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Abstract. Ontologies represent principled, formalised descriptions of
agents’ conceptualisations of a domain. In the case of a community of
agents, these descriptions may differ among agents. We propose an ag-
gregative view of the integration of ontologies based on Social Choice
Theory (SCT) and Judgement Aggregation (JA). Agents may vote on
statements from the ontologies, and we aim at constructing a collec-
tive, integrated ontology, that reflects the individual conceptualisations
as much as possible. As several results in SCT and JA show, many at-
tractive and widely used aggregation procedures are prone to return in-
consistent collective ontologies. In this paper, we propose to solve the
possible inconsistencies in the collective ontology by applying suitable
weakenings of axioms derived from generalisations and specialisations of
concepts in axioms belonging to minimally inconsistent subsets.

1 Introduction

Social choice theory (SCT) is a branch of economic theory that deals with the
design and analysis of mechanisms for aggregating opinions of individual agents
to arrive at a basis for a collective decision [10]. A ubiquitous example of such a
mechanism is voting, usually intended as voting on preferences in standard social
choice. Recently, the model of aggregation has been applied to judgements, or
more generally to propositional attitudes, expressed in some logical setting, in
an area termed Judgement Aggregation (JA) [6,16,18].

Ontologies are widely used in Knowledge Representation to provide princi-
pled descriptions of agents’ knowledge, by presenting a clear formalisation of
their conceptualisations. The meaning of the concepts is then represented by
means of a number of axioms, which may be written in a variety of logical
systems of varying expressivity [13]. With the exception of [20], the usual ap-
proaches to SCT and JA are usually applied to propositional logics, modal logics,
or even more general logics, but they do not touch the problem of the possibly
heterogeneous definitions of concepts used by the agents to formalise their in-
dividual conceptualisation. Understanding what is the meaning of a concept for
a community of agents and deciding how to elect a common conceptualisation
out of possibly conflicting ones is an interesting open problem that has several
applications, for instance, in the context of political applications of SCT. Under-
standing what is the meaning of a concept for a community of agents is crucial



for modelling electoral campaigning, where parties try to maximise their elec-
torate by appealing to widely shareable world views. Moreover, in the case of
coalition formation, it is important to assess whether viable coalitions of par-
ties, besides sharing a possible agenda of interests, may also share the concepts
that they use in order to promote their alliance to their respective electorates.
Finally, concept aggregation is important in opinion pooling, in trying to define
the mean opinion, which is a statement involving concepts [8].

In the context of ontology aggregation, we may think of each ontology as
a voter, and these voters try to ‘elect’ a collective ontology that adequately
and fairly represents their conceptualisations. SCT then provides the formal
means to assess the suitable aggregation procedures for a given aggregation
scenario, by defining a number of properties that aggregators may or may not
satisfy. However, many results in SCT and JA show that a significant number of
important aggregation procedures, e.g., the majority rule, fail in preserving the
consistency of the individual inputs [18,20]. This means that, although we assume
that all ontologies that agents submit for aggregation are consistent, the outcome
of the aggregation may lead to an inconsistent collective conceptualisation. A
number of strategies to circumvent inconsistency have been pursued in SCT and
JA, for instance, abandoning well-known aggregators in favour of aggregators
that indeed preserve consistency, or restricting the set of propositions about
which the agents cast their vote to those for which consistency can be ensured.

In this paper, we follow a novel approach. We discuss well-known justified
aggregation procedures that are actually used in real collective decision problems,
viz absolute majority rule and quota rule, and we propose a computational viable
methodology based on aziom weakening to repair their possibly inconsistent
outcomes.

The idea behind axiom weakening is to generalise or specialise possibly con-
flicting concepts with concepts that are, in some sense, as close as possible to
the original ones, but do not yield an inconsistency. Preventing inconsistencies
by appealing to ‘general’ concepts, which may then be prone to agreement al-
though they have not been voted on by any individual, has been suggested and
legitimated in the literature on social choice and deliberation [7,17,19].

This is an important issue, and it also relates to the distinction between fine
vs. coarse integration of ontologies. In the case of a coarse integration, the ontol-
ogy to be constructed will always contain some of the formulas included in the
individual ontologies; in the fine integration, new formulas shall be constructed.
The approach in [20] provides an example of coarse integration. In this paper,
we are after a viable definition of fine integration.

