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Abstract. Fuzzy DL-Lite has been studied as a means to answer queries
w.r.t. vague or imprecise knowledge and facts. Existing approaches con-
sider only the Zadeh semantics or are limited to precise terminological
knowledge, where only facts are graded. We study the problem of an-
swering conjunctive queries over fuzzy DL-LiteR ontologies which allow
also graded axioms, and whose semantics is based on mathematical fuzzy
logic. We show that for the Gödel t-norm, the degree of an answer is com-
putable through repeated calls to a classical query answering engine. For
non-idempotent t-norms, we show the difficulty in dealing with degrees,
and provide some partial solutions.

1 Introduction

Description logics [3] are a well known family of knowledge representation for-
malisms characterised by their formal logic-based semantics, and their decidable
(usually with relatively low complexity) reasoning tasks. Within these logics,
the DL-Lite family of light-weight DLs [2] is specially interesting, as it allows for
very efficient query answering in terms of data and combined complexity. It is
also the formalism underlying the OWL 2 QL profile of the standard ontology
language for the semantic web [10]. For this reason, they have been used for
many practical applications in various knowledge domains.

As the semantics are based on classical first-order logic, in their standard
form DLs are not able to handle vague or imprecise knowledge and facts. For
that reason, fuzzy extensions of DLs have been devised. Although most work
has focused on extending more expressive DLs and solving standard reasoning
services [8], some efforts have been made towards answering queries in DL-Lite.
Specifically, Straccia [20] studied the problem of computing the answers with
highest degree on a query w.r.t. some background knowledge. This was followed
by Pan et al. [17], who considered more complex queries to be answered. Other
work considering query answering in fuzzy DLs includes [21]. These three works
were based on the so-called Zadeh semantics, and had the limitation that only
the facts in the ontology could be graded, but not the terminological knowledge.

Later, Turhan and Mailis studied the problem from the point of view of
fuzzy logic [12], where the semantics are based on the properties of continuous
triangular norms. They developed a technique for computing the satisfaction



degrees of queries when the semantics were based on the Gödel t-norm [14].
This technique, which is based on the construction of a classical query, was later
implemented and shown to be effective in [15]. However, it still suffered from
two main drawbacks: (i) it was only capable to handle the idempotent t-norm
and (ii) terminological knowledge had to still be precise. The latter condition is
essential for the correctness of their approach: their reduction is unable to keep
track of the degrees used by the terminological axioms, as this would require an
unbounded memory use.

In this paper, we tackle these limitations over the well-known DL-LiteR logic.
Considering the t-norm-based semantics, we show that every consistent fuzzy
DL-LiteR ontology has a canonical model, which can be homomorphically em-
beded in every other model, and present an infinitary construction for obtaining
it, based on the ideas of classical DL-LiteR. Using this fact, we develop a method
for finding the degree of an answer to a conjunctive query, which is also capable
of dealing with fuzzy terminological axioms w.r.t. the Gödel t-norm. Indeed, de-
spite being more general, our approach is much simpler than previous methods.
We show that to verify a lower bound d of the degree, it suffices to consider only
the subontology with all axioms and assertions with a degree at least d, and an-
swer a classical query over it. Thus, one can use any off-the-shelf ontology-based
query answering engine available [23]. The cost of our simpler method is that,
to find the specific degree, the data complexity jumps from AC0 to LogSpace.
Whether the algorithm can be further improved or the LogSpace upper bound
is tight remains open.

Considering other continuous t-norms, we show through several examples
that query answering needs some more meticulous analysis. While deciding con-
sistency w.r.t. the product t-norm is still easy, finding the precise degrees of
an answer becomes more involved. In the case of the  Lukasiewicz t-norm, we
recall the fact that for a minimal extension of DL-LiteR consistency is already
NP-hard in combined complexity, and hence unlikely to be decidable through a
simple reduction to classical DL-LiteR.

2 Preliminaries

We briefly introduce the syntax and semantics of fuzzy DL-LiteR. Let NC , NR,
and NI be three mutually disjoint sets whose elements are called concept names,
role names, and individual names, respectively. The sets of DL-LiteR concepts
and roles are built through the grammar rules

B ::= A | ∃Q C ::= B | ¬B
Q ::= P | P− R ::= Q | ¬Q

where A ∈ NC and P ∈ NR. Concepts of the form B and roles of the form Q
are called basic, and all others are called general.

