if and only if the set of axioms KW,H is a MinA.
(⇒) Assume that W is a minimal transversal of H. By definition W satisfies
W ∩ E 6= ∅ for every E ∈ EH . This implies that KW,H |= ϕ holds. Moreover,
KW,H is minimal since W is minimal, i.e., KW,H is a MinA.
(⇐) Now assume that KW,H is a MinA. Then every pE where E ∈ EH appears
on the rhs of at least one of the axioms in KW,H. This implies that W intersects
every E, i.e., it is a transversal of H. Moreover it is minimal since KW,H is
minimal.

A direct consequence of this theorem is that the enumeration of all MinAs
in a dual-Horn KB is at least as hard as the enumeration of the transversals of
a hypergraph.5

Corollary 27. mina-enum for dual-Horn KBs is at least as hard as enumer-
ating hypergraph transversals.

Up to now we have investigated the complexity of mina-enum for the propo-
sitional and the simple DL-Lite cases. In particular, we have presented a poly-
nomial delay algorithm for enumerating all MinAs in a Horn KB. However,
whether such an algorithm exists for dual-Horn KBs remained open. We now
turn our attention to EL KBs, and show that there is no output polynomial
algorithm that enumerates all MinAs in a Horn-EL KB, unless p = np. As a
first step to this result, we show that all-minas is intractable for Horn-EL KBs.

Theorem 28. all-minas is conp-complete for Horn-EL and EL TBoxes.

Proof. We have already shown that it is in conp for EL TBoxes. It then suffices
to show conp-hardness for Horn-EL. We present a reduction from the following
conp-hard problem [37, 61].

5mina-enum is likely harder than trans-enum, although this claim has not yet been proven.

25

Problem: all-mv
Input: A monotone Boolean formula φ and a set V of minimal valuations sat-
isfying φ.
Question: Is V precisely the set of all minimal valuations satisfying φ?

Let φ,V be an instance of all-mv; we denote as sub(φ) the set of all subformulas
of φ, and define csub(φ) := sub(φ) \ {p ∈ sub(φ) | p is a propositional variable}.
We introduce three concept names Bψ, Cψ, Dψ, and two role names rψ, sψ for
every subformula ψ of φ and two additional concept names A and E. For each
ψ ∈ sub(φ) we define a TBox Tψ as follows: if ψ is the propositional variable p,
then Tψ := {A v Bp}; if ψ = ψ1 ∧ ψ2, then

Tψ := {A v ∃rψ.Cψ, Cψ v Bψ1
, Cψ v Bψ2

, ∃rψ.Bψ v Dψ, Bψ1
uBψ2

v Bψ},

and if ψ = ψ1 ∨ ψ2, then

Tψ := {A v ∃rψ.Bψ1 , A v ∃sψ.Bψ2 ,

∃rψ.Bψ u ∃sψ.Bψ v Dψ, Bψ1 v Bψ, Bψ2 v Bψ}.

Finally, we set

T :=
⋃

ψ∈sub(φ)

Tψ ∪ {
l

ψ∈csub(φ)

Dψ uBφ v E}.

Notice that for every T ′ ⊆ T , if T ′ |= A v E, then also A v Dψ for every
ψ ∈ csub(φ). But in order to have A v Dψ, all the axioms in Tψ are necessary,
and thus Tψ ⊆ T ′. In particular, if ψ = ψ1 ∧ ψ2, then Bψ1 u Bψ2 v Bψ ∈ T ′,
and if ψ = ψ1 ∨ ψ2, then {Bψ1

v Bψ, Bψ2
v Bψ} ⊆ T ′. Thus, a valuation V

satisfies φ iff the KB

TV := {A v Bp | p ∈ V} ∪
⋃

ψ∈csub(φ)

Tψ ∪ {
l

ψ∈csub(φ)

Dψ uBφ v E}

entails A v E. This in particular shows that V is the set of all minimal
valuations satisfying φ iff {TV | V ∈ V } is the set of all MinAs for A v E in
T .

The following is an immediate consequence of Theorem 28 and Proposi-
tion 25.

Corollary 29. For Horn-EL and EL TBoxes mina-enum cannot be solved in
output polynomial time, unless p =np.

Having shown intractability results for Horn-EL and EL, we now turn our
attention again to the DL-Lite-family. The only case remaining here is the
complexity of enumerating MinAs if general DL-Lite concepts are allowed when
forming axioms. As shown in [10], deciding whether an axiom follows from a
DL-Litebool TBox is already conp-hard. Since computing a MinA is at least
as hard as doing a consequence check, we cannot expect to find a single MinA

26

in polynomial time. This in particular implies that MinAs cannot be enumer-
ated with polynomial delay, or even in incremental polynomial time, in the
DL-Litebool setting. However, it could still be the case that all MinAs can be
computed in output polynomial time, e.g. if all cases where finding a MinA is
hard happen to contain exponentially many MinAs. We show now that, unfor-
tunately, this is not the case.

Lemma 30. all-minas is Dp-hard for DL-Litebool KBs. This already holds
if the axioms in T are of the form A v C where A is a concept name and C a
general concept.

Proof. This result is a simple consequence of the construction from Theorem 4
together with the fact that M is a MinA for ϕ in K iff {M} is the set of all
MinAs for ϕ in M.

It is easy to show that all-minas w.r.t. DL-LiteNbool TBoxes is in Πp
2: if K

is not the set of all MinAs, one just needs to guess a M ⊆ K and verify with
a conp oracle that M |= φ and for all N ∈ K , N 6⊆ M. The following is an
immediate consequence of Proposition 25 and Lemma 30.

Corollary 31. For DL-Litebool TBoxes all MinAs cannot be computed in
output-polynomial time if p 6= np.

Notice that Proposition 25 can also be used in the converse direction; that
is, if mina-enum can be solved in output polynomial time, then all-minas is
in p. We thus have that, for all types of KBs studied in this paper, for which
mina-enum is output-polynomial, the decision problem all-minas is decidable
in polynomial time.

4.2. Enumeration in a Specified Order

We now consider the case when MinAs are required to be output in a spec-
ified order. First recall that if an enumeration problem can be solved without
ordering in output polynomial time, then it can also be solved with any or-
dering in output polynomial time: one needs only compute all the solutions of
the problem, which takes polynomial time in the size of the output, and then
display them in the desired order. In particular, this means that enumerating
all MinAs for DL-LiteNhorn and DL-LiteNkrom KBs (and their sublogics) in any
arbitrary ordering can be done in output polynomial time. Obviously, this also
means that for Horn-EL and DL-Litebool KBs the ordered enumeration problem
is not output polynomial.

In this section we study whether the upper bounds can be improved for some
orders. We first consider enumerations based on the lexicographical ordering,
and afterwards look at the case where MinAs are ordered according to their
size.

If we want to enumerate MinAs in some given order using an incremental
polynomial algorithm, a necessary condition is that the first MinA, according to
that ordering, can be computed in polynomial time. In particular, if we consider

27

the lexicographical order, one would need to compute the lexicographical first
MinA in polynomial time. For that reason, we look first at the complexity of
this problem and its decision variant.

Problem: first-mina
Input: A KB K and an axiom ϕ of the same type as K such that K |= ϕ, a
MinA M for ϕ in K, and a linear order on K.
Question: Is M the first MinA w.r.t. the lexicographic order induced by the
given linear order?

This problem is of particular interest when, for instance, one can assign a degree
of trust to the axioms in the KB. In this setting if we order the axioms in such
a way that less trusted axioms appear before the more trusted ones, the first
lexicographical MinA will be the one that has the most distrusted axioms, and
hence the most likely cause of an error. As we show now, finding the first
lexicographical MinA is conp-complete already for core KBs.