To resume, the contributions of this paper are as follows. We consider possible
conceptualisations of agents as represented by means of ontologies written in
Description Logic (DL). In particular, we focus on the basic DL ALC [1], which is
a popular language for ontology development. Secondly, we use the methodology
of SCT and JA of [20] to define a framework for ontology aggregation. Thirdly,
we use refinement operators for concept generalisations and specialisations, and
we apply them to repair the collective ontology by selecting adequate refinement
of the axioms that caused the inconsistency.



2 Ontologies and Description logics

We take an ontology to be a set of formulas in an appropriate logical language,
describing our domain of interest. Which logic we use precisely is not crucial for
illustrating the proposed approach, but as much formal work on ontologies makes
use of description logics (DLs), we will use these logics for all of our examples.
A significant widely used basic description logic is ALC, which is the logic we
shall be working with here.

We present the basics of ALC. For full details we refer to the literature [1].
The language of ALC is based on an alphabet consisting of atomic concepts
names N¢, and roles names Ng. The set of concept descriptions is generated by
the following grammar (where A represents atomic concepts and R role names):

Cu=A|-C|CNC|CUC|YRC|3RC

We collect all ALC concepts over N¢ and Ng in L(ALC, N¢, Ng). We assume a
linear order < 4,.¢ over ALC formulas. We do not need to attach any particular
meaning to it, but it will be helpful for coping with non-determinism and for
tie-breaking.

A TBoz is a finite set of concept inclusions of the form C T D (where
C and D are concept descriptions). It is used to store terminological knowledge
regarding the relationships between concepts. An ABoz is a finite set of formulas
of the form A(a) (“object a is an instance of concept A”) and R(a,b) (“objects
a and b stand to each other in the R-relation”).! It is used to store assertional
knowledge regarding specific objects. The semantics of ALC is defined in terms
of interpretations I = (A!,-T) that map each object name to an element of
its domain A, each atomic concept to a subset of the domain, and each role
name to a binary relation on the domain. The truth of a formula in such an
interpretation is defined in the usual manner [1]. For instance, a point a € A!
belongs to the interpretation of the concept (VR.C)! if all elements related to a
via (the interpretation of) R belong to the (interpretation of) C.

In the remainder of this paper, we restrict our attention to TBox axioms. As
usual, a TBox T is consistent if it has a model, and inconsistent otherwise. A
concept C is satisfiable with respect to a TBox if there exists an interpretation
I of the TBox that makes C! non-empty. A consequence relation = is defined
on top of this semantics in the standard way. The relation o denotes the
consequence relation w.r.t. an ontology O.

! Note that limiting the ABox to ‘atomic’ formulas is not a restriction, as A may be
given a complex definition in the TBox.



3 Aggregating Ontologies

Consider an arbitrary but fixed finite set @ of ALC TBox statements over this
alphabet.? We call @ the agenda and any set O C & an ontology. We denote the
set of all those ontologies that are consistent by On(®).

Let N' = {1,...,n} be a finite set of agents (or individuals). Each agent
i € N provides a consistent ontology O; € On(®). An ontology profile is a vector
O = (O1,...,0,) € On(@)N of consistent ontologies, one for each agent. We
write N& := {i € N' | ¢ € O;} for the set of agents that include ¢ in their
ontology under profile O. Our object of study are ontology aggregators.

Definition 1 (Ontology aggregators). An ontology aggregator is a function
F: On(@)N — 2% mapping any profile of consistent ontologies to an ontology.

Observe that, according to this definition, the ontology we obtain as the outcome
of an aggregation process needs not be consistent. Ontology aggregators that
are consistent would be very desirable in general. Unfortunately, they also suffer
certain drawbacks. The unanimous aggregator is one of these.

Definition 2 (Unanimous aggregator). The unanimous aggregator is the
ontology aggregator F,,, mapping any given profile O € On(@)N to the ontology

Fun(0):==01N---NO, .

The unanimous aggregator indeed preserves consistency. That is, if every on-
tology Oj is consistent, so is F,(O). However, if the individual ontologies are
heterogeneous enough, the unanimous aggregator is likely to provide a very poor
collective ontology. Often in practice, on large enough electorate and agendas,
the aggregated ontology will be empty.

At the opposite side of the spectrum, we can define the union aggregator,
that accepts any piece of information provided by at least one agent.

