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Abstract. Monitoring and conformance checking are fundamental tasks to de-
tect deviations between the actual and expected courses of execution in a business
process. In a variety of application domains, the model capturing the expected
behaviors may be intrinsically uncertain, e.g., to distinguish between standard
courses of execution and exceptional but still conforming ones. Surprisingly, only
very few approaches consider uncertainty as a first-class citizen in this spectrum.
In this paper, we tackle this timely and challenging problem in the setting where
the process of interest is described as a set of declarative, temporal business con-
straints. Our contribution is threefold. First, we delve into the conceptual meaning
of probabilistic constraints and their semantics. Second, we argue that probabilis-
tic constraints can be discovered from event data using existing techniques for
declarative process discovery. Third, we study how to monitor probabilistic con-
straints, where constraints and their combinations may be in multiple monitoring
states at the same time, though with different probabilities.

Keywords: Declarative Process Models · Temporal logics · Process Mining · Proba-
bilistic Process Monitoring · Probabilistic Conformance Checking

1 Introduction

A key functionality that any process-aware information system should support is that of
monitoring [12]. Monitoring concerns the ability to verify at runtime whether an actual
process execution conforms to a prescriptive business process model. This runtime form
of conformance checking is instrumental to detect, and then suitably handle, deviations
appearing in ongoing process instances [14].

A common way of representing monitoring requirements that capture the expected
behavior prescribed by a process model is by using declarative, business constraints.
Many studies demonstrated that, in several settings, business constraints can be formal-
ized in terms of temporal logic rules [19]. Within this paradigm, the Declare constraint-
based process modeling language [21] has been introduced as a front-end language to
specify business constraints based on Linear Temporal Logic over finite traces (LTLf )
[2]. The advantage of this approach is that the automata-theoretic characterization of
LTLf is based on standard, finite-state automata. These can be exploited to provide
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advanced monitoring facilities where the state of constraints is determined in a sophis-
ticated way by combining the events collected at runtime with the possible, future con-
tinuations [16,1], in turn enabling the early detection of conflicting constraints [17].

In a variety of application domains, business constraints are inherently uncertain.
This is clearly the case for constraints which: (i) capture best practices that have to
be followed by default, that is, in most, but not necessarily all, cases; (ii) link control-
lable activities to activities that are under the responsibility of uncontrollable, external
stakeholders; (iii) should hold in exceptional but still conforming courses of execution.
Uncertainty is intrinsically present also when business constraints are discovered from
event data. It is then very surprising that only very few approaches incorporate uncer-
tainty as a first-class citizen. This is the case not just when the prescriptive behavior
to be monitored is expressed as a set of business constraints, but also when a more
conventional imperative approach is adopted [11].

It is well known that combining uncertainty with temporal logics is extremely chal-
lenging. This is due to the interplay of temporal operators and uncertainty, which be-
comes especially tricky considering that, usually, temporal logics are interpreted over
infinite traces. The resulting, combined logics then come with semantic or syntactic
restrictions (see, e.g., [20,8]). To tackle these issues, the probabilistic temporal logic
over finite traces PLTLf , and its fragment PLTL0

f , have been recently proposed in [15].
Since these logics are defined over finite traces, they are the natural candidate to enrich
existing constraint-based process modeling approaches with uncertainty.

In this paper, we indeed employ PLTL0
f to achieve this goal. Specifically, we exploit

the fact that PLTL0
f handles time and probabilities in a way that naturally matches with

the notion of conformance: a constraint ϕ holds with probability p if, by considering
all the traces contained in a log, ϕ is satisfied by a fraction p of all the traces contained
therein. Based on this observation, we provide a threefold contribution.

First, we exploit PLTL0
f to introduce probabilistic constraints and delve into their

semantics and conceptual meaning; notably, our semantics is based on the already
established notion of stochastic language [11]. We then show how probabilistic con-
straints can be used to naturally lift the Declare language to its probabilistic version
ProbDeclare. Second, we observe that probabilistic Declare constraints can be discov-
ered off-the-shelf using already existing techniques for declarative process discovery
[9,13,7,22], with strong guarantees on the consistency of the generated models. In fact,
the discovered constraints are for sure (probabilistically) consistent, without incurring
in the notorious consistency issues experienced when the discovered constraints are in-
terpreted in a crisp way [4,5]. Third, we study how to monitor probabilistic constraints,
where constraints and their combinations may be in multiple monitoring states at the
same time, though with different associated probabilities. This is based on the fact that
a single ProbDeclare model gives raise to multiple scenarios, each with its own distinct
probability, where some of the constraints are expected to be satisfied, and the others
to be violated. Specifically, we show how to lift existing automata-theoretic monitoring
techniques to this more sophisticated probabilistic setting, and report on a proof-of-
concept implementation of the resulting framework.