A fuzzy DL-LiteR TBox is a finite set of fuzzy axioms of the form 〈B v C, d〉
and 〈Q v R, d〉, where d is a number in [0, 1]. An axiom is positive if it does



Table 1. The three main continuous t-norms and related operations

Name d⊗ e d⇒ e 	d

Gödel min{d, e}

{
1 d ≤ e

e ow

{
1 d = 0

0 ow

 Lukasiewicz max{d + e− 1, 0} min{1− d + e, 1} 1− d

product d · e

{
1 d ≤ e

e/d ow

{
1 d = 0

0 ow

not have negation on its right-hand side; note that negations can never occur
on the left-hand side of an axiom. A fuzzy DL-LiteR ABox is a finite set of
fuzzy assertions of the form 〈B(a), d〉 and 〈P (a, b), d〉, where a, b ∈ NI . A fuzzy
DL-LiteR ontology is a pair of the form O = (T ,A) where T is a TBox and A
is an ABox. In the remainer of this paper, we will mostly exclude the qualifiers
“fuzzy,” and “DL-Lite” and simply refer to axioms, ontologies, etc.

The semantics of fuzzy DL-LiteR is based on fuzzy interpretations, which
provide a membership degree or truth degree for objects belonging to the different
concept and role names. To fully define this semantics in the presence of other
constructors according to the theory of mathematical fuzzy logic, we need the
notion of a triangular norm (or t-norm for short).

A t-norm ⊗ is a binary operator over [0, 1] that is commutative, associative,
monotonic, and has as neutral operator 1 [13]. The t-norm is used to generalize
the logical conjunction to the interval [0, 1]. Every continuous t-norm defines a
unique residuum ⇒ where f ⊗ d ≤ e iff f ≤ d ⇒ e. The residuum interprets
implications. With the help of this operation, it is also possible to interpret other
logical operators such as negation (	d := d ⇒ 0). The three basic continuous
t-norms are the Gödel,  Lukasiewicz, and product t-norms, which are defined,
with their residua and negations in Table 1. These t-norms are the fundamental
ones in the sense that every other continuous t-norm is isomorphic to the ordinal
sum of copies of them [12,16]. Hence, as usual, we focus our study to these three
t-norms.

Note that the residuum always satisfies that d ⇒ e = 1 iff d ≤ e, and
that in the Gödel and product t-norms the negation is annihilating in the sense
that it maps to 0 any positive value, while the negation of 0 is 1. In particular,
this means that the negation is not involutive; that is, 	 	 d 6= d in general.
From now on, unless specified explicitly otherwise, we assume that we have
an arbitrary, but fixed, t-norm ⊗ which underlies the operators used. When
the t-norm becomes relevant in the following sections, we will often use G, π,
and  L as prefixes to express that the underlying t-norm is Gödel, product, or
 Lukasiewicz, respectively, as usual in the literature.

We can now formally define the semantics of the logic. An interpretation is a
pair I = (∆I , ·I), where ∆I is a non-empty set called the domain, and ·I is the
interpretation function which maps every individual name a ∈ NI to an element
aI ∈ ∆I ; every concept name A ∈ NC to a function AI : ∆I → [0, 1]; and



every role name P ∈ NR to a function P I : ∆I ×∆I → [0, 1]. That is, concept
names are interpreted as fuzzy unary relations and role names are interpreted
as fuzzy binary relations over ∆I . The interpretation function is extended to
other constructors with the help of the t-norm operators as follows. For every
δ, η ∈ ∆I ,

(∃Q)I(δ) := sup
δ′∈∆I

QI(δ, δ′) (¬B)I(δ) :=	BI(δ) (>)I(δ) :=1

(P−)I(δ, η) := P I(η, δ) (¬Q)I(δ, η) :=	QI(δ, η)

The interpretation I satisfies the axiom

– 〈B v C, d〉 iff for every δ ∈ ∆I , BI(δ)⇒ CI(δ) ≥ d;
– 〈Q v R, d〉 iff for every δ, η ∈ ∆I , QI(δ, η)⇒ RI(δ, η) ≥ d.

It is a model of the TBox T if it satisfies all axioms in T . I satisfies the assertion

– 〈B(a), d〉 iff BI(aI) ≥ d;
– 〈P (a, b), d〉 iff P I(aI , bI) ≥ d.

It is a model of the ABox A if it satisfies all axioms in A, and it is a model of
the ontology O = (T ,A) if it is a model of T and of A.

We note that the classical notion of DL-LiteR [9] is a special case of fuzzy
DL-LiteR, where all the axioms and assertions hold with degree 1. In that case, it
suffices to consider interpretations which map all elements to {0, 1} representing
the classical truth values. When speaking of classical ontologies, we remove the
degree and assume it implicitly to be 1.