Definition 3 (Union aggregator). The union aggregator is the ontology ag-
gregator F,, mapping any given profile O € On(@)N to the ontology

F.(0):=0,U---UO, .

In this case, the collective ontology is very likely to be inconsistent.

A way to balance the contributions of agents better than with the unanimous
and the union aggregators, we can adapt the majority rule, which is widely
applied in any political scenarios. In our setting, the majority rule is defined as
follows.

2 The finite set of TBox formulas in & might be all TBox formulas of a certain max-
imum length or the union of all TBox formulas that a given population of agents
choose to include in their TBoxes.



LeftPolicy C RaiseWages
LeftPolicy C RaiseWelfare
RaiseWages M RaiseWelfare C L

Fig. 1. The TBox agenda of the agents.

Definition 4 (Absolute majority rule). The absolute majority rule is the
ontology aggregator F,, mapping any given profile O € On(@)N to the ontology

Fn(0) = {p € & | #NO > g} .

That is, under the absolute majority rule, a formula gets accepted if and only
if more than half of the individual agents accept it. A simple generalisation of
the majority rule provides the class of quota rules, where the threshold of 3 is
replaced by any threshold g.

Definition 5 ((Uniform) quota rules). The uniform quota rule with thresh-
old q is the ontology aggregator F, mapping any given profile O & On(@)N to
the ontology

Fy(0):={p e @[ #N. > q} .

The majority rule, and more generally quota rules, return a consistent ontology
only on very simple agendas, i.e., on very simple ontologies [20]. In the next
section we introduce an example to discuss the possible inconsistency caused
by majoritarian aggregation and we informally present our strategy to solve the
problem.

4 Possibly Inconsistent Collective Ontologies

The following example shows that also the absolute majority rule, which is widely
used in any political scenario, is not a consistent aggregator. Our example is
a simple adaptation of the doctrinal paradoxr familiar from the literature on
judgement aggregation to the case of concept definitions [12,18].

Consider three left-wing political leaders, i.e., three agents 1, 2, and 3, who
must agree on what is a left policy in order to coordinate their campaigns.
They vote on possible definitions of left-wing policy by casting their votes on
the TBox agenda shown in Figure 1. Each individual ontology, in particular,
formalises possible meanings that agents ascribe to what is a left-wing policy.
Suppose that the agents vote as in Table 1.

Every individual set of axioms is consistent and the concept LeftPolicy is
satisfiable in each of the individual ontologies. Agent 1, for instance, believes that
a left policy must raise both the wages and the levels of welfare, accordingly this
agent believes that it is possible to promote the levels of both. Agent 2 believes
that a left policy only has to raise wages, not the level of welfare, as they believe
that it is not possible to do both. Agent 3 believes that what counts as a left



Table 1. A voting scenario

LeftPolicy C RaiseWages LeftPolicy C RaiseWelfare RaiseWages [ RaiseWelfare C L

1 yes yes no
2 yes no yes
3 no yes yes
Maj. yes yes yes

LeftPolicy C RaiseWages
LeftPolicy C RaiseWelfare
RaiseWages C Reducelnequality
RaiseWelfare C Reducelnequality
LeftPolicy C Reducelnequality
Reducelnequality C Policy
LeftPolicy C Policy

Fig. 2. A reference ontology

policy is that it promotes the levels of welfare and that it is not possible to
increase welfare and wages at the same time.

Although all individual ontologies are consistent and the concept LeftPolicy
is indeed satisfiable in each O;, the ontology obtained by applying the absolute
majority rule is not. The ontology F,,,(O1, Oz, O3) in this case coincides with the
full agenda of Figure 1. In particular, it contains the following definitions:

LeftPolicy C RaiseWages
LeftPolicy C RaiseWelfare
RaiseWages N RaiseWelfare C |

By accepting both LeftPolicy C RaiseWages and LeftPolicy T RaiseWelfare, we
could infer LeftPolicy C RaiseWagesMRaiseWelfare, which together with the axiom
RaiseWages N RaiseWelfare C 1 makes the concept of LeftPolicy unsatisfiable.
Moreover, as soon as we assume that there are indeed candidates for a left-wing
policy, e.g., we add an ABox formula LeftPolicy(a), for some constant a, to the
ontology F,,(O1,02,03), then the collective ontology becomes inconsistent.