The paper is structured as follows. After preliminary notions introduced in Sect. 2,
we introduce the syntax and semantics of probabilistic constraints in Sect. 3. In Sect. 4,
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we discuss how ProbDeclare constraints can be discovered from event data using exist-
ing techniques. In Sect. 5, we show how to monitor probabilistic constraints, and report
on the corresponding implementation. In Sect. 6, we conclude the paper and spell out
directions for future work.

2 Preliminaries

We consider a finite alphabet Σ of atomic activities. A trace τ over Σ is a finite se-
quence a1 . . . an of activities, where ai ∈ Σ for i ∈ {1, . . . , n}. The length of trace τ is
denoted by length(τ). We use notation τ(i) to select the activity ai present in position
(also called instant) i of τ , and Σ∗ for the (infinite) set of all possible traces over Σ. A
log over Σ is a finite multiset of traces over Σ.

We recall next syntax and semantics of LTLf [2,1], and its application in the con-
text of Declare [21,18]. Consistently with the BPM literature, we make the simplifying
assumption that formulae are evaluated on sequences where, at each point in time, only
one proposition is true, matching the notion of trace defined above.

LTL over finite traces. LTLf has exactly the same syntax of standard LTL, but, dif-
ferently from LTL, it interprets formulae over finite traces, as defined above. An LTLf
formula ϕ over Σ is built by extending propositional logic with temporal operators:

ϕ ::= a | ¬ϕ | ϕ1 ∨ ϕ2 | ©ϕ | ϕ1 U ϕ2 where a ∈ Σ.
A formula ϕ is evaluated over a trace τ in a valid instant i of τ , such that 1 ≤ i ≤
length(τ). Specifically, we inductively define that ϕ holds at instant i of τ , written
τ, i |= ϕ, as:

– τ, i |= a for a ∈ Σ iff τ(i) = a;
– τ, i |= ¬ϕ iff τ, i 6|= ϕ;
– τ, i |= ϕ1 ∨ ϕ2 iff τ, i |= ϕ1 or τ, i |= ϕ2;
– τ, i |= ©ϕ iff i < length(τ) and τ, i+ 1 |= ϕ;
– τ, i |= ϕ1 U ϕ2 iff for some j such that i ≤ j ≤ length(τ), we have τ, j |= ϕ2 and

for every k such that i ≤ k < j, we have τ, k |= ϕ1.
Intuitively,© denotes the next state operator, and©ϕ holds if there exists a next instant
(i.e., the current instant does not correspond to the end of the trace), and in the next
instant ϕ holds. Operator U instead is the until operator, and ϕ1 U ϕ2 holds if ϕ1 holds
now and continues to hold until eventually, in a future instant, ϕ2 holds.

From these operators we can derive the usual boolean operators ∧ and→, the two
formulae true and false , as well as additional temporal operators. We consider, in par-
ticular, the following three: (i) (eventually) 3ϕ = true U ϕ is true, if there is a future
state where ϕ holds; (ii) (globally) 2ϕ = ¬3¬ϕ is true, if now and in all future states
ϕ holds; (iii) (weak until) ϕ1 W ϕ2 = ϕ1 U ϕ2 ∨ 2ϕ1 relaxes the until operator by
admitting the possibility that ϕ2 never becomes true, in this case by requiring that ϕ1

holds now and in all future states. We write τ |= ϕ as a shortcut notation for τ, 0 |= ϕ,
and say that formula ϕ is satisfiable, if there exists a trace τ such that τ |= ϕ.