Theorem 32. first-mina is conp-complete for core KBs.

Proof. The problem is in conp. If M is not the first MinA, a proof of this can
be given by guessing a subset of K and verifying in polynomial time that it is a
MinA, and it is lexicographically smaller than M. To show conp-hardness, we
present a reduction from the np-hard mina-relevance problem of core KBs
(see Theorem 7) to the negation of first-mina.

Let K, ϕ, ψ be an instance of mina-relevance, and let M be an arbitrary
but fixed MinA for ϕ in K. M can be computed time polynomial on the size of
K as described in the proof of Theorem 17. We can assume w.l.o.g. that ψ /∈M
since otherwise, we would already know that this is a positive instance of the
problem. Consider an ordering of the axioms in K such that:

• ψ < χ for every χ 6= ψ, and

• for every χ ∈M and every χ′ ∈ K \ (M∪ {ψ}), χ < χ′.

K,M, and ϕ form an instance of first-mina, and as explained above is built
in polynomial time. We show that M is not the lexicographical first MinA
according to the ordering described above iff there is a MinA for φ in K that
contains ψ.
(⇒) Suppose that there is a MinAM′ for ϕ that is lexicographically beforeM.
Then, there must exist an axiom χ ∈ M′ \M that is smaller than any axiom
inM according to the ordering provided. By construction, ψ is the only axiom
that is smaller than any axiom in M. Thus, ψ ∈M′.
(⇐) If there is a MinA M′ such that ψ ∈ M′, then by definition M′ is lexico-
graphically smaller than M.

Since generating the first lexicographical MinA is already intractable, The-
orem 32 has the following consequence:

Corollary 33. Unless p = np, MinAs cannot be enumerated for core KBs in
lexicographic order in incremental polynomial time.

28

Notice that the construction provided in the proof of Theorem 32 cannot be
used to polynomially reduce mina-relevance to the negation of first-mina
in DL-LiteNbool KBs. Indeed, the first step in this construction requires the
computation of a MinA, which cannot be done in polynomial time for this logic.
On the other hand, first-mina is at least as hard as is-mina, thus yielding the
following bounds.

Theorem 34. first-mina for DL-LiteNbool KBs is Dp-hard and in Πp
2.

Proof. For the upper bound, if M is not the first MinA, then one can guess a
subset N of K and verify with polynomially many calls to an np oracle that
N is a MinA, and lexicographically smaller than M. For the lower bound, we
reduce is-mina to first-mina as follows: M is a MinA for ϕ in K iff M is the
first lexicographic MinA for ϕ in M.

Although computing the first MinA is conp-hard for core KBs, interestingly
computing the last MinA is polynomial for all types of KBs we consider here
where reasoning is polynomial. To see this, notice that Algorithm 1 can be
modified such that the for loop selects the axioms according to the specified
linear order on K increasingly. It is easy to see that the MinA obtained through
this strategy is necessarily the last according to the induced lexicographical
ordering. It is also easy to see that deciding whether a subset of a DL-LiteNkrom
TBox is the last lexicographical MinA remains in Dp. More interestingly, it is
also possible to modify Algorithm 2 to enumerate all MinAs from a DL-LiteNhorn
or DL-LiteNkrom KB in reverse lexicographical order with polynomial delay.

The modified algorithm keeps a set of KBs in a priority queue Q. These KBs
are the candidates from which the remaining MinAs are going to be computed.
Each KB can contain zero or more MinAs. They are inserted into Q by the
algorithm at a cost of O(n · log(M)) per insertion, where n is the size of the
original KB andM is the total number of such KBs inserted. Note thatM can be
exponentially larger than n since there can be exponentially many MinAs. That
is, the algorithm potentially uses exponential space. The other operation that
the algorithm performs on Q is to find and delete the maximum element of Q.
The maximum element of Q is the KB in Q that contains the lexicographically
largest MinA among the MinAs contained in all other KBs in Q. This operation
can also be performed within O(n · log(M)) time bound. The time bounds for
insertion and deletion depend also on n since they require a computation of the
last MinA. This approach is presented in Algorithm 3. In line 9 of this algorithm
the computation of the KB Ki depends on the type of the input KB. That is, if
the input K is a DL-LiteNhorn KB, then use Definition 14; if it is a DL-LiteNkrom
KB, then use Definition 21.

Theorem 35. Algorithm 3 enumerates all the MinAs for DL-LiteNhorn and
DL-LiteNkrom KBs in reverse lexicographic order with polynomial delay.

Proof. The algorithm terminates since K is finite. Soundness is shown as fol-
lows: Q contains initially only the original KB K. Thus the first output is
lexicographically the last MinA in K. By Lemma 16 the MinA that comes just

29

Algorithm 3 Enumerating all MinAs in reverse lexicographical order

1: all-MinAs-rev-order(K,φ) . (K a KB, φ an axiom s.t. K |= φ)
2: Q := {K}
3: while Q 6= ∅ do
4: J := maximum element of Q
5: remove J from Q
6: M := the lexicographical largest MinA in J
7: output M
8: for 1 ≤ i ≤ |M| do
9: compute Ki from M as in Definition 14 or Definition 21

10: insert Ki into Q if Ki |= φ

before the last one is contained in exactly one of the Kis that are computed
and inserted into Q in lines 9 and 10. In line 4 J is assigned the KB that
contains this MinA. Thus the next output will be the MinA that comes just
before lexicographically the last one. It is not difficult to see that in this way
the MinAs will be enumerated in reverse lexicographic order. By Lemma 16 it
is guaranteed that the algorithm enumerates all MinAs.

In one iteration, the algorithm performs one find operation and one delete
operation on Q, which both take time O(n · log(M)), and a MinA computation
that takes O(n) time. In addition it performs at most n Ki computations, and
at most n insertions into Q. Each Ki computation takes O(n2) time, and each
insertion takes O(n · log(M)) time. The total delay between outputs is thus
O(2 · (n · log(M)) + n+ n · (n2 + n · log(M))) = O(n3).

Notice that the polynomial delay running time of Algorithm 3 does not
depend on our use of the reverse lexicographical ordering. In fact, this algorithm
can be modified to enumerate MinAs in any order with polynomial delay, as long
as the first MinA according to this ordering is computable in polynomial time.
We will use this fact next, as we study enumeration by size.

We start by showing that is not possible to enumerate all the MinAs in
decreasing size order in incremental polynomial time (unless p = np). As it
was the case for the enumeration in lexicographical order, this claim is a direct
consequence of the hardness of the following decision problem.

Problem: largest-mina
Input: A KB K and an axiom ϕ of the same type as K such that K |= ϕ, and
n ≥ 1.
Question: Is there a MinA M such that |M| ≥ n?

Theorem 36. largest-mina is np-complete for core KBs.

Proof. An algorithm that shows np membership simply guesses a subset M of
the KB and verifies in polynomial time thatM is a MinA and |M| ≥ n. Hard-
ness is shown through a reduction from the well known np-hard Hamiltonian
path decision problem [50].

30

Let G = (V,E) be a directed graph, and m = |V |. For each v ∈ V , consider
a concept name Av and construct the core KB

KG := {Av v Aw | (v, w) ∈ E} ∪ {A v Av, Av v B | v ∈ V },

where A,B are two additional (new) concept names. Then, there is a Hamilto-
nian path in G (that is, a simple path that visits all nodes in V) if and only if
there is a MinA for A v B in KG of length m+ 1.

This theorem in particular means that the largest MinA, which would be the first
MinA to be returned in decreasing size order, cannot be computed in polynomial
time. Thus, no incremental polynomial algorithm exists for any of the languages
considered here.