To repair the outcome of the majority rule, we assume that the agents
agree to use a reference ontology (Figure 2). There is more than one way of
repairing the collective ontology. With respect to the reference ontology, the
concept Reducelnequality is a generalisation of RaiseWelfare, and of RaiseWages.
Therefore, one way of correcting the collective ontology is to weaken the axiom
LeftPolicy C RaiseWages, by substituting the concept RaiseWages with the con-
cept Reducelnequality. Symmetrically, one can weaken LeftPolicy C RaiseWelfare,
by generalising the concept RaiseWelfare also with Reducelnequality. In both
cases, we obtain a consistent set of axioms.

Another way of fixing the collective ontology would also be to weaken the
axiom RaiseWages I RaiseWelfare C 1, for instance by specialising the concept
RaiseWages M RaiseWelfare into L. However, the repaired ontology would contain



the uninformative axiom 1 C 1. Although we effectively obtain a consistent
ontology, a repair strategy would ideally avoid such an outcome when possible.

In the remainder of this paper, we study a number of strategies of removing
possibly inconsistent definitions by generalising and/or specialising the concepts
involved in the inconsistent collective ontologies.

5 Generalisation and Specialisation of ALC Concepts

Part of our strategy for fixing the collective ontology (obtained by means of an
aggregation function) relies on weakening the axioms present in a TBox w.r.t.
an ontology. Weakening an axiom essentially amounts to refine its premise or its
conclusion, as we shall see.

Refinement operators are a well-known notion in Inductive Logic Program-
ming where they are used to structure a search process for learning concepts
from examples. In this setting, two types of refinement operators exist: speciali-
sation refinement operators and generalisation refinement operators. While the
former constructs specialisations of hypotheses, the latter constructs generalisa-
tions [14].

Given the quasi-ordered set (L(ALC, N, Ng),C), a generalisation refinement
operator is defined as follows:

v7(0) C{C" € L(ALC,N.,NR) | C E7 C'} .
Whereas a specialisation refinement operator is defined as follows:
pr(C) C {C" € LIALC, N, Np) | €' Ty C} .

Roughly speaking, a generalisation refinement operator takes a concept C' as
input and returns a set of descriptions that are more general than C by taking
a TBox T into account. A specialisation operator, instead, returns a set of de-
scriptions that are more specific. Whilst specialisation operators for ALC (and
other description logics) have been studied in the literature [15], few proposals
have been made for generalisation operators in less expressive logics due to the
complexity of dealing with concept generalisations [3,4,23].

In what follows, we present the novel generalisation refinement operator for
ALC which is a variant of the one proposed in [5]. Then, we will define a spe-
cialisation operator based on it. In order to define this generalisation refinement
operator for ALC, we need some auxiliary definitions.? In the following, we as-
sume that complex concepts C' are rewritten into negation normal form, and
thus negation only appears in front of atomic concepts.

Definition 6. Let T be an ALC TBox with concept names from No. The set
of non-trivial subconcepts of T is given by

sub(T) = {T,L}yu | sub(C)Usub(D) .
CCDeT

3 To avoid any confusion, we point out that we use = and # between ALC concepts
to denote syntactic identity and difference, respectively.



where sub is defined over the structure of concept descriptions as follows:

sub(A) = {A}
sub(l) ={L}
sub(T)={T}
sub(—A) = {-A, A}
sub(C M D) ={CnD}Usub(C)Usub(D)
sub(C U D) ={CUD}Usub(C)Usub(D)
sub(VR.C)) = {VR.C} U sub(C)
sub(3R.C') = {IR.C'} U sub(C)

Based on sub(7"), we define the upward and downward cover sets of atomic con-
cepts. Intuitively, the upward set of A collects the most specific subconcepts
found in the Thox 7 that are more general (subsume) A; conversely, the down-
ward set of A collects the most general subconcepts from 7 that are subsumed
by A. The downcover is only needed for the base case of generalising a negated
atom. The properties of sub(7") guarantee that the upward and downward cover
sets are finite.

Definition 7. Let T be an ALC TBox over N¢. The upward cover set of the
concept C with respect to T is:

UpCov4(C) :={D e€sub(T) | C Cy+ D (1)
and there is no D' € sub(T) with C Cr D' Cr D} .