Example 1. The LTLf formula 2(close→ ©3accept) (called response in Declare) mod-
els that, whenever an order is closed, then it is eventually accepted. /
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Table 1: Some Declare templates, with their LTLf and graphical representations.
TEMPLATE NOTATION TEMPLATE NOTATION

existence(a):
3a

a

1..∗
absence(a)
¬3a a

0

existence2(a)
3(a ∧©3a)

a

2..∗
absence2(a)
¬3(a ∧©3a)

a

0..1

response(a,b)
2(a→ ©3b)

a b
precedence(a,b)
¬bWa

a b

resp− existence(a,b)
3a→ 3b

a b
not− coexistence(a,b)
¬(3a ∧3b)

a b

Every LTLf formula ϕ can be translated into a corresponding standard finite-state
automatonAϕ that accepts all and only those finite traces that satisfy ϕ [2,1]. Although
the complexity of reasoning with LTLf is the same as that of LTL, finite-state automata
are much easier to manipulate in comparison with the Büchi automata used when for-
mulae are interpreted over infinite traces. This is the main reason why LTLf has been
extensively and successfully adopted within BPM to capture constraint-based, declara-
tive processes, in particular providing the formal basis of Declare.

Declare is a constraint-based process modeling language based on LTLf . Declare mod-
els a process by fixing a set of activities, and defining a set of temporal constraints
over them, accepting every execution trace that satisfies all constraints. Constraints are
specified via pre-defined LTLf templates, which come with a corresponding graphical
representation (see Table 1 for the Declare templates we use in this paper). For the sake
of generality, in this paper, we consider arbitrary LTLf formulae as constraints. How-
ever, in the examples we consider formulae whose templates can be represented graphi-
cally in Declare. Automata-based techniques for LTLf have been adopted in Declare to
tackle fundamental tasks within the lifecycle of Declare processes, such as consistency
checking [21,19], enactment and monitoring [21,16,1], and discovery support [13].

3 Probabilistic Constraints and ProbDeclare

We now lift LTLf constraints to their probabilistic version. As done in Sect. 2, we
assume a fixed finite set Σ of activities.

Definition 1. A probabilistic constraint over Σ is a triple 〈ϕ, ./, p〉, where: (i) ϕ, the
constraint formula, is an LTLf formula over Σ; (ii) ./ ∈ {=, 6=,≤,≥, <,>} is the
probability operator; (iii) p, the constraint probability, is a rational value in [0, 1]. /

We use the compact notation 〈ϕ, p〉 for the probabilistic constraint 〈ϕ,=, p〉. A prob-
abilistic constraint is interpreted over an event log, where traces have probabilities at-
tached. Formally, we borrow the notion of stochastic language from [11].

Definition 2. A stochastic language over Σ is a function ρ : Σ∗ → [0, 1] that maps
every trace over Σ onto a corresponding probability, so that

∑
τ∈Σ∗ ρ(τ) = 1. /
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An event log can be easily turned into a corresponding stochastic language through nor-
malization of the trace quantities, in particular by dividing the number of occurrences
of each trace by the total number of traces in the log [11]. Similarly, a stochastic lan-
guage can be turned into a corresponding event log by considering only the traces with
non-zero probabilities.

Example 2. Consider the following traces over Σ = {close,accept,nop}: (i) τ1 =
〈close,accept〉; (ii) τ2 = 〈close,accept,close,nop,accept〉; (iii) τ3 =
〈close,accept,close,nop〉; (iv) τ4 = 〈close,nop〉. Log L = {τ501 , τ302 , τ103 , τ104 } cor-
responds to the stochastic language ρ defined as follows: (i) ρ(τ1) = 0.5; (ii) ρ(τ2) = 0.3;
(iii) ρ(τ3) = 0.1; (iv) ρ(τ4) = 0.1; (v) ρ is 0 for any other trace in Σ∗. /

We say that a stochastic language ρ satisfies a probabilistic constraint C = 〈ϕ, ./
, p〉, written ρ |= C, iff

∑
τ∈Σ∗,τ |=ϕ ρ(τ) ./ p. In other words, we first obtain all the

traces that satisfy ϕ in the classical LTLf sense. We then use ρ to sum up the overall
probability associated to such traces. We finally check whether the so-obtained number
n is so that the comparison expression n ./ p is true. Constraint C = 〈ϕ, ./, p〉 is
plausible if p 6= 0 and it is logically plausible, that is, ρ |= C for some stochastic
language ρ. This latter requirements simply means that ϕ is satisfiable in the classical
LTLf sense.

Thanks to the correspondence between stochastic languages and event logs, we can
define an analogous notion of satisfaction for event logs. With a slight abuse of notation,
we use the same notation L |= C to indicate that event log L satisfies C. The resulting
semantics naturally leads to interpret the constraint probability as a frequency, that is,
as the fraction of conforming vs non-conforming traces contained in a log.