For this paper, we are interested in answering conjunctive queries, which
consider whether a combination of facts can be derived from the knowledge in
an ontology. Let NV be a set of variables, which is disjoint from NI , NC , and
NR. A term is an element of NV ∪NI ; that is, an individual name or a variable.
An atom is an expression of the form C(t) (concept atom) or P (t1, t2) (role
atom). Let x and y denote vectors of variables. A conjunctive query (CQ) is
a first-order formula of the form ∃y.φ(x,y) where φ is a conjunction of atoms
which only use the variables from x and y. Let At(φ) denote the set of all atoms
appearing in φ. The variables y are called existential variables, and those in x
are answer variables. A union of conjunctive queries (UCQ) is a finite set of CQs
that use the same answer variables.

Given the CQ q(x) = ∃y.φ(x,y), the interpretation I, and a vector of indi-
viduals a of the same length as x, a match is a mapping π which assigns to each
a ∈ NI the value aI ; to each variable in x the corresponding element of aI ; and
to each variable in y an element δ ∈ ∆I . We extend the match π to apply to
assertions as follows: π(B(t)) = B(π(t)) and π(P (t1, t2)) = P (π(t1), π(t2)). The
degree of the CQ q(x) w.r.t. the match π is

qI(aI , π(y)) :=
⊗

α∈At(φ)

(π(α))I .



That is, a match maps all the variables in the query to elements of the interpre-
tation domain, where the vector a is used to identify the mapping of the answer
variables. The degree of the query is the (fuzzy) conjunction of the degrees of the
atoms under this mapping. From now on, Π(I) denotes the set of all matches
of q(x) w.r.t. the interpretation I.

A tuple of individuals a is an answer of q(x) to degree d w.r.t. the interpre-
tation I (denoted by I |= q(a) ≥ d) iff qI(aI) := supπ∈Π(I) q

I(aI , π(y)) ≥ d. It
is a certain answer (or answer for short) of q(x) over the ontology O to degree d
(denoted as O |= q(a) ≥ d) iff for every model I of O it holds that I |= q(a) ≥ d.
The set of certain answers of the query q(x) w.r.t. O and their degree is denoted
by ans(q(x),O); that is,

ans(q(x),O) := {(a, d) | O |= q(a) ≥ d and for all d′ > d,O 6|= q(a) ≥ d′}.

It is important to keep in mind that the atoms in a CQ are not graded, but
simply try to match with elements in the domain. The use of the truth degrees
becomes relevant in the degree of the answers found.

A class of queries of special significance is that where the vector of answer
variables x is empty. This means that the answer tuple of individuals must also
be empty. In the classical setting, these are called Boolean queries, because they
can only return a Boolean value: true if there is a match for the existential
variables in every model, and false otherwise. In the fuzzy setting, the set of
answers to such a query will only contain one element ((), d). Thus, in that case,
we are only interested in finding the degree d, and call them degree queries. This
degree is the tightest value for which we can find a satisfying matching. Formally,
the ontology O entails the degree query q() to degree d iff O |= q() ≥ d and
O 6|= q() ≥ d′ for all d′ > d. Degree queries allow us to find the degree of a
specific answer a without having to compute ans(q(x),O): simply compute the
degree of the degree query q(a).

As typical in query answering for description logics, we consider two measures
of complexity: data complexity, where only the size of the ABox is considered
as part of the input, and combined complexity in which the size of the whole
ontology (including the TBox) is taken into account.1 For data complexity, it
is relevant to consider sub-linear complexity classes. In particular, we consider
AC0 and LogSpace. For the formal definitions, see [4,18]; here we only mention
briefly that evaluation of FO-queries over a database is in AC0 on the size of
the database [1] and AC0 is strictly contained in LogSpace [11, 19].

In classical DL-Lite, query answering w.r.t. an ontology is reduced to the
standard problem of query answering over a database through a process known
as query rewriting, and thus is in AC0 w.r.t. data complexity. The main idea is
to include in the query all the information that is required by the TBox, in such
a way that only assertions from the ABox need to be considered. Since there
are many possible choices to create the matches that comply with the TBox,

1 Note that combined complexity does not include the query as part of the input, but
only the ontology. This is in line with the terminology used in ontology-based query
answering; e.g. [2]. It is typically only used in combination of simple fixed queries.



this method results in a UCQ. At this point, the ABox is treated as a database,
which suffices to find all the certain answers. Similarly, a special UCQ can be
used to verify that the ontology is consistent ; that is, whether it is possible to
build a model for this ontology. For the full details on how these query rewritings
work in classical DL-Lite, see [9]. In terms of combined complexity, consistency
can be decided in polynomial time; in fact, it is NLogSpace-complete [2].

3 The Canonical Interpretation

A very useful tool for developing techniques for answering queries in DL-LiteR is
the canonical interpretation. We first show that the same idea can be extended
to fuzzy ontologies, independently of the t-norm underlying its semantics.