Corollary 37. Unless p = np, MinAs cannot be enumerated for core KBs in
decreasing size order in incremental polynomial time.

Clearly, for DL-Litebool KBs largest-mina is Dp-hard since it can be used
to decide whether a set M is a MinA: M is a MinA iff there is a MinA in
M of size at least |M|. Moreover, the non-deterministic algorithm sketched in
the proof of Theorem 36 also provides a Σp

2 upper bound for the problem in
DL-LiteNbool KBs.

We have thus shown that it is hard to enumerate all MinAs in decreasing size.
Conversely, we can consider the enumeration by increasing size. Such a case is
important since smaller MinAs are typically easier to understand by users, thus
providing more informative explanations for the causes of the consequence to
follow.6 For this case, it will be important to consider the following decision
problem.

Problem: smallest-mina
Input: A KB K and an axiom ϕ of the same type as K such that K |= ϕ, and
n ≥ 1.
Question: Is there a MinA M such that |M| ≤ n?

It was previously shown in [37] that smallest-mina is np-hard already for Horn
KBs. This immediately yields a negative result for enumerating in increasing
size for this class of KBs.

Proposition 38. Unless p = np, MinAs cannot be enumerated for Horn KBs
in increasing size order in incremental polynomial time.

In addition, Corollary 27 shows that enumerating MinAs in dual-Horn KBs
in increasing size is likely not to be incremental polynomial, since it must be at
least as hard as enumerating the transversals of a hypergraph. This negative
result arises despite the fact that for this class of KBs, smallest-mina is de-
cidable in polynomial time, slightly generalizing the ideas of computing shortest

6Although the size of a MinA is not the only factor defining its cognitive complexity [62, 63],
it provides a simple and effective heuristic for understanding the causes of an error.

31

Algorithm 4 Finding a smallest MinA for DL-LiteNkrom KBs

Procedure smallest-MinAs(T , A v B) . (T DL-LiteNkrom TBox)

1: if T 6|= A v B then return ∞
2: else
3: M0 ← {φ | IT ∪ {pB → p¬A} |= φ}
4: k ← 0, n← −1
5: repeat
6: if pA → p¬A ∈Mk then
7: n← k
8: Mk+1 ←Mk ∪

⋃
ψ∈Mk,t∈T {φ | IT ∪ Ct ∪ {pB → p¬A, ψ} |= φ}

9: k ← k + 1
10: until n ≥ 0
11: return n

paths in directed graphs. We now focus on the remaining cases, between core
and DL-LiteNkrom KBs. In this context, we first show that smallest-mina is
decidable in polynomial time for these logics.

Following the idea of computing the shortest path in a graph, Algorithm 4
computes the least number of (non-implicit) axioms that are used in the con-

struction of a paired MinA in HφT (recall Definition 20). The algorithm follows
a layered approach in computing all the consequences from the input TBox T
through the core KB HφT . M0 contains all the consequences of HφT that can
be derived from implicit axioms only, and hence correspond to a MinA without
any original axiom. M1 then includes all the consequences that are derivable
from one axiom in T . It can be shown through a simple induction argument
that for every k ≥ 0, φ ∈Mk iff there is a paired MinA for φ in HφT that uses at
most k axioms from T . To avoid an infinite computation, all the sets Mk are
restricted to the relevant core clauses, using only the variables obtained from
the transformation. It is easy to see that all the sets Mk have polynomial size,
and can be computed in polynomial time.

Theorem 39. Algorithm 4 decides smallest-mina in polynomial time.

Clearly, this algorithm can be modified to provide one smallest MinA for
the desired consequence. Moreover, Algorithm 3 can be modified to consider
the smallest MinA in place of the lexicographical largest one without affecting
its performance. This means that all MinAs for a DL-LiteNkrom KBs can be
enumerated in increasing size order with polynomial delay.

Theorem 40. All MinAs for a DL-LiteNkrom KB can be enumerated in increas-
ing size with polynomial delay.

This finishes our analysis of the complexity of enumerating MinAs in different
tractable DLs. Before turning our attention to the problem of counting the
MinAs of a consequence that follows from a KB, we analyse the complexity of
smallest-mina for DL-LiteNbool KBs.

32

Theorem 41. smallest-mina is Σp
2-complete for DL-Litebool KBs.

Proof. The problem can be decided by guessing a subset M of the KB K and
verifying with an np oracle thatM entails the consequence ϕ. Thus, it is in Σp

2.
The lower bound can be obtained by a reduction from the following Σp

2-complete
problem [64].

Problem: smallest-mus
Input: An inconsistent set of propositional clauses F and n ≥ 1.
Question: Is there a MUS M for F such that |M| ≤ n?

Given an instance of smallest-mus, we construct TF and tφ as in the proof
of Theorem 4. Then, there is a MUS of size at most n iff there is a MinA for
A v ⊥ in TF of size at most n.

5. Complexity of Counting MinAs

In applications where one is interested in computing all MinAs, it might
also be useful to know in advance how many of them exist. For that reason, we
consider the following counting problem.

Problem: #mina
Input: A KB K and an axiom φ of the same type as K such that K |= φ.
Output: The number of all MinAs for φ in K.

As already described in the previous sections, if K is a core KB, the problem
#mina boils down to the problem of counting simple paths between two vertices
of a given directed graph. This problem called s-t connectedness was one of
the first counting problems considered in [45].

Problem: s-t paths
Input: A directed graph G = (V,E), and two vertices s, t ∈ V .
Output: The number of simple paths from s to t in G.

In [45] it was shown that this problem is #p-complete. Recall that #p is
defined [44] as the class of functions counting the accepting paths of nondeter-
ministic Turing machines. Typical members of this class are the problems of
counting the number of solutions of np-complete problems. Among them, the
most well-known one is #sat, which is the problem of counting the distinct
truth assignments that satisfy a given Boolean formula in CNF. Intuitively, #p
is the counting-complexity analogous of the class np for decision problems.

Since core KBs are the simplest type of KB, the hardness result applies to
the other KB types we consider here. Moreover for most of the types of axioms
considered in this paper, the problem of deciding whether a given set of axioms
is a MinA is polynomial. This implies that for these fragments #mina is in #p,
thus it is #p-complete.

Corollary 42. #mina is #p-complete for core, Horn, dual-Horn, Horn-EL,
EL, DL-LiteNcore and DL-LiteNhorn KBs.

33

Next we consider a variant of this counting problem. Instead of the number
of all MinAs, one can also be interested in the number of MinAs that contain a
specific axiom. We call this problem #mina-relevance.

Problem: #mina-relevance
Input: A KB K and an axiom φ of the same type as K such that K |= φ, and
an axiom ψ ∈ K.
Output: The number of all MinAs for φ in K that contain ψ.

If we are trying to explain an unwanted consequence, the solution of this count-
ing problem will allow us to detect axioms that are most likely to be faulty,
i. e. those that appear in the most MinAs. This idea has been proposed in [65]
as a heuristic for correcting an error while minimizing the changes in the set of
axioms. However, this heuristic requires the solution of a #p-complete problem.

Theorem 43. #mina-relevance is #p-complete for core KBs.

Proof. The problem is in #p since given a core KB K, an axiom φ that follows
from K, an axiom ψ ∈ K, and a candidate solution K′ ⊆ K, we can in polynomial
time verify that K’ is a MinA and it contains ψ.

For showing #p-hardness we give a parsimonious reduction from #mina for
core KBs, which has been shown to be #p-hard above. Given an instance of
#mina with the core KB K and the axiom p → q we construct the core KB
K′ := K ∪ S, where S = {q → x}, and x is a fresh propositional variable not
occurring in K. It is not difficult to see that a set M⊆ K is a MinA for p→ q
in K if and only if M∪ S is a MinA for p → x in K′. Moreover, every MinA
for p → x in K′ must contain the only axiom in S. Thus, there are exactly as
many MinAs for p→ q in K as there are for p→ x in K’ containing the axiom
q → x.