Example 3. The log L from Example 2 satisfies the probabilistic constraint Cca =
〈2(close → ©3accept), 0.8〉. In fact, 2(close → ©3accept) is satisfied4 by traces
τ1 and τ2, whose overall probability is 0.5 + 0.3 = 0.8. /

This statistical interpretation of probabilities is central in the context of this paper,
and leads to the following key observation: ρ satisfies C = 〈ϕ, p〉 iff it satisfies C =
〈¬ϕ, 1 − p〉. This reflects the intuition that, whenever ϕ holds in a fraction p of traces
from an event log, then ¬ϕmust hold in the complementary fraction 1−p of traces from
that log. Conversely, an unknown execution trace τ will satisfy ϕwith probability p, and
will violate ϕ (i.e., satisfy ¬ϕ) with probability 1−p. This can be extended to the other
probability operators in the natural way, taking into account that ≤ should be replaced
by its dual ≥ (and vice-versa). Hence, we can interpret ϕ and ¬ϕ as two alternative,
possible scenarios, each coming with its own probability (respectively, p and 1 − p).
Whether such possible scenarios are indeed plausible depends in turn on their logical
consistency (a plausible scenario must be logically satisfiable, that is, have at least one
conforming trace) and associated probability (a plausible scenario must have a non-zero
probability). A probabilistic constraint of the form 〈ϕ, 1〉 with ϕ satisfiable gives raise
to a single possible world, where all traces in the log satisfy ϕ.

4 Recall that a response constraint is satisfied if every execution of the source is followed by the
execution of the target.
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Example 4. Consider constraint Cca from Example 3, modeling that in 80% of the process
traces it is true that, whenever an order is closed, then it is eventually accepted. This is equivalent
to assert that in 20% of the traces the response is violated, i.e., there exists an instant where the
order is closed and not accepted afterward. Given an unknown trace τ , there is then 0.8 chance
that τ will satisfy the response formula 2(close → ©3accept), and 0.2 that τ will violate
such a formula (i.e., satisfy its negation 3(close ∧ ¬©3accept)). /

3.1 Probabilistic Declare

We now consider probabilistic declarative process models including multiple proba-
bilistic constraints at once. We lift Declare to its probabilistic version ProbDeclare.

Definition 3. A ProbDeclare model is a pair 〈Σ, C〉, where Σ is a set of activities and
C is a set of probabilistic constraints. /

A stochastic language ρ over Σ satisfies a ProbDeclare model 〈Σ, C〉 if it satis-
fies every probabilistic constraint C ∈ C. It is interesting to note that, since C =
〈ϕ, p〉 and C = 〈¬ϕ, 1 − p〉 are equivalent, in ProbDeclare the distinction between
existence and absence templates (cf. the first two lines of Table 1) gets blurred. In fact,
〈existence(a), p〉 corresponds to 〈3a, p〉. In turn, 〈3a, p〉 is semantically equivalent to
〈¬3a, 1 − p〉, which corresponds to 〈absence(a), 1 − p〉. The same line of reasoning
applies to the existence2 and absence2 templates. All such constraints have in fact to
be interpreted as the probability of (repeated) occurrence for a given activity.

Example 5. A small ProbDeclare model is shown on the left-hand side of Fig. 1, where only
the equality operator is used for the various probabilities. Crisp constraints with probability 1 are
shown in dark blue, and genuine probabilistic constraints are shown in light blue, with probability
values attached. The model expresses that each order is at some point closed, and, whenever this
happens, there is probability 0.8 that it will be eventually accepted, and probability 0.3 that it
will be eventually refused. Note that the sum of these probabilities exceeds 1, and consequently
in a small fraction of traces, there will be an acceptance and also a rejection (capturing the fact
that a previous decision on a closed order was subverted later on). On the other hand, there is
a sensible amount of traces where the order will be eventually accepted, but not refused, given
the fact that the probability of the response constraint connecting close order to refuse
order is only of 0.3. In 90% of the cases, it is asserted that acceptance and rejection are mutually
exclusive. Finally, accepting/rejecting an order can only occur if the order was closed. /