Let O = (T ,A) be a DL-Lite ontology and assume w.l.o.g. that there are
no axioms of the form 〈∃Q1 v ∃Q2, d〉 ∈ T ; any such axiom can be substituted
by the two axioms 〈∃Q1 v A, 1〉 , 〈A v ∃Q2, d〉 where A is a concept name not
appearing in T . The canonical interpretation of O is the interpretation Ican(O)
over the domain ∆Ican := NI ∪ NN , where NN is a countable set of constants
obtained through the following (infinite) process. Starting from the empty inter-
pretation which sets AIcan(δ) = 0 and P Ican(δ, η) = 0 for every A ∈ NC , P ∈ NR
and δ, η ∈ ∆Ican , exhaustively apply the following rules:

– if 〈A(a), d〉 ∈ A and AIcan(a) < d, then update AIcan(a) := d;
– if 〈P (a, b), d〉 ∈ A and P Ican(a, b) < d, then update P Ican(a, b) := d;
– if 〈A1 v A2, d〉 ∈ T and AIcan2 (δ) < AIcan1 (δ) ⊗ d, then update the value
AIcan2 (δ) := AIcan1 (δ)⊗ d;

– if 〈A v ∃P, d〉 ∈ T and for every η ∈ ∆Ican , P Ican(δ, η) < AIcan(δ) ⊗ d
holds, then select a fresh element η0 such that P Ican(δ, η0) = 0 and update
P Ican(δ, η0) := AIcan(δ)⊗ d;

– if 〈A v ∃P−, d〉 ∈ T and for every η ∈ ∆Ican P Ican(η, δ) < AIcan(δ) ⊗ d
holds, then select a fresh element η0 such that P Ican(η0, δ) = 0 and update
P Ican(η0, δ) := AIcan(δ)⊗ d;

– if 〈∃P v A, d〉 ∈ T and ∃η ∈ ∆Ican such that AIcan(δ) < P Ican(δ, η)⊗ d, then
update AIcan(δ) := P Ican(δ, η)⊗ d;

– if 〈∃P− v A, d〉 ∈ T and ∃η ∈ ∆Ican such that AIcan(δ) < P Ican(η, δ)⊗d, then
update AIcan(δ) := P Ican(η, δ)⊗ d;

– if 〈Q1 v Q2, d〉 ∈ T and QIcan2 (δ, η) < QIcan1 (δ, η) ⊗ d, then update the value
QIcan2 (δ, η) := QIcan1 (δ, η)⊗ d.

where the rules are applied in a fair manner; that is, an applicable rule is eventu-
ally triggered. The process of rule application is a monotone increasing function,
and as such has a least fixpoint, which is the canonical interpretation Ican(O).

Intuitively, Ican(O) should be a minimal model of O, which describes the
necessary conditions of all other models of O. Indeed, the first two rules ensure
that the conditions imposed by the ABox are satisfied, while the remaining
rules guarantee that all elements of the domain satisfy the positive axioms from
the TBox, and each rule is as weak as possible in satisfying these constraints.



However, the construction of Ican(O) does not take the negations into account.
The effect of this is that Ican(O) might not be a model of O.

Example 1. Consider the fuzzy DL-Lite ontology O0 = (T0,A0) where

T0 := {〈A1 v ¬A2, 1〉},
A0 := {〈A1(a), 0.5〉 , 〈A2(a), 0.5〉}.

Under the Gödel semantics, by application of the first rule, the canonical in-
terpretation maps AIcan1 (a) = AIcan2 (a) = 0.5. However, this violates the axiom
in T0, which requires that AIcan1 (a) ⇒ 	AIcan2 (a) = 1. That is, it requires that
AIcan1 (a) < 	AIcan2 (a), which is only possible when AIcan1 (a) = 0 or AIcan2 (a) = 0.

The issue is that the negative axioms may introduce inconsistencies, by enforc-
ing upper bounds in the degrees used, which are not verified by the canonical
interpretation. However, as long as there is a model, Ican(O) is one.

Proposition 2. Ican(O) is a model of O iff O is consistent.

It can be seen that O0 from Example 1 is inconsistent under the Gödel semantics.
On the other hand, under the  Lukasiewicz semantics, O0 is consistent which, by
this proposition, means that Ican(O) is a model of this ontology. This is easily
confirmed by recalling that under the  Lukasiewicz negation 	0.5 = 0.5.

The name canonical comes from the fact that, as in the classical case, Ican(O)
can be homomorphically embedded in every model of O. We show a similar
result with the difference that in this case, the homomorphism needs to take
into account the truth degrees from the interpretation function as well. This is
described in the following proposition.