Obviously, Theorem 43 implies that #mina-relevance is #p-complete also
for DL-LiteNhorn, DL-LiteNkrom, and EL KBs, as well as all the classes in between.
The only remaining case is that of DL-Litebool KBs. For this logic, both count-
ing problems are #np-complete.

Theorem 44. #mina and #mina-relevance are #np-complete for KBs in
DL-Litebool and DL-LiteNbool.

Proof. Both problems are in #np since all candidate solutions can be checked
with an np oracle. We show only #np-hardness for #mina. The hardness of
#mina-relevance follows from this result using the same arguments from the
proof of Theorem 43.

The prove that #mina is #np-hard, we provide a weakly parsimoniuos
reduction from the canonical #np-complete problem #Π1sat [66, 67].

Problem: #Π1sat
Input: A formula ψ = ∀x.φ(x,y), with x,y sets of variables and φ a Boolean
formula.
Output: The number of truth assignments of y that satisfy ψ.

34

For every variable z appearing in φ, build a concept name Bz; in addition, for
every y ∈ y build the variables Ay and A′y. Using these variables, for each
subformula φ′ of φ, construct a concept Cφ′ by induction as follows.

• for all x ∈ x, Cx := Bx;

• for all y ∈ y, Cy := Ay;

• C¬φ1
:= ¬Cφ1

;

• Cφ1∧φ2
:= Cφ1

u Cφ2
; and

• Cφ1∨φ2
:= Cφ1

t Cφ2
.

Consider now the TBox Tψ := {Ay v By uA′y, Ay v ¬By uA′y | y ∈ y}. Recall
that valuations are represented as the set of variables they make true. Given a
valuation V of y, letMV := {Ay v ByuA′y | y ∈ V}∪{Ay v ¬ByuA′y | y /∈ V}.
We first show that for every such V that satisfies ψ, MV is a MinA for

l

y∈y
Ay v Cφ u

l

y∈y
A′y (1)

in Tψ. Since V satisfies ψ, Cφ is a tautology. Moreover, by construction MV
entails Ay v A′y for all y ∈ y, and hence MV entails the GCI (1). In every
strict subset N of MV there is a variable y ∈ y such that N does not entail
Ay v A′y, and hence does not entail (1). Thus, MV is a MinA.

Conversely, ifM is a MinA for (1) in Tψ, thenM =MV for some valuation
V satisfying ψ, or M is of the form {Ay v By u A′y, Ay v ¬By u A′y} for some
y ∈ y. Notice that there are exactly |y| MinAs of the latter form. Thus, the
number of MinAs of (1) in Tψ is exactly the number of truth assignments of y
satisfying ψ plus |y|.

6. Summary of Results

All the complexity results obtained are summarized in Table 5. In the ta-
ble, all decision and counting problems are complete for the given class, except
when prefixed with “in,” or suffixed with “-h” (-hard). For the complexity of
enumeration, pd, nop, and nip stand for polynomial delay, not output polyno-
mial, and not incremental polynomial, respectively. The cells marked with op
denote problems that can be enumerated in output polynomial time, but not in
incremental polynomial time.

As it can be seen from the table, we have obtained an almost complete
picture of the complexity of axiom pinpointing in the prominent families of
lightweight DLs. The most relevant open problems remaining correspond to
the dual-Horn case, where hardness w.r.t. hypergraph transversal decision and
enumeration has been shown, but no matching upper bound has been provided.
We conjecture that all these problems are in fact harder; i.e., that all-minas is
conp-complete, and none of the enumeration problems can be solved in output
polynomial time.

35

Table 5: Complexity of related decision, counting, and enumeration problems

Problem [c
o
re

,
D
L

-L
it
eN k
r
o
m

]

[H
or

n
,
D
L

-L
it
eN h
o
r
n
]

d
u

a
l-

H
o
rn

H
o
rn

-E
L

,
EL

D
L

-L
it
e b
o
o
l,
D
L

-L
it
eN b
o
o
l

is-mina p p p p Dp

first-mina conp conp conp conp Dp-h, in Πp
2

last-mina p p p p Dp

largest-mina np np np np Dp-h, in Σp
2

smallest-mina p np p np Σp
2

all-minas p p th-h conp Dp-h, in Πp
2

mina-relevance np np np np Σp
2

mina-irrel np np np np in Σp
2

#mina #p #p #p #p #np
#mina-relevance #p #p #p #p #np

m
in
a
-e
n
u
m unordered pd pd te-h nop nop

lex forward op op nip nop nop
lex backward pd pd te-h nop nop
size increasing pd op te-h nop nop
size decreasing op op nip nop nop

The remaining open problems refer to the precise complexity of some prob-
lems w.r.t. DL-Litebool. Notably, to the best of our efforts, we were unable to
prove any relevant lower bound for mina-irrelevance in this case, beyond the
obvious np-hardness that follows from its sublogics. Notice that to solve any of
the problems where no tight complexity bounds have been found, it is necessary
to find a MinA with some additional properties; in particular, one would need
to prove that the set constructed is indeed a MinA. This leads us to believe that
all those problems are hard for the second level of the polynomial hierarchy.
These cases are of less interest in the context of lightweight DLs, as the basic
reasoning problem is already np-hard. However, we intend to work on closing
those gaps.

7. Conclusions

We have studied the complexity of axiom pinpointing and several related
decision, counting and enumeration problems for lightweight description logics.

36

Using different reductions and novel algorithms, we were able to find tight com-
plexity bounds for most of the problems and languages considered. All these
results are summarised in Table 5.

One important thing to consider is that our focus here is on the computa-
tional complexity classes, and not on the specific resource consumption needed
to solve the problem. For instance, for most of our logics, we have proven a
polynomial upper bound for is-mina using the black-box method described in
Algorithm 1. Since entailment of Horn formulas is decidable in linear time, it
is easy to see that our algorithm yields a quadratic decision procedure in this
setting. However, it was recently shown, using specialised techniques, that this
problem is in fact decidable in linear time [68]. Similarly, a more fine-grained
run-time analysis might be required to achieve efficient algorithms even in the
tractable cases. A promising approach in this direction is to exploit the ideas
already developed for efficient MUS enumeration [14, 69].

Similarly, one should keep in mind that all the hardness results presented
correspond to the worst-case behaviour of the problems. Indeed, different tools
have been implemented for enumerating MinAs in Horn [68], EL [70–74], and
even more expressive logics [7, 9, 38, 75]. Empirical evaluations over such sys-
tems have shown that axiom pinpointing and other related tasks are feasible in
practice, for realistic ontologies.

As future work, we intend to close the few remaining gaps in the complex-
ity table. We are also interested in dealing with other enumeration orderings
and preference relationships between the MinAs. Another important path of
research is to understand how the panorama changes in the presence of knowl-
edge about individuals (known as ABoxes in the DL community) or data, and
with more complex entailments such as queries. In such cases, a parameterised
study of the complexity may become relevant.

Acknowledgements

The authors want to thank Joao Marques-Silva for useful pointers to the
complexity of MUS computation.

[1] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P. F. Patel-Schneider
(Eds.), The Description Logic Handbook: Theory, Implementation, and
Applications, Cambridge University Press, 2003.

[2] M. A. Musen, The Protégé project: A look back and a look forward, AI
Matters 1 (4) (2015) 4–12. doi:10.1145/2757001.2757003.