We remark that ProbDeclare models and stochastic languages have a direct corre-
spondence to the PLTL0

f logic and its interpretations (as defined in [15]). Specifically,
a constraint of the form 〈ϕ, ./, p〉 corresponds to the PLTL0

f formula }./pϕ. PLTL0
f is

a fragment of PLTLf , also defined in [15]. Models of PLTLf formulae are finite trees
where nodes are propositional assignments, and edges carry probabilities, with the con-
dition that the sum of the probabilities on the edges that depart from the same node
add up to 1. A stochastic language ρ can then be easily represented as a PLTLf model.
This can be done by creating a tree where the root has as many outgoing edges as
the number of traces in ρ. Each edge gets the probability that ρ associates to the corre-
sponding trace. Then each edge continues into a single branch where nodes sequentially
encode the events of the trace, and where edges all have probability 1. Due to this direct
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correspondence, we get that reasoning on ProbDeclare models (e.g., to check for sat-
isfiability) can be carried out in PSPACE, thus yielding the same complexity of LTLf .
This does not yet give a concrete technique to actually carry out reasoning and, more in
general, understand how different probabilistic constraints and their probabilities inter-
act with each other. This is answered in the next section, again taking advantage from
the fact that, thanks to the correspondence with the PLTLf framework in [15], all the
techniques presented next are formally correct.

3.2 Constraints Scenarios and their Probabilities

Since a ProbDeclare model contains multiple probabilistic constraints, we have to con-
sider that, probabilistically, a trace may satisfy or violate each of the constraints con-
tained in the model, thus yielding multiple possible worlds, each one defining which
constraints are satisfied, and which violated. E.g., in Fig. 1 we may have a trace con-
taining close order followed by accept order and refuse order, thus vi-
olating the not− coexistence constraint relating acceptance and refusal. This is in-
deed possible in 10% of the traces. More in general, consider a ProbDeclare model
M = 〈Σ, {〈ϕ1, p1〉, . . . , 〈ϕn, pn〉}〉. Each constraint formula ϕi is satisfied by a trace
with probability pi, and violated with probability 1 − pi. Hence, a model of this form
implicitly yields, potentially, 2n possible worlds resulting from all possible choices of
which constraints formulae are satisfied, and which are violated (recall that violating
a formula means satisfying its negation). We call such possible worlds constraint sce-
narios. The key point is to understand which scenarios are plausible, and with which
overall probability, starting from the “local” probabilities attached to each single con-
straint. Overall, a set of constraint scenarios with their corresponding probabilities can
be seen as a sort of canonical stochastic language that provides a uniform representa-
tion of all stochastic languages that satisfy the ProbDeclare model under study.

If a constraint has probability 1, we do not need to consider the two alternatives,
since every trace will need to satisfy its formula. An alternative way of reading this is
to notice that the negated constraint would, in this case, have probability 0. Hence, to
identify a scenario, we proceed as follows. We consider the m ≤ n constrains with
probability different than 1, and fix an order over them. Then, a scenario is defined by a
number between 0 and 2m−1, whose corresponding binary representation defines which
constraint formulae are satisfied, and which violated: specifically, for constraint formula
ϕi of index i, if the bit in position i − 1 is 1, then the scenario contains ϕi, if instead
that bit is 0, then the scenario contains ¬ϕi. The overall formula describing a scenario
is then simply the conjunction of all such formulae, together with all the formulae of
constraints with probability 1. Clearly, each execution trace belongs to one and only
one constraint scenario: it does so when it satisfies the conjunctive formula associated
to that scenario. We say that a scenario is logically plausible, if such a conjunctive
LTLf formula is satisfiable in the LTLf sense: if it is not, then the scenario has to be
discarded, since no trace will ever belong to it.

Example 6. Fig. 1 shows a ProbDeclare model with 6 constraints, three of which are
crisp constraints with probability 1, while the other three are genuinely probabilistic. Circled
numbers represent the ordering of such constraints. 8 possible constraint scenarios are in-
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close
order

1..∗
accept
order

{0.8
}

1

refuse
order

{0.3}

2

{0.9}3

1 2 3 SAT?
S000 3(close ∧ ¬©3acc) 3(close ∧ ¬©3ref) 3acc ∧3refuse no
S001 3(close ∧ ¬©3acc) 3(close ∧ ¬©3ref) ¬(3acc ∧3refuse) yes
S010 3(close ∧ ¬©3acc) 2(close→ ©3ref) 3acc ∧3refuse no
S011 3(close ∧ ¬©3acc) 2(close→ ©3ref) ¬(3acc ∧3refuse) yes
S100 2(close→ ©3acc) 3(close ∧ ¬©3ref) 3acc ∧3refuse no
S101 2(close→ ©3acc) 3(close ∧ ¬©3ref) ¬(3acc ∧3refuse) yes
S110 2(close→ ©3acc) 2(close→ ©3ref) 3acc ∧3refuse yes
S111 2(close→ ©3acc) 2(close→ ©3ref) ¬(3acc ∧3refuse) no