Proposition 3. Let O be a consistent fuzzy DL-Lite ontology, I = (∆I , ·I) a
model of O, and Ican(O) = (∆Ican , ·Ican) its canonical interpretation. There is a
function ψ from ∆Ican to ∆I such that:

1. for each A ∈ NI and δ ∈ ∆Ican , AIcan(δ) ≤ AI(δ); and
2. for each P ∈ NR and δ, η ∈ ∆Ican , P Ican(δ, η) ≤ P I(δ, η).

The consequence of this proposition is that Ican(O) is complete for existential
positive queries, and in particular for conjunctive queries.

Corollary 4. If O is a consistent fuzzy DL-Lite ontology, then for every CQ
q(x) and answer tuple a it holds that O |= q(a) ≥ d iff Ican(O) |= q(a) ≥ d.

Obviously, answering queries through Ican(O) is impractical, because it is an
infinite model constructed through an infinitary process. Additionally, we still
have the burden to prove that the ontology is consistent, before trying to use
Corollary 4 to answer queries. Fortunately, for the Gödel and product t-norms,
we resort to existing results from the literature.



Given a fuzzy DL-Lite ontology O = (T ,A), let Ô be its classical version

defined as Ô := (T̂ , Â) with

T̂ := {B v C | 〈B v C, d〉 ∈ T , d > 0} ∪ {Q v R | 〈Q v R, d〉 ∈ T , d > 0},

Â := {B(a) | 〈B(a), d〉 ∈ T , d > 0} ∪ {P (a, b) | 〈P (a, b), d〉 ∈ T , d > 0}.

That is, Ô contains all the axioms and assertions from O which hold with a
positive degree—note that any fuzzy axiom or assertion with degree 0 could be
removed w.l.o.g. anyway. The following result is a consequence of work on more
expressive fuzzy DLs [7].

Proposition 5. Let O be a G-DL-LiteR or π-DL-LiteR ontology. Then O is
consistent iff Ô is consistent.

In those cases, consistency checking can be reduced to the classical case, without
the need to modify the query or the basic formulation of the ontology. For the
ontology O0 in Example 1, we have Ô0 = ({A1 v ¬A2}, {A1(a), A2(a)}), which
is inconsistent in the classical case. We note that the example also shows that
Proposition 5 does not hold for the  Lukasiewicz t-norm.

In particular, Proposition 5 shows that deciding consistency of G-DL-LiteR
and π-DL-LiteR ontologies is in AC0 w.r.t. data complexity and in NLogSpace
w.r.t. combined complexity. Thus adding truth degrees does not affect the com-
plexity of this reasoning task. We now turn our attention to the task of query
answering with the different semantics, starting with the idempotent case of the
Gödel t-norm.

Before studying how to answer queries over fuzzy DL-LiteR ontologies and
its complexity, we note that in the case that an ontology is classical—i.e., it
uses only degree 1 in all its axioms—its canonical interpretation constructed as
described in this section is equivalent to the classical canonical interpretation
from [9]. This fact will be used in the following section.

4 Answering Queries over Gödel Ontologies

The Gödel semantics are very limited in their expressivity. On the one hand,
	d ∈ {0, 1} for all d ∈ [0, 1]. This means that whenever we have an axiom of
the form 〈B v ¬B′, d〉 or 〈Q v ¬Q′, d〉 with d > 0, we are in fact saying that
for every element δ ∈ ∆I , if BI(δ) > 0, then B′I(δ) = 0—because 	B′I(δ) = 1
(and similarly for role axioms). Thus, for this section we can assume w.l.o.g. that
all negative axioms hold with degree 1. On the other hand, a positive axiom of
the form 〈B v B′, d〉 requires that for every δ ∈ ∆I , B′I(δ) ≥ min{BI(δ), d}.
That is, the only way to guarantee that an atom gets a high degree is to use
axioms with a high degree. We use these facts to reduce reasoning tasks in this
setting to the classical DL-LiteR scenario.

Consider a consistent G-DL-LiteR ontology O. We can decide a lower bound
for the degree of a CQ simply by querying a cut of O. Given a value d ∈ (0, 1],



the d-cut of O is defined as the sub-ontology O≥d := (T≥d,A≥d) where

T≥d := {〈γ, e〉 ∈ T | e ≥ d},
A≥d := {〈α, e〉 ∈ A | e ≥ d}.

That is, O≥d is the subontology containing only the axioms and assertions that
hold to degree at least d. To show that d-cuts suffice for answering queries, we
use the canonical interpretation.