[3] L. Halilaj, N. Petersen, I. Grangel-González, C. Lange, S. Auer, G. Coskun,
S. Lohmann, Vocol: An integrated environment to support version-
controlled vocabulary development, in: E. Blomqvist, P. Ciancarini,
F. Poggi, F. Vitali (Eds.), Proceedings of the 20th International Con-
ference on Knowledge Engineering and Knowledge Management (EKAW

37

http://dx.doi.org/10.1145/2757001.2757003
http://dx.doi.org/10.1007/978-3-319-49004-5_20
http://dx.doi.org/10.1007/978-3-319-49004-5_20

2016), Vol. 10024 of Lecture Notes in Computer Science, 2016, pp. 303–
319. doi:10.1007/978-3-319-49004-5_20.
URL http://dx.doi.org/10.1007/978-3-319-49004-5_20

[4] A. Alobaid, D. Garijo, M. Poveda-Villalón, I. S. Pérez, Ó. Corcho, Ontool-
ogy, a tool for collaborative development of ontologies, in: F. M. Couto,
J. Hastings (Eds.), Proceedings of the International Conference on Biomed-
ical Ontology, (ICBO 2015), Vol. 1515 of CEUR Workshop Proceedings,
CEUR-WS.org, 2015.
URL http://ceur-ws.org/Vol-1515/demo3.pdf

[5] M. Horridge, B. Parsia, U. Sattler, Explaining inconsistencies in OWL on-
tologies, in: L. Godo, A. Pugliese (Eds.), Proceedings of the Third Inter-
national Conference on Scalable Uncertainty Management, (SUM 2009),
Vol. 5785 of Lecture Notes in Computer Science, Springer-Verlag, 2009,
pp. 124–137.

[6] F. Baader, B. Suntisrivaraporn, Debugging SNOMED CT using axiom pin-
pointing in the description logic EL+, in: Proceedings of the International
Conference on Representing and Sharing Knowledge Using SNOMED (KR-
MED’08), Phoenix, Arizona, 2008.

[7] A. Kalyanpur, B. Parsia, M. Horridge, E. Sirin, Finding all justifications of
OWL DL entailments, in: Proceedings of the 6th International Semantic
Web Conference, 2nd Asian Semantic Web Conference, (ISWC 2007 +
ASWC 2007), Vol. 4825 of Lecture Notes in Computer Science, Springer-
Verlag, 2007, pp. 267–280.

[8] M. Horridge, B. Parsia, U. Sattler, Laconic and precise justifications in
OWL, in: A. P. Sheth, S. Staab, M. Dean, M. Paolucci, D. Maynard,
T. W. Finin, K. Thirunarayan (Eds.), Proceedings of the 7th International
Semantic Web Conference, (ISWC 2008), Vol. 5318 of Lecture Notes in
Computer Science, Springer-Verlag, 2008, pp. 323–338.

[9] B. Suntisrivaraporn, G. Qi, Q. Ji, P. Haase, A modularization-based
approach to finding all justifications for OWL DL entailments, in:
J. Domingue, C. Anutariya (Eds.), Proceedings of the 3rd Asian Seman-
tic Web Conference (ASWC’08), Vol. 5367 of Lecture Notes in Computer
Science, Springer-Verlag, 2008, pp. 1–15.

[10] A. Artale, D. Calvanese, R. Kontchakov, M. Zakharyaschev, The DL-Lite
family and relations, Journal of Artificial Intelligence Research 36 (2009)
1–69.

[11] F. Baader, S. Brandt, C. Lutz, Pushing the EL envelope, in: L. P. Kael-
bling, A. Saffiotti (Eds.), Proceedings of the Nineteenth International Joint
Conference on Artificial Intelligence, (IJCAI 05), Professional Book Center,
2005, pp. 364–369.

38

http://dx.doi.org/10.1007/978-3-319-49004-5_20
http://dx.doi.org/10.1007/978-3-319-49004-5_20
http://ceur-ws.org/Vol-1515/demo3.pdf
http://ceur-ws.org/Vol-1515/demo3.pdf
http://ceur-ws.org/Vol-1515/demo3.pdf

[12] N. F. Noy, N. H. Shah, P. L. Whetzel, B. Dai, M. Dorf, N. Griffith,
C. Jonquet, D. L. Rubin, M. D. Storey, C. G. Chute, M. A. Musen,
Bioportal: ontologies and integrated data resources at the click of a
mouse, Nucleic Acids Research 37 (Web-Server-Issue) (2009) 170–173.
doi:10.1093/nar/gkp440.
URL http://dx.doi.org/10.1093/nar/gkp440

[13] R. Cote, D. Rothwell, J. Palotay, R. Beckett, L. Brochu, The systematized
nomenclature of human and veterinary medicine, Tech. rep., International,
Northfield, IL: College of American Pathologists (1993).

[14] A. Belov, I. Lynce, J. Marques-Silva, Towards efficient MUS extraction, AI
Commun. 25 (2) (2012) 97–116. doi:10.3233/AIC-2012-0523.
URL http://dx.doi.org/10.3233/AIC-2012-0523

[15] C. Ansótegui, M. Bonet, J. Levy, SAT-based MaxSAT algorithms, Artificial
Intelligence 196 (2013) 77–105. doi:10.1016/j.artint.2013.01.002.
URL http://dx.doi.org/10.1016/j.artint.2013.01.002

[16] A. Morgado, F. Heras, M. H. Liffiton, J. Planes, J. Marques-Silva, Iterative
and core-guided MaxSAT solving: A survey and assessment, Constraints
18 (4) (2013) 478–534. doi:10.1007/s10601-013-9146-2.
URL http://dx.doi.org/10.1007/s10601-013-9146-2

[17] R. Dividino, S. Sizov, S. Staab, B. Schueler, Querying for provenance, trust,
uncertainty and other meta knowledge in rdf, Web Semantics 7 (3) (2009)
204–219. doi:10.1016/j.websem.2009.07.004.
URL http://dx.doi.org/10.1016/j.websem.2009.07.004

[18] F. Baader, M. Knechtel, R. Peñaloza, A generic approach for large-scale
ontological reasoning in the presence of access restrictions to the ontology’s
axioms, in: A. B. et al. (Ed.), Proceedings of the 8th International Semantic
Web Conference (ISWC 2009), Vol. 5823 of Lecture Notes in Computer
Science, 2009, pp. 49–64.

[19] M. Ludwig, R. Peñaloza, Error-tolerant reasoning in the description logic
EL, in: E. Fermé, J. Leite (Eds.), Proceedings of the 14th European Con-
ference on Logics in Artificial Intelligence (JELIA’14), Vol. 8761 of Lecture
Notes in Artificial Intelligence, Springer-Verlag, Madeira, Portugal, 2014,
pp. 107–121.