The downward cover set of the concept C' with respect to T is:

DownCovr(C) :={D € sub(T) | DC+ C (2)
and there is no D' € sub(T) with D C+ D' C7 C} .

We can now define our generalisation refinement operator for ALC as follows.

Definition 8. Let T be an ALC TBox. We define vr, the generalisation refine-
ment operator w.r.t. T, inductively over the structure of concept descriptions
as:

~7(A) = UpCov(A)
v1(=A) = {—-B | B € DownCov7(A)} U UpCov,(—A)

)=
)=
yr(T) ={T}
77 (L) = UpCov(L)
yr(CND)={C'ND|C" €~ (C)}u{CN D" | D' €~7(D)}ulUpCov,(C N D)
WT(C UD)={C'UD|C" e~rr(C)}u{CUD" | D €~7(D)}ulUpCov,(CL D)
7 (VR.C) = {VR.C' | C" € 47(C)} U UpCov,(VR.C)
7 (3R.C) = {3R.C" | C" € v7(C)} U UpCov,(3R.C)



When there is no ambiguity or to refer to an arbitrary TBox, we often omit the
subscript 7 from the operator y7.

Given a generalisation refinement operator ~y, ALC concepts are related by
refinement paths as described next.

Definition 9. For every concept C, we note v*(C) the i-th iteration of its gen-
eralisation. It is inductively defined as follows:

- 70(0) = {0}7
- 7J+1(C) = '7] (C) U Ucle»yj(c) 7(0/) ) ] 2 0

Definition 10. The minimal number of generalisations to be applied in order
to generalise C to D is called the distance between C' and D, noted \(C' %5 D).
Formally, \(C 2 D) =min{j | j > 0 and D € 47(C)}.

Ao Z, _) is a partial function that is defined only when the concept passed
as first argument can eventually be refined into the concept passed as second
argument.

Definition 11. The set of all concepts that can be reached from C by means of
v in a finite number of steps is

(€)= J~'(©) .

i>0

This following lemma says that it is always possible to generalise a concept into
T in a finite number of steps.

Lemma 12. For every concept C, it is the case that T € v*(C).

It is possible to define a specialisation operator with definitions analogous to
the ones for . Here, we simply define the specialisation operator p from the
generalisation operator v as follows:

pr(C)={C"| C" € sub(T) and C € v(C")} .

The definitions in this section can be easily adapted for p and we omit them. As
we did for v, we denote p’ to be the i-th iteration of p, and we denote p* to be
the unbounded iteration of the specialisation operator p. The integer A\(C LN D)
denotes the minimal number of specialisations required to reach D from C'. Like
in Lemma 12, we have that for every concept C, it is the case that L € p*(C).

6 Repairing Collective Ontologies

We introduce a strategy for fixing the collective ontology obtained by means of an
aggregation function. As we have discussed, a number of important aggregators
(e.g., the majority or quota rules) might fail to preserve consistency. We propose
a methodology to cope with collective inconsistency by manipulating the axioms
that cause the inconsistency via axiom weakening.



6.1 Axiom Weakening

Roughly speaking, weakening an axiom C' & D amounts to enlarging the set
of interpretations that satisfy the axiom. This could be done in different ways:
Either by substituting C C D with C' C D', where D’ is a more general concept
than D (i.e., its interpretation is larger); or, by modifying the axiom C' C D to
C’' € D, where C’ is a more specific concept than C; or even by generalising and
specialising simultaneously to obtain C' C D’.

Given an ontology O, we denote the set of its concept names of O by N&. We
want to define a procedure to change axioms gradually by replacing them with
less restrictive axioms. Recall that yo denotes the generalisation of a concept
and po denotes its specialisation with respect to a given ontology O.

Definition 13 (Axiom weakening). Given an aziom C T D of O, the set
of weakenings of C C D in O, denoted by go(C T D) is the set of all axioms
C’' C D' such that

C' = p5H(C) and D' =~5(D) .

If the ontology O is consistent, the weakening of an axiom in O is always satisfied
by a super set of the interpretations that satisfy the axiom. Let I = (Af,.7) be
an interpretation. Then by definition the class of all entities that fulfil the axiom
C C Dis (A'\ CT)u D!. A weakening of C' C D either specialises C, therefore
restricting C7, and accordingly extending A? \ C!, or generalises D, therefore,
extending D!. Hence, the set of entities for which C' T D holds is a subset of
the set of entities for which any axiom in go(C C D) holds. The following result
holds.