Note that including new axioms or assertions to an ontology results in an up-
date of the canonical interpretation which only increases the degree of some of the
elements of the domain. More precisely, if Ican(O) is the canonical interpretation
of O = (T ,A), then the canonical interpretation of O′ = (T ∪{〈B v C, d〉},A) is
the result of applying the construction rules starting from Ican(O). Since Ican(O)
has already applied all the rules on axioms of O exhaustively, the only remaining
rule applications will be based on the new axiom 〈B v C, d〉 and new applications
over T . Under the Gödel semantics, all the updates increase the interpretation
function up to the value d; that is, if ·I′can is the interpretation function of Ican(O′),
the difference between Ican(O) and Ican(O′) is that there exist some elements
such that AIcan(δ) < AI

′
can(δ) = d, and similarly for roles. Moreover, if d0 is the

smallest degree appearing in the ontology O, then its canonical interpretation
uses only truth degrees in {0}∪ [d0, 1]; that is, no truth degree in (0, d0) appears
in Ican(O). With these insights we are ready to produce our first results. For the
rest of this section, we always consider that the semantics is based on the Gödel
t-norm; i.e., we have a G-DL-LiteR ontology.

Lemma 6. Let O be a consistent G-DL-LiteR ontology, q(x) a query, a a vector
of individuals, and d ∈ (0, 1]. Then O |= q(a) ≥ d iff O≥d |= q(a) ≥ d.

Proof. Since O≥d ⊆ O, every model of O is also a model of O≥d. Hence, if
O≥d |= q(a) ≥ d, then O |= q(a) ≥ d.

For the converse, assume that O≥d 6|= q(a) ≥ d. By Corollary 4, this means

that Ican(O≥d) 6|= q(a) ≥ d. That is, qIcan(aIcan) < d. Let Ican(O) = (∆I
′
can , ·I′can)

be the canonical interpretation of O. Recall that the difference between O and
O≥d is that the former has some additional axioms with degrees smaller than d.
As argued before, this means that the difference between Ican(O) and Ican(O≥d)
are just some degrees, which are all smaller than d; that is, for every A ∈ NC ,
P ∈ NR, and δ, η ∈ ∆I′can , if AI

′
can(δ) ≥ d, then AIcan(δ) ≥ d and if P I

′
can(δ, η) ≥ d,

then P Ican(δ, η) ≥ d. By assumption, this means that qI
′
can(aI

′
can) < d and hence

Ican(O) 6|= q(a) ≥ d. Thus, O 6|= q(a) ≥ d. ut

What this lemma states is that in order to find a lower bound for the degree
of a query, one can ignore all the axioms and assertions that provide a smaller
degree. However, one still needs to answer a query for a fuzzy ontology, for which
we do not have any solution. The next lemma solves this issue.

Lemma 7. Let O be a consistent G-DL-LiteR ontology such that O≥d = O for

some d > 0. Then, O |= q(a) ≥ d iff Ô |= q(a).



Algorithm 1: Compute the degree of an answer to a query

Data: Ontology O, query q, answer a, D = {d0, d1, . . . , dn+1}
Result: The degree of q(a) w.r.t. O

1 i← n + 1

2 N ← Ô≥1

3 while N 6|= q(a) and i > 0 do
4 i← i− 1

5 N ← Ô≥di

6 return di

Proof. Every model of Ô is also a model of O, with the additional property that
the interpretation function maps all elements to {0, 1}. If O |= q(a) ≥ d > 0,

then for every model I of Ô it holds that qI(aI) ≥ d > 0 and thus qI(aI) = 1,

which means that Ô |= q(a).

Conversely, if Ô |= q(a), the canonical interpretation Ican(O) must be such
that qIcan(aIcan) > 0; but as argued before, since O only has axioms and assertions
with degrees ≥ d, it must be the case that all degrees of Ican(O) are in {0}∪[d, 1],
and hence qIcan(aIcan) ≥ d. This implies, by Corollary 4 that O |= q(a) ≥ d. ut

These two lemmas together provide a method for reducing bound queries in
G-DL-LiteR to query answering in classical DL-LiteR.

Theorem 8. If O is a consistent G-DL-LiteR ontology and d > 0, then it holds
that O |= q(a) ≥ d iff Ô≥d |= q(a).

This means that we can use a standard ontology-based query answering system
to answer fuzzy queries in DL-LiteR as well. Note that the approach proposed
by Theorem 8 can only decide whether the degree of an answer to a query is at
least d, but it needs the value d as a parameter. If, instead, we are interested in
computing the degree of an answer, or ans(q(x),O), we can proceed as follows.

Since the TBox T and the ABox A which compose the ontology O are both
finite, the set D := {d | 〈α, d〉 ∈ T ∪ A} of degrees appearing in the ontology is
also finite; in fact, its size is bounded by the size of O. Hence, we can assume
that D is of the form D = {d0, d1, . . . , dn, dn+1} where d0 ≥ 0, dn+1 ≤ 1 and
for all i, 0 ≤ i ≤ n, di < di+1. In order to find the degree of an answer a to a
query q, we proceed as follows: starting from i := n + 1, we iteratively ask the
query O≥di |= q(a) and decrease i until the query is answered affirmatively, or
i becomes 0 (see Algorithm 1). In the former case, di is the degree for q(a); in
the latter, the degree is 0—i.e., a is not an answer of q.