[20] T. Eiter, T. Lukasiewicz, L. Predoiu, Generalized consistent query answer-
ing under existential rules, in: C. Baral, J. P. Delgrande, F. Wolter (Eds.),
Proceedings of the Fifteenth International Conference on Principles of
Knowledge Representation and Reasoning (KR 2016), AAAI Press, 2016,
pp. 359–368.
URL http://www.aaai.org/ocs/index.php/KR/KR16/paper/view/

12888

39

http://dx.doi.org/10.1093/nar/gkp440
http://dx.doi.org/10.1093/nar/gkp440
http://dx.doi.org/10.1093/nar/gkp440
http://dx.doi.org/10.1093/nar/gkp440
http://dx.doi.org/10.3233/AIC-2012-0523
http://dx.doi.org/10.3233/AIC-2012-0523
http://dx.doi.org/10.3233/AIC-2012-0523
http://dx.doi.org/10.1016/j.artint.2013.01.002
http://dx.doi.org/10.1016/j.artint.2013.01.002
http://dx.doi.org/10.1016/j.artint.2013.01.002
http://dx.doi.org/10.1007/s10601-013-9146-2
http://dx.doi.org/10.1007/s10601-013-9146-2
http://dx.doi.org/10.1007/s10601-013-9146-2
http://dx.doi.org/10.1007/s10601-013-9146-2
http://dx.doi.org/10.1016/j.websem.2009.07.004
http://dx.doi.org/10.1016/j.websem.2009.07.004
http://dx.doi.org/10.1016/j.websem.2009.07.004
http://dx.doi.org/10.1016/j.websem.2009.07.004
http://www.aaai.org/ocs/index.php/KR/KR16/paper/view/12888
http://www.aaai.org/ocs/index.php/KR/KR16/paper/view/12888
http://www.aaai.org/ocs/index.php/KR/KR16/paper/view/12888
http://www.aaai.org/ocs/index.php/KR/KR16/paper/view/12888

[21] R. Peñaloza, Inconsistency-tolerant instance checking in tractable descrip-
tion logics, in: Proceedings of the International Joint Conference on Rules
and Reasoning (RuleML+RR’17), Vol. 10364 of Lecture Notes in Computer
Science, Springer, 2017, to appear.

[22] F. Baader, M. Knechtel, R. Peñaloza, Context-dependent
views to axioms and consequences of semantic web ontolo-
gies, Journal of Web Semantics 12–13 (2012) 22–40, available at
http://dx.doi.org/10.1016/j.websem.2011.11.006.

[23] F. Riguzzi, E. Bellodi, E. Lamma, R. Zese, Probabilistic description logics
under the distribution semantics, Semantic Web 6 (5) (2015) 477–501. doi:
10.3233/SW-140154.
URL http://dx.doi.org/10.3233/SW-140154

[24] I. I. Ceylan, R. Peñaloza, The bayesian description logic BEL, in: S. Demri,
D. Kapur, C. Weidenbach (Eds.), Proceedings of the 7th International Joint
Conference on Automated Reasoning (IJCAR’14), Vol. 8562 of Lecture
Notes in Computer Science, Springer, 2014, pp. 480–494.

[25] I. I. Ceylan, R. Peñaloza, The bayesian ontology language BEL, Jour-
nal of Automated Reasoning 58 (1) (2017) 67–95. doi:10.1007/

s10817-016-9386-0.
URL http://dx.doi.org/10.1007/s10817-016-9386-0

[26] G. Stoilos, G. B. Stamou, J. Z. Pan, Classifying fuzzy subsumption in
fuzzy-EL+, in: F. Baader, C. Lutz, B. Motik (Eds.), Proceedings of the
21st International Workshop on Description Logics (DL2008), Vol. 353 of
CEUR Workshop Proceedings, CEUR-WS.org, 2008.
URL http://ceur-ws.org/Vol-353/StoilosStamouPan.pdf

[27] R. Peñaloza, B. Sertkaya, Axiom pinpointing is hard, in: B. C. Grau, I. Hor-
rocks, B. Motik, U. Sattler (Eds.), Proceedings of the 2009 International
Workshop on Description Logics (DL2009), Vol. 477 of CEUR-WS, 2009.

[28] R. Peñaloza, B. Sertkaya, On the complexity of axiom pinpointing in the
EL family of Description Logics, in: F. Lin, U. Sattler, M. Truszczynski
(Eds.), Proceedings of the Twelfth International Conference on Principles of
Knowledge Representation and Reasoning, (KR 2010), AAAI Press, 2010,
pp. 280–289.

[29] R. Peñaloza, B. Sertkaya, Complexity of axiom pinpointing in the DL-Lite
family, in: V. Haarslev, D. Toman, G. Weddell (Eds.), Proceedings of the
2010 International Workshop on Description Logics (DL2010), Vol. 573 of
CEUR-WS, 2010, pp. 173–184.

[30] R. Peñaloza, B. Sertkaya, Complexity of axiom pinpointing in the DL-
Lite family of description logics, in: H. Coelho, R. Studer, M. Wooldridge

40

http://dx.doi.org/10.3233/SW-140154
http://dx.doi.org/10.3233/SW-140154
http://dx.doi.org/10.3233/SW-140154
http://dx.doi.org/10.3233/SW-140154
http://dx.doi.org/10.3233/SW-140154
http://dx.doi.org/10.1007/s10817-016-9386-0
http://dx.doi.org/10.1007/s10817-016-9386-0
http://dx.doi.org/10.1007/s10817-016-9386-0
http://dx.doi.org/10.1007/s10817-016-9386-0
http://ceur-ws.org/Vol-353/StoilosStamouPan.pdf
http://ceur-ws.org/Vol-353/StoilosStamouPan.pdf
http://ceur-ws.org/Vol-353/StoilosStamouPan.pdf

(Eds.), Proceedings of the 19th European Conference on Artificial Intel-
ligence (ECAI 2010), Vol. 215 of Frontiers in Artificial Intelligence and
Applications, IOS Press, 2010, pp. 29–34.

[31] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, R. Rosati, DL-Lite:
Tractable description logics for ontologies, in: Proceedings of the 20th Nat.
Conf. on Artificial Intelligence (AAAI 2005), 2005, pp. 602–607.

[32] A. Borgida, D. Calvanese, M. Rodriguez-Muro, Explanation in DL-Lite, in:
F. Baader, C. Lutz, B. Motik (Eds.), Proceedings of the 2008 International
Workshop on Description Logics (DL 2008), Vol. 353 of CEUR-WS, 2008.

[33] A. Borgida, D. Calvanese, M. Rodriguez-Muro, Explanation in the DL-
Lite family of Description Logics, in: Proceedings of the 7th Interna-
tional Conference on Ontologies, DataBases, and Applications of Seman-
tics (ODBASE 2008), Vol. 5332 of Lecture Notes in Computer Science,
Springer-Verlag, 2008, pp. 1440–1457.

[34] F. Baader, Terminological cycles in a description logic with existential re-
strictions, in: G. Gottlob, T. Walsh (Eds.), Proceedings of the 18th In-
ternational Joint Conference on Artificial Intelligence (IJCAI’03), Morgan
Kaufmann, 2003, pp. 325–330.

[35] S. Brandt, Polynomial time reasoning in a description logic with existential
restrictions, GCI axioms, and - what else?, in: R. L. de Mántaras, L. Saitta
(Eds.), Proceedings of the 16th European Conference on Artificial Intelli-
gence, (ECAI 2004), IOS Press, 2004, pp. 298–302.

[36] M. H. Liffiton, K. A. Sakallah, Algorithms for computing minimal unsatis-
fiable subsets of constraints, Journal of Automated Reasoning (JAR) 40 (1)
(2008) 1–33. doi:10.1007/s10817-007-9084-z.
URL http://dx.doi.org/10.1007/s10817-007-9084-z

[37] F. Baader, R. Peñaloza, B. Suntisrivaraporn, Pinpointing in the description
logic EL+, in: J. Hertzberg, M. Beetz, R. Englert (Eds.), Proceedings of
the 30th German Conference on Artificial Intelligence (KI2007), Vol. 4667
of Lecture Notes in Artificial Intelligence, Springer-Verlag, 2007, pp. 52–67.

[38] A. Kalyanpur, B. Parsia, E. Sirin, B. C. Grau, Repairing unsatisfiable con-
cepts in OWL ontologies., in: Y. Sure, J. Domingue (Eds.), The Semantic
Web: Research and Applications. Proceedings of the 3rd European Seman-
tic Web Conference (ESWC 2006), Vol. 4011 of Lecture Notes in Computer
Science, Springer-Verlag, 2006, pp. 170–184.