Lemma 14. For every aziom ¢, if ¢ € go(¢), then ¥ Eo ¢.

Proof. Suppose ¢ = A’ C B’ € go(A C B). Then, by definition of go, A’ C A
and B C B’ follows from O. Thus, by transitivity of subsumption, we obtain
that AC Bl=p A'C B, O

Moreover, note that L = T always belongs to go (C E D). We want to model how
to repair any inconsistent set of axioms Y of ALC, by appealing to a consistent
reference ontology R. Notice that, even though it is not desirable, R can be
dissociated from the axioms in the collective ontology. If the ontology R does
not refer to some of the atomic concepts in C' or D, then their generalisation is
the most general concept T and their specialisation is the most specific concept
1.4

Any inconsistent set of axioms Y can in principle be repaired by means of a
sequence of weakenings of the axioms in Y with respect to R.

Lemma 15. Let R be a consistent reference ontology and'Y a minimally incon-
sistent set of azioms. There exists a subset {i1,...,¥n} CY and weakenings

¥l € gr(vi) fori,1 <i <mn such that (Y \ {¢1,...,¥n}) U{e],..., ¥} UR is
consistent.

4 Notice that ~v7 and pr are defined on arbitrary ALC formulas.
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Algorithm 1 Fixing ontologies through weakening.

Procedure FIX-ONTOLOGY (O,R) > O inconsistent ontology, R reference ontology
1: while O is inconsistent do

2 Y «+ Mm1s(0) > find all minimally inconsistent subsets of O
3 for Y € Y do

4: choose ¢ € Y, ¢’ € gr(v) with Y\ {ep}U{’'} consistent, Ao (1), 1") minimal
5 O+ (O\{v}Hu{y'}

6: return O

Proof. Tt suffices to notice that for every ¢ € Y, the set go(¢) contains the
tautological axiom L T T. Because of Lemma 12 for 7o (and analogous lemma
for po), in the worst case, one can weaken every axiom ¢; in Y into ¢, = L C T.
This is equivalent to removing . Since R is consistent, it follows that the set
Y\ {t1,...,¥m}) U{¥, ..., ¥, } UR is also consistent. O

The lemma ensures that a minimally inconsistent set of axioms can be adequately
weakened to be integrated consistently into another consistent ontology. As the
proof shows, in the worst case these axioms are weakened to become a tautology.
However, we are interested in weakening axioms as little as possible to remain
close to the original axioms. Notice that every axiom in go(C C D) is obtained
by applying v and p a finite number of times. Hence, we can define Ao to be a
refinement distance in an ontology O, such that for every C' C D’ € go(C C D),

Mo(CED,C'ED)=X\C 2% ¢+ \D X% D) .

Repair strategies can exploit this distance to guide the weakening of axioms
that are the least stringent. Indeed, by minimising Ao, we are trying to find the
weakening of the axiom that is as close as possible to the original axiom in the
context of O. Moreover, by trying to minimise the distance, we are trying to
prevent non-informative axioms to be selected as weakenings. In other words,
axioms like L C T, L E D, or C C T should only be selected if no other
options are available. In principle, we can also provide refined constraints on
the generalisation and specialisation paths, e.g. by fixing an ordering of the
concepts of the ontology O that determines which concepts are to be generalised
or specialised first.

6.2 Fixing Collective Ontologies via Axiom Weakenings

When F(O) is inconsistent, we can adopt the general strategy described in Al-
gorithm 1 to repair it w.r.t. a given (fixed) reference ontology R.®> The algorithm
finds all the minimally inconsistent subsets Y7,...,Y,, of F(O) (e.g., using the
methods from [2,21]) and repairs each of them by weakening one of its axioms to
regain consistency. From all the possible choices made to achieve this goal, the

® We discuss a few strategies for deciding a reference ontology in the next section.

11



LeftPolicy C RaiseWages
LeftPolicy C RaiseWelfare
RaiseWages M RaiseWelfare C L

Fig. 3. The ontology F,,(O).

algorithm selects one that minimizes the distance Ao (line 4). This process cor-
rects all original causes for inconsistency, but may still produce an inconsistent
ontology due to masking [11]. Hence, the process is repeated until a consistent on-
tology is found. Notice that the algorithm is non-deterministic, since it depends
on the choice of the axiom to weaken, and the weakening selected. As such, it
can also be seen as a strategy returning a non-singleton set of ontologies. That
is, the procedure is non-resolute [20].