During the execution of this algorithm, each classical query needed at line 3
can be executed in AC0 (and in particular in LogSpace) in the size of the data;
i.e., the ABox [2]. The iterations in the loop do not affect the overall space used,
as one can simply produce a new query every time and clean up the previous
information. Overall, this means that the degree of an answer can be computed
in LogSpace in data complexity.



Corollary 9. The degree of an answer a to a query q w.r.t. the G-DL-LiteR
ontology O is computable in LogSpace in data complexity.

Computing ans(q(x),O) is, however, a more complex task. Although we can
follow an approach similar to Algorithm 1, where the answers to q(x) are com-

puted for each ontology Ô≥di , in order to assign the appropriate degree to each
answer, we need to either keep track of all the answers found so far, or add a
negated query which excludes the answers with a higher degree. In both cases,
we end up outside the realm of LogSpace complexity. On the other hand, the
whole set of answers ans(q(x),O) will usually contain many answers that hold
with a very low degree, which may not be of much interest to the user making
the query. When dealing with degrees, a more meaningful task is to find the
k answers with the highest degree, for some natural number k; i.e., the top-k
answers of q.

Algorithm 1 once again suggests a way to compute the top-k answers. As
in the algorithm, one starts with the highest possible degree, and expands the
classical ontology by including the axioms and assertions with a lower degree.
The difference is that one stops now when the query returns at least k tuples
as answers. At that point, the tuples found are those with the highest degree
for the query. As before, each of these queries can be answered in AC0 in data
complexity, which yields a LogSpace upper bound for answering top-k queries
in data complexity.

Corollary 10. Top-k queries over consistent G-DL-LiteR ontologies can be an-
swered in NLogSpace in data complexity.

5 Non-idempotent t-norms

We now move our attention to the t-norms that are not idempotent; in partic-
ular the product and  Lukasiewicz t-norms. Unfortunately, as we will see, the
correctness of the reductions presented in the previous section relies strongly on
the idempotency of the Gödel t-norm, and does not transfer directly to the other
cases. However, at least for the product t-norm, it is still possible to answer some
kinds of queries efficiently.

First recall that Proposition 5 holds for the product t-norm as well. Hence,
deciding consistency of a π-DL-LiteR ontology remains reducible to the classical
case and thus, efficient. We now show with simple examples that the other results
do not transfer so easily.

Example 11. Let O1 := (T1,A1) with T1 := {〈Ai v Ai+1, 0.9〉 | 0 ≤ i < n}
and A1 := {〈A0(a), 1〉}. Note that O1 = O1≥0.9, but the degree for the query
q() = An(a) is 0.9n which can be made arbitrarily small by making n large.

Similarly, it is not possible to find the top-k answers simply by layering the
d-cuts for decreasing values of d until enough answers can be found.



Example 12. Let O′1 := (T1,A′1), where A′1 := A1 ∪ {〈An(b), 0.85〉} and T1, A1

are as in Example 11. The top answer for q(x) = An(x) is b with degree 0.85,
but from O′1≥0.9 we already find the answer a, which is not the top one.

The main point with these examples is that, from the lack of idempotency of the
t-norm ⊗, we can obtain low degrees in a match which arises from combining
several axioms and assertions having a high degree. On the other hand, the
product behaves well for positive values in the sense that applying the t-norm
to two positive values always results in a positive value; formally, if d, e > 0,
then d⊗ e > 0. Thus, if we are only interested in knowing whether the result of
a query is positive or not, there is no difference between the Gödel t-norm and
the product t-norm.

Definition 13. A tuple a is a positive answer to the query q(x) w.r.t. the on-
tology O (denoted O |= q(a) > 0) iff for every model I of O it holds that
qI(aI) > 0.

Theorem 14. If O is a consistent π-DL-LiteR ontology, then O |= q(a) > 0 iff

Ô |= q(a).

Proof. Every model of Ô is also a model of O, with the additional property that
the interpretation function maps all elements to {0, 1}. If O |= q(a) > 0, then

for every model I of Ô it holds that qI(aI) > 0 and thus qI(aI) = 1, which

means that Ô |= q(a).

Conversely, if Ô |= q(a), then the canonical interpretation is such that
qIcan(aIcan) > 0, and hence for every model I it also holds that qI(aI) > 0. ut

This means that, for the sake of answering positive queries over the product
t-norm, one can simply ignore all the truth degrees and answer a classical query
using any state-of-the-art engine. In particular, this means that positive answers
can be found in AC0 in data complexity just as in the classical case.