Fig. 1: A ProbDeclare model, with 8 constraint scenarios, out of which only 4 are log-
ically plausible. Recall that each scenario implicitly contains also the three constraint
formulae derived from the three constraints with probability 1.

duced, each enforcing the satisfaction of the three crisp constraints, while picking the satis-
faction or violation of the three constraints response(close,acc), response(close,ref),
and not− coexistence(acc,ref). Logically speaking, we have to consider 6 different for-
mulae: 2(close → ©3acc) and its negation 3(close ∧ ¬©3acc) (similarly for
response(close,ref)), as well as ¬(3acc∧3refuse) and its negation 3acc∧3refuse.
The resulting scenarios are reported in the same figure, using the naming conventions intro-
duced before. E.g., scenario S101 is the scenario that satisfies response(close,acc) and
not− coexistence(acc,ref), but violates response(close,ref).

By checking the LTLf satisfiability of the conjunction of the formulae entailed by a given
scenario, we can see whether the scenario is logically plausible. In Fig. 1, only 4 scenarios are
actually logically plausible. For example, S111 is not logically plausible. In fact, it requires that
the order is closed (due to the crisp 1..∗ constraint on close order) and, consequently, that
the order is eventually accepted and refused (due to the two response constraints attached to
close order, which in this scenario must be both satisfied); however, the presence of both
an acceptance and a refusal violates the not− coexistence constraint linking such two activities,
contradicting the requirement that also this constraint must be satisfied in this scenario. S101 is
logically plausible: it is satisfied by the trace where an order is closed and then accepted. All
in all, we have 4 logically plausible scenarios: (i) S001, where an order is closed and later not
accepted nor refused; (ii) S011, where an order is closed and later refused (and not accepted);
(iii) S101, where an order is closed and later accepted (and not refused); (iv) S110, where an order
is closed and later accepted and refused. /

While it is clear that a logically implausible scenario should correspond to probability
0, are all logically plausible scenarios really plausible when the actual probabilities are
taken into account? By looking at Fig. 1, one can notice that scenario S001 is logically
plausible: it describes traces where an order is closed but not accepted nor refused. As
we will see, however, this cannot happen given the probabilities of 0.8 and 0.3 attached
to response(close,acc) and response(close,ref). More in general, what is the
probability of a constraint scenario, i.e., the fraction of traces in a log that belong to that
scenario? Is it possible to assign probabilities to scenarios, while respecting the prob-
abilities attached to the constraints? The latter question points out that a ProbDeclare
model may be unsatisfiable (in a probabilistic sense), if there is no way to properly lift
the probabilities attached to constraints to corresponding probabilities of the scenar-
ios induced by those constraints. To answer these questions, we resort to the technique
in [15]. We associate each scenario to a probability variable, keeping the same nam-
ing convention. E.g., scenario S001 corresponds to variable x001. More in general, for
a ProbDeclare model M = 〈Σ, {〈ϕ1, ./1, p1〉, . . . , 〈ϕn, ./n, pn〉}〉, we construct the
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system LM of inequalities using probability variables xi, with i ranging from 0 to 2n

(in boolean):
xi ≥ 0 0 ≤ i < 2n∑2n−1

i=0 xi = 1∑
jth position is 1 xi ./j pj 0 ≤ j < n

xi = 0 if scenario Si is logically implausible
The first two lines guarantee that we assign a non-negative value to each variable, and
that their sum is 1. We can see these assignments as probabilities, having the guaran-
tee that all scenarios together cover the full probability spectrum. The third line veri-
fies the probability associated to each constraint in M . In particular, it constructs one
(in)equality per constraint 〈ϕj , ./j , pj〉 in M , ensuring that all the variables that corre-
spond to scenarios making ϕj true should all together yield a probability that is ./j pi.
The last line enforces that logically implausible scenarios get assigned probability 0.
This shows how logical and probabilistic reasoning come together in LM .