In order to define the strategy that we have presented as a function returning
a single ontology, two policies for breaking ties are required. For both, we can
capitalize on the linear order over formulas < 4,¢ introduced earlier. We can
define a linear order <% ., over axioms as follows: C E D <% .. E C F iff
C <sarcE,orC=Dand D <4p¢ F.

Firstly, on line 4 of the strategy, one needs to pick one axiom out of every
minimally inconsistent sets. The first policy that we adopt is to choose the axiom
y out of ¥ that is minimal with respect to <% ...

Secondly, also on line 4, there may be more than one closest generalisation
Y’ of a chosen ¢ that minimise Ao (1), 9’). To break the tie, the second policy
that we adopt, we again to pick the one that is minimal with respect to <% ...

Now, with a reference ontology R and the linear order < 4.¢ fixed, the strat-
egy returns an aggregation procedure gr < ... (F(O)): firstly aggregate the in-
dividual ontologies in O, then generalise the axioms in any possible inconsistent
set of F'(O) with respect to the reference ontology R, and obtain gg <, .. (F/(O)).

We leave a detailed treatment of possible rules to break ties and their respec-
tive merits for future work.

6.3 An Application

We illustrate our strategy by discussing the example in Section 4. We have seen
that the absolute majority rule can return inconsistent collective ontologies.
The collective ontology F,,(O) is presented in Figure 3. The collective ontology
F,,(0O) is inconsistent.

To apply our strategy, we have firstly to select a reference ontology R. Sup-
pose we choose the ontology in Figure 1. We exemplify how ggr(F,,(O)) works
by assuming in this case that it is non-resolute.

We start by choosing an axiom in a minimally inconsistent subset of F,(O)
that needs to be weakened. The whole collective ontology F,,(O) is a minimally
inconsistent set. So suppose we start by LeftPolicy C RaiseWages. Then, we have
to select a concept to generalise or specialise. Suppose we select RaiseWages.
Thus, to generalise the axiom LeftPolicy = RaiseWages we can replace it by

12



LeftPolicy C Reducelnequality, since Reducelnequality is the closest generalisa-
tion to RaiseWages in the reference ontology R. We obtain then the new ontol-
ogy, where the axiom LeftPolicy C RaiseWages has been replaced by the weaker
LeftPolicy C Reducelnequality. That is, gr(F;,(O)) contains the ontology:

LeftPolicy = Reducelnequality
LeftPolicy C RaiseWelfare
RaiseWages I RaiseWelfare = 1

Alternatively, we could have started by generalising RaiseWages M RaiseWelfare
C L. In this case, we have two choices, either we generalise |, or we specialise
RaiseWages M RaiseWelfare. 1 can be generalised by any concept in the reference
ontology. RaiseWages M RaiseWelfare can here be specialised only by replacing it
with L, obtaining therefore 1 C L, which is a (non-informative) logical axiom.
By replacing an axiom with a logical one, the effect on the final ontology is
the same as removing the original axiom (a logical axiom does not restrict the
models of the ontology). Thus, in this case, the repaired ontology is the following
ontology which is an element of ggr(F,,(O)):

LeftPolicy C Reducelnequality
LeftPolicy C RaiseWelfare

6.4 Selecting the Reference Ontology

The procedure illustrated in the previous section relies on the availability and
specific choice of a reference ontology to repair the outcome of the aggregation
procedure. A reference ontology may provide more information that the individ-
ual ontologies, as in the example of Section 4, however we have to decide how to
deal with the axioms of the reference ontology that overlap with the formulas of
the agenda.

For the sake of discussion, we briefly illustrate a few viable solutions. As we
shall see, the choice of R affects the quality of the fixing of the collective ontology,
both in terms of fairness of the outcome (i.e. how many agents would accept
the generalisations obtained via R) and in terms of the amount of information
available.