We now briefly consider the  Lukasiewicz t-norm, which is known to be the
hardest to handle due to its involutive negation and nilpotence, despite being
in many cases the most natural choice for fuzzy semantics [6]. As mentioned
already, Proposition 5 does not apply to the  Lukasiewicz t-norm. That is, there
are consistent  L-DL-LiteR ontologies whose classical version is inconsistent (see
Example 1). As a result, there is currently no known method for deciding con-
sistency of these ontologies, let alone answering queries. The culprits for this are
the involutive negation, which is weaker than the negation used in the other two
t-norms, but also the nilpotence, which may combine positive degrees to produce
a degree of 0. The latter also means that, even if one could check consistency, it
is still not clear how to answer even positive queries.

Example 15. Consider the ontology O2 := (T2,A2) where

T2 := {〈A0 v A1, 0.5〉 , 〈A1 v A2, 0.5〉}
A2 := {〈A0(a), 1〉}.



Note that O2 is consistent, but there is a model I (e.g., the canonical interpre-
tation) of this ontology which sets AI2 (aI) = 0. Hence, a is not a positive answer

to the query q(x) = A2(x) even though it is an answer of q(x) over Ô2.

Importantly, if we extend DL-LiteR with the possibility of using conjunctions in
the right-hand side of axioms—which becomes only syntactic sugar in the classi-
cal case—one can show following the ideas from [5, 6] that deciding consistency
of a  L-DL-LiteR ontology is NP-hard in combined complexity, going beyond the
NLogSpace upper bound for the case considered in this work.

6 Conclusions and Future Work

We have introduced the first method for answering conjunctive queries over
fuzzy DL-LiteR ontologies where also the axioms in the TBox are allowed to
constrain the admissible truth degrees, and the semantics is based in the notions
of mathematical fuzzy logic, with an underlying t-norm an operators.

We have shown that for the Gödel t-norm dealing with the truth degrees adds
only a linear overhead to classical query answering, and can be solved through
repeated calls to a classical QA engine, which can be chosen from any of the
many efficient existing solutions. Moreover, checking consistency of an ontology
is easily reduced to the classical case. Technically, this greatly improves the
results from [14], where the query needed to be translated into a new one to
handle the different degrees (and the TBox must be classical). In our case, we
can take any existing solver, and use it without modification. The drawback
is that, by not providing a direct translation, the data complexity of the query
answering method jumps from AC0 to LogSpace; consistency checking is still in
AC0 w.r.t. data complexity and in NLogSpace in combined complexity. Finding
the k answers with the highest truth degree remains within the same complexity
bounds. Importantly, the LogSpace upper bounds are not necessarily tight. It
remains to be seen whether answering w.r.t. G-DL-LiteR ontologies is in fact
LogSpace-hard, or can be solved in AC0. On the other hand, if one is only
interested in deciding whether the degree is greater or equal to a given bound,
the complexity lowers to that of the classical case again.

The case of other continuous t-norms is, unfortunately, not as clear as Gödel.
Although for any t-norm that is not nilpotent (that is, anyone which behaves
as the Gödel or the product t-norms at the beginning of the interval [0, 1])
ontology consistency trivially reduces to the classical case as in Proposition 5,
it is not clear how to handle other reasoning problems, and in particular query
answering efficiently. It is important to note that as soon as the t-norm is not
idempotent, query-rewriting techniques cannot work as usual; in fact, query
rewritings are agnostic to the number of times a single axiom or assertion is used
in a derivation, which affects the final result when degrees are accumulated. For
t-norms with nilpotent elements, and in particular for the  Lukasiewicz t-norm,
even the question of consistency is open. In fact, for a minimal extension of
 L-DL-LiteR consistency can be shown to be NP-hard in combined complexity.



We emphasise that, despite both using degrees in [0, 1] and similar operators,
π-DL-LiteR ontologies are not probabilistic ontologies. In particular, in the con-
text of query answering, even if we consider only the assertions in the ABox, the
product semantics produce very different results to probabilistic databases [22].
The main difference is that a probabilistic fact spawns two possible worlds—
one in which the fact is true, and one where it is false—which pushes the data
complexity of query answering to #P-hard. In π-DL-LiteR, graded facts only
provide a truth degree, and cannot be considered possible worlds.

In the literature of fuzzy query answering, a usual task is to answer threshold
queries, where each of the conjuncts in the CQ is associated with a lower truth
degree. The technique introduced in this paper is unable to handle this task, and
new techniques will need to be developed for it. The most promising approach for
the Gödel semantics is a new rewriting, which uses graded facts in the database.
We will explore this road in more detail in the future.
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