[39] R. Peñaloza, Axiom pinpointing in description logics and beyond, Ph.D.
dissertation, Institute for Theoretical Computer Science, TU Dresden, Ger-
many (2009).

[40] F. Baader, R. Peñaloza, Automata-based axiom pinpointing, Journal of
Automated Reasoning 45 (2) (2010) 91–129.

41

http://dx.doi.org/10.1007/s10817-007-9084-z
http://dx.doi.org/10.1007/s10817-007-9084-z
http://dx.doi.org/10.1007/s10817-007-9084-z
http://dx.doi.org/10.1007/s10817-007-9084-z

[41] F. Baader, R. Peñaloza, Axiom pinpointing in general tableaux, Journal of
Logic and Computation 20 (1) (2010) 5–34.

[42] D. S. Johnson, M. Yannakakis, C. H. Papadimitriou, On generating all
maximal independent sets, Information Processing Letters 27 (3) (1988)
119–123.

[43] S. Tsukiyama, M. Ide, H. Ariyoshi, I. Shirakawa, A new algorithm for
generating all maximal independent sets, SIAM Journal on Computing 6
(1977) 505–517.

[44] L. G. Valiant, The complexity of computing the permanent, Theoretical
Computer Science 8 (2) (1979) 189–201.

[45] L. G. Valiant, The complexity of enumeration and reliability problems,
SIAM Journal on Computing 8 (3) (1979) 410–421.

[46] D. C. Kozen, Counting Problems and #P, Springer New York, New York,
NY, 1992, pp. 138–143. doi:10.1007/978-1-4612-4400-4_26.
URL http://dx.doi.org/10.1007/978-1-4612-4400-4_26

[47] N. Creignou, M. Hermann, Complexity of generalized satisfiability
counting problems, Information and Computation 125 (1) (1996) 1 – 12.
doi:http://dx.doi.org/10.1006/inco.1996.0016.
URL http://www.sciencedirect.com/science/article/pii/

S0890540196900164

[48] C. H. Papadimitriou, M. Yannakakis, The complexity of facets (and some
facets of complexity), Journal of Computer and System Sciences 28 (2)
(1984) 244 – 259. doi:http://dx.doi.org/10.1016/0022-0000(84)

90068-0.

[49] C. H. Papadimitriou, D. Wolfe, The complexity of facets resolved, Journal
of Computer and System Sciences 37 (1) (1988) 2 – 13. doi:http://dx.

doi.org/10.1016/0022-0000(88)90042-6.

[50] M. R. Garey, D. S. Johnson, Computers and Intractability; A Guide to the
Theory of NP-Completeness, W. H. Freeman & Company, New York, NY,
USA, 1990.

[51] H. N. Gabow, S. N. Maheshwari, L. J. Osterweil, On two problems in the
generation of program test paths, IEEE Trans. Softw. Eng. 2 (3) (1976)
227–231.
URL http://dx.doi.org/10.1109/TSE.1976.233819

[52] A. S. Lapaugh, C. H. Papadimitriou, The even-path problem for graphs and
digraphs, Networks 14 (4) (1984) 507–513. doi:10.1002/net.3230140403.
URL http://dx.doi.org/10.1002/net.3230140403

42

http://dx.doi.org/10.1007/978-1-4612-4400-4_26
http://dx.doi.org/10.1007/978-1-4612-4400-4_26
http://dx.doi.org/10.1007/978-1-4612-4400-4_26
http://www.sciencedirect.com/science/article/pii/S0890540196900164
http://www.sciencedirect.com/science/article/pii/S0890540196900164
http://dx.doi.org/http://dx.doi.org/10.1006/inco.1996.0016
http://www.sciencedirect.com/science/article/pii/S0890540196900164
http://www.sciencedirect.com/science/article/pii/S0890540196900164
http://dx.doi.org/http://dx.doi.org/10.1016/0022-0000(84)90068-0
http://dx.doi.org/http://dx.doi.org/10.1016/0022-0000(84)90068-0
http://dx.doi.org/http://dx.doi.org/10.1016/0022-0000(88)90042-6
http://dx.doi.org/http://dx.doi.org/10.1016/0022-0000(88)90042-6
http://dx.doi.org/10.1109/TSE.1976.233819
http://dx.doi.org/10.1109/TSE.1976.233819
http://dx.doi.org/10.1109/TSE.1976.233819
http://dx.doi.org/10.1002/net.3230140403
http://dx.doi.org/10.1002/net.3230140403
http://dx.doi.org/10.1002/net.3230140403
http://dx.doi.org/10.1002/net.3230140403

[53] O. Kullmann, Constraint satisfaction problems in clausal form: Autarkies
and minimal unsatisfiability, Electronic Colloquium on Computational
Complexity (ECCC) 14 (055).
URL http://eccc.hpi-web.de/eccc-reports/2007/TR07-055/index.

html

[54] J. Y. Yen, Finding K shortest loopless paths in a network, Management
Science 17 (11) (1971) 712–716.

[55] L. R. Nielsen, D. Pretolani, K. A. Andersen, Finding the shortest hyper-
paths using reoptimization, Oper. Res. Lett. 34 (2) (2006) 155–164.

[56] L. R. Nielsen, K. A. Andersen, D. Pretolani, Finding the K shortest hyper-
paths, Computers and Operations Research 32 (6) (2005) 1477–1497.

[57] T. Eiter, G. Gottlob, Identifying the minimal transversals of a hypergraph
and related problems, SIAM Journal on Computing 24 (6) (1995) 1278–
1304.

[58] M. Hagen, Algorithmic and computational complexity issues of monet,
Ph.D. dissertation, Institut für Informatik, Friedrich-Schiller-Universität
Jena (2008).

[59] M. L. Fredman, L. Khachiyan, On the complexity of dualization of mono-
tone disjunctive normal forms, Journal of Algorithms 21 (3) (1996) 618–628.

[60] G. Gottlob, E. Malizia, Achieving new upper bounds for the hypergraph du-
ality problem through logic, The Computing Research Repository (CoRR)
abs/1407.2912.
URL http://arxiv.org/abs/1407.2912

[61] T. Eiter, G. Gottlob, Identifying the minimal transversals of a hypergraph
and related problems, Tech. Rep. CD-TR 91/16, Christian Doppler Labo-
ratory for Expert Systems, TU Vienna (1991).

[62] M. Horridge, Justification based explanation in ontologies, Ph.D. thesis,
University of Manchester, UK (2011).
URL http://www.manchester.ac.uk/escholar/uk-ac-man-scw:131699

[63] M. Horridge, S. Bail, B. Parsia, U. Sattler, The cognitive complexity of
OWL justifications, in: L. Aroyo, C. Welty, H. Alani, J. Taylor, A. Bern-
stein, L. Kagal, N. F. Noy, E. Blomqvist (Eds.), Proceedings of the
10th International Semantic Web Conference, (ISWC 2011), Part I, Vol.
7031 of Lecture Notes in Computer Science, Springer, 2011, pp. 241–256.
doi:10.1007/978-3-642-25073-6_16.
URL http://dx.doi.org/10.1007/978-3-642-25073-6_16

[64] P. Liberatore, Redundancy in logic I: CNF propositional formulae, Artificial
Intelligence 163 (2) (2005) 203–232. doi:10.1016/j.artint.2004.11.