The first solution is to assume that R contains a maximally consistent subset
X of F(O). That is, we select, among those axioms that have been collectively
accepted according to F', a maximally consistent subset. Notice that, in the
definition of generalisation of an axiom, we use v and p, the definition of which
requires the concepts of upcover and downcover (c.f. Definition 8). Both of these
definitions imply that there may be formulas that are inferred by F(O), even
though they are not in F'(O). This is due to the fact that F'(O) needs not be
deductively closed and that the formulas in F(O) are in fact a subset of an
arbitrarily chosen agenda of formulas, as usual in JA.

If F is the majority rule, the generalisations in R that may replace or repair
the axioms in F(O) are at least consistent with some of the formulas of the
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ontologies for a majority of agents. Since X must contain some of the axioms
accepted by majority, we can at least say that O; N X is consistent for a majority
of agents.

A second choice is to take a more informative ontology as a reference ontology.
We can assume that R includes a maximally consistent subset Z of O1U---UQO,,.
In this case, although the reference ontology is in general richer than in the
previous case, we can only ensure that the generalisations provided by R are
consistent with some of the axioms of at least one agent: an axiom is in Z only
if at least one agent vote for that. Therefore O; N X is consistent for at least one
agent.

Thirdly, we could assume that the reference ontology should include the in-
tersection O1 N ---N O,. Recall that by taking the intersection of all individual
ontologies, consistency is ensured. In this case, the reference ontology may be
very poor, however if ¢ follows from O; N --- N Oy, then ¢ follows from every
individual ontology. Therefore, any generalisation of axioms is in this case ac-
ceptable for every agent. In the case O1N---NO,, is empty, R might only contain
logical axioms. In this case, repairing an ontology by appealing to R amounts to
only replacing possibly conflicting axioms with logical ones. Thus, that has the
effect of removing axioms that cause the collective inconsistency.

Another strategy for selecting a reference ontology is to say that it has to
include one agent’s ontology as the representative one. Strategies for selecting the
most representative voter out of a profile of voters have been discussed in [9]. For
the case of ontology aggregation, we can find the most representative ontology
by exploiting the definition of Hamming distance between an ontology and a
profile [20], that is the most representative ontology is the one that minimises
the sum of the distances with respect to all the other agents ontologies.

Finally, a strategy that tries to balance between the number of voters that
may consistently accept the generalisations of the axioms provided by R and
the amount of information conveyed by R is the following. Given a profile of
individual ontologies O, we take a W = O, U---U O;, where {iy...49;} C N
in such a way that | {i;...4} | is maximal, W is consistent, and for every
voter i; & {i1,...,41}, it is the case that W U O, is inconsistent. The reference
ontology R is then assumed to include W. That is, in this case the reference
ontology tries to join together the highest number of individual ontologies, as
far as they are consistent. The sets O;, U---U O;, for which the cardinality of
{1 ...4;} is maximal are in general not unique, therefore again here we have to
take into account a tie-breaking rule; again, tie-breaking can exploit the order
<Acc- Observe that, in this case, W is not necessarily a maximally consistent
subset of O1 U ---U O,,, as W has the constraint that either it contains all
the formulas of an individual ontology or none. With respect to this reference
ontology, every agent whose ontology is in W can in principle accept all the
generalisations provided by R, as they are consistent with her or his ontology.
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7 Discussion and Future Work

In this paper, we proposed a novel approach to repair an inconsistent ontology,
which is obtained by aggregating the individual ontologies of a community of
agents. Our approach is based on the notion of axiom weakening, which amounts
to generalise or to specialise the concepts in axioms that belong to minimally
inconsistent subsets. We also discussed the problem of engineering a reference
ontology for repairing the inconsistent collective ontology. Whilst we proposed
different possible viable solutions, a more extensive evaluation is needed.

Nevertheless, we believe that this paper is already an important contribution
both to Social Choice Theory (SCT), Judgement Aggregation (JA) and to the
Description Logic fields. As far as SCT and JA are concerned, we showed how it
is possible to repair an inconsistent collective ontology while maintaining well-
known real-world aggregators. As far as DL is concerned, we showed how the
notion of refinement operators, typically encountered in machine learning, can
be transposed to symbolic reasoning to define axiom weakening.

As future work, apart from evaluating the reference ontology engineering
already mentioned, we aim at taking into account the notion of coherence by
Thagard [22]. Coherence theory, and in particular conceptual coherence, could
be used, for instance, to decide which minimally inconsistent subset to choose;
or which axiom to weaken, depending on how much it contributes to maximising
the overall coherence of the collective ontology.
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