002.
URL http://dx.doi.org/10.1016/j.artint.2004.11.002

43

http://eccc.hpi-web.de/eccc-reports/2007/TR07-055/index.html
http://eccc.hpi-web.de/eccc-reports/2007/TR07-055/index.html
http://eccc.hpi-web.de/eccc-reports/2007/TR07-055/index.html
http://eccc.hpi-web.de/eccc-reports/2007/TR07-055/index.html
http://arxiv.org/abs/1407.2912
http://arxiv.org/abs/1407.2912
http://arxiv.org/abs/1407.2912
http://www.manchester.ac.uk/escholar/uk-ac-man-scw:131699
http://www.manchester.ac.uk/escholar/uk-ac-man-scw:131699
http://dx.doi.org/10.1007/978-3-642-25073-6_16
http://dx.doi.org/10.1007/978-3-642-25073-6_16
http://dx.doi.org/10.1007/978-3-642-25073-6_16
http://dx.doi.org/10.1007/978-3-642-25073-6_16
http://dx.doi.org/10.1016/j.artint.2004.11.002
http://dx.doi.org/10.1016/j.artint.2004.11.002
http://dx.doi.org/10.1016/j.artint.2004.11.002
http://dx.doi.org/10.1016/j.artint.2004.11.002

[65] S. Schlobach, Z. Huang, R. Cornet, F. Harmelen, Debugging incoherent
terminologies, Journal of Automated Reasoning 39 (3) (2007) 317–349.

[66] C. Wrathall, Complete sets and the polynomial-time hierarchy, Theoret-
ical Computer Science 3 (1) (1976) 23–33. doi:10.1016/0304-3975(76)

90062-1.
URL http://dx.doi.org/10.1016/0304-3975(76)90062-1

[67] A. Durand, M. Hermann, P. G. Kolaitis, Subtractive reductions and com-
plete problems for counting complexity classes, Theoretical Computer Sci-
ence 340 (3) (2005) 496–513.

[68] J. Marques-Silva, A. Ignatiev, C. Menćıa, R. Peñaloza, Efficient reason-
ing for inconsistent Horn formulae, in: L. Michael, A. C. Kakas (Eds.),
Proceedings of the 15th European Conference On Logics In Artificial In-
telligence (JELIA 2016), Vol. 10021 of Lecture Notes in Computer Science,
Springer-Verlag, 2016. doi:10.1007/978-3-319-48758-8_22.
URL https://doi.org/10.1007/978-3-319-48758-8_22

[69] J. Marques-Silva, M. Janota, A. Belov, Minimal sets over monotone predi-
cates in Boolean formulae, in: N. Sharygina, H. Veith (Eds.), Proceedings
of the 25th International Conference on Computer Aided Verification (CAV
2013), Vol. 8044 of Lecture Notes in Computer Science, Springer, 2013, pp.
592–607.

[70] R. Sebastiani, M. Vescovi, Axiom pinpointing in lightweight description
logics via Horn-SAT encoding and conflict analysis, in: R. A. Schmidt
(Ed.), Proceedings of the 22nd International Conference on Automated
Deduction, (CADE-22), Vol. 5663 of Lecture Notes in Computer Science,
Springer-Verlag, 2009, pp. 84–99.

[71] N. Manthey, R. Peñaloza, S. Rudolph, Efficient axiom pinpointing in EL
using SAT technology, in: M. Lenzerini, R. Peñaloza (Eds.), Proceedings
of the 29th International Workshop on Description Logics (DL 2016), Vol.
1577 of CEUR Workshop Proceedings, CEUR-WS.org, 2016.
URL http://ceur-ws.org/Vol-1577/paper_33.pdf

[72] M. F. Arif, C. Menćıa, J. Marques-Silva, Efficient axiom pinpointing with
EL2MCS, in: S. Hölldobler, M. Krötzsch, R. Peñaloza, S. Rudolph (Eds.),
Proceedings of the 38th Annual German Conference on AI (KI 2015), Vol.
9324 of Lecture Notes in Computer Science, Springer, 2015, pp. 225–233.
doi:10.1007/978-3-319-24489-1_17.
URL http://dx.doi.org/10.1007/978-3-319-24489-1_17

[73] M. F. Arif, C. Menćıa, A. Ignatiev, N. Manthey, R. Peñaloza, J. Marques-
Silva, BEACON: an efficient sat-based tool for debugging EL+ ontolo-
gies, in: N. Creignou, D. L. Berre (Eds.), Proceedings of the 19th Inter-
national Conference on Theory and Applications of Satisfiability Testing
(SAT 2016), Vol. 9710 of Lecture Notes in Computer Science, Springer,

44

http://dx.doi.org/10.1016/0304-3975(76)90062-1
http://dx.doi.org/10.1016/0304-3975(76)90062-1
http://dx.doi.org/10.1016/0304-3975(76)90062-1
http://dx.doi.org/10.1016/0304-3975(76)90062-1
https://doi.org/10.1007/978-3-319-48758-8_22
https://doi.org/10.1007/978-3-319-48758-8_22
http://dx.doi.org/10.1007/978-3-319-48758-8_22
https://doi.org/10.1007/978-3-319-48758-8_22
http://ceur-ws.org/Vol-1577/paper_33.pdf
http://ceur-ws.org/Vol-1577/paper_33.pdf
http://ceur-ws.org/Vol-1577/paper_33.pdf
http://dx.doi.org/10.1007/978-3-319-24489-1_17
http://dx.doi.org/10.1007/978-3-319-24489-1_17
http://dx.doi.org/10.1007/978-3-319-24489-1_17
http://dx.doi.org/10.1007/978-3-319-24489-1_17
http://dx.doi.org/10.1007/978-3-319-40970-2_32
http://dx.doi.org/10.1007/978-3-319-40970-2_32

2016, pp. 521–530. doi:10.1007/978-3-319-40970-2_32.
URL http://dx.doi.org/10.1007/978-3-319-40970-2_32

[74] M. Ludwig, Just: a tool for computing justifications w.r.t. ELH ontolo-
gies, in: S. Bail, B. Glimm, E. Jiménez-Ruiz, N. Matentzoglu, B. Parsia,
A. Steigmiller (Eds.), Informal Proceedings of the 3rd International Work-
shop on OWL Reasoner Evaluation (ORE 2014), Vol. 1207 of CEUR Work-
shop Proceedings, CEUR-WS.org, 2014, pp. 1–7.
URL http://ceur-ws.org/Vol-1207/paper_2.pdf

[75] M. H. Liffiton, A. Previti, A. Malik, J. Marques-Silva, Fast, flexible
MUS enumeration, Constraints 21 (2) (2016) 223–250. doi:10.1007/

s10601-015-9183-0.
URL http://dx.doi.org/10.1007/s10601-015-9183-0

45

http://dx.doi.org/10.1007/978-3-319-40970-2_32
http://dx.doi.org/10.1007/978-3-319-40970-2_32
http://ceur-ws.org/Vol-1207/paper_2.pdf
http://ceur-ws.org/Vol-1207/paper_2.pdf
http://ceur-ws.org/Vol-1207/paper_2.pdf
http://dx.doi.org/10.1007/s10601-015-9183-0
http://dx.doi.org/10.1007/s10601-015-9183-0
http://dx.doi.org/10.1007/s10601-015-9183-0
http://dx.doi.org/10.1007/s10601-015-9183-0
http://dx.doi.org/10.1007/s10601-015-9183-0

	Introduction
	Preliminaries
	The EL Family
	The DL-Lite Family
	Knowledge Bases
	Axiom Pinpointing
	Complexity of Enumeration
	Counting Complexity

	Preferred and Unwanted Axioms
	Deciding is-mina
	The Existence of New MinAs
	The Case of mina-relevance

	Complexity of Enumerating All MinAs
	Enumeration without a Specific Order
	Enumeration in a Specified Order

	Complexity of Counting MinAs
	Summary of Results
	Conclusions