We can use this system of inequalities to check whether a given ProbDeclare model
is satisfiable: M is satisfiable if and only if LM admits a solution. In fact, solving
LM corresponds to verifying whether the class of all possible traces can be divided in
such a way that the proportions required by the probabilistic constraints in the different
scenarios are satisfied. This, in turn, witnesses that there must be at least one logically
plausible scenario that gets a non-zero probability. Checking whether LM admits a
solution can be done in PSPACE in the size of M , if we calculate the size as the length
of the LTLf formulae appearing therein [15].

Example 7. Consider the ProbDeclare model M containing two constraints:
1. existence(close)=3close with probability = 0.1;
2. response(close,accept)=2(close→ ©3acc) with probability = 0.8.
M indicates that only 10% of the traces contain that the order is closed, and that 80% of the traces
are so that, whenever an order is closed, it is eventually accepted. This model is inconsistent.
Intuitively, the fact that in 80% of the traces, whenever an order is closed, it is eventually accepted,
is equivalent to say that, in 20% of the traces, we violate such a response constraint, i.e., we have
that an order is closed but then not accepted. All such traces satisfy the existence constraint over
the close order activity, and, consequently, the probability of such a constraint must be at
least 0.2. However, this is contradicted by the first constraint of M , which imposes that such a
probability is 0.1.

We now show how this is detected formally. M yields 4 constraint scenarios:

S00 = {¬3close,3(close ∧ ¬©3acc)} S01 = {¬3close,2(close→ ©3acc)}
S10 = {3close,3(close ∧ ¬©3acc)} S11 = {3close,2(close→ ©3acc)}

Scenario S00 is logically implausible: it requires and forbids that the order is closed; the other
scenarios are instead all logically plausible. Hence, the equations of LM are:

x00 + x01 + x10 + x11 = 1
x10 + x11 = 0.1

x01 + x11 = 0.8
x00 = 0

The equations yield x10 = 0.2, x01 = 0.9, and x11 = −0.1. This is an inconsistent prob-
ability assignment, and witnesses that it is not possible to properly assign suitable fractions of
traces to the various constraint scenarios. /
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sign
consent

close
order

1..∗
{0.8} 1

{0.1} 2

1 2 SAT?
S00 ¬sign U close 3(close ∧ ¬©3sign) yes
S01 ¬sign U close 2(close→ ©3sign) yes
S10 ¬closeW sign 3(close ∧ ¬©3sign) yes
S11 ¬closeW sign 2(close→ ©3sign) yes

Fig. 2: A ProbDeclare model and its 4 constraint scenarios.

When LM is solvable,M is satisfiable. In addition, the solutions of LM tell us what
is the probability (or range of probabilities) for each constraint scenario. If a logically
plausible scenario admits a probability that is strictly > 0, then it is actually plausi-
ble also in probabilistic terms. Contrariwise, a logically plausible scenario that gets
assigned a probability that is forcefully 0 is actually implausible. This witnesses in fact
that, due to the probabilities attached to the various constraints in M , the fraction of
traces belonging to it must be 0.

Example 8. Consider the ProbDeclare model in Fig. 1. Its system of inequalities is so that
x000 = x010 = x100 = x111 = 0, since the corresponding constraint scenarios are logically
implausible. For the logically plausible scenarios, we instead get the following equalities, once
the variables above are removed (being them all equal to 0):

x001 + x011 + x101 + x110 = 1
x101 + x110 = 0.8

x011 + x110 = 0.3
x001 + x011 + x101 = 0.9

It is easy to see that this system of equations admits only one solution: x001 = 0, x011 = 0.2,
x101 = 0.7, x110 = 0.1. This solution witnesses that scenario S001 is implausible, and that the
most plausible scenario, holding in 70% of cases, is actually S101, namely the one where after
the order is closed, it is eventually accepted, and not refused. In addition, the solution tells us that
there are other two outlier scenarios: the first, holding in 20% of cases, is the one where, after the
order is closed, it is eventually refused (and not accepted); the second, holding in 10% of cases,
is the one where a closed order is accepted and refused. /

In general, the system LM of inequalities for a ProbDeclare model M may have more
than one solution. If this is the case, we can attach to each constraint scenario a proba-
bility interval, whose extreme values are calculated by minimizing and maximizing its
corresponding variable over LM . Since these intervals are computed by analyzing each
variable in isolation, not all the combinations of values residing in such intervals are
actually consistent (which would entail yielding an overall probability of 1). Still, for
sure these intervals contain probability values that are overall consistent, and, in addi-
tion, they provide a good indicator of which are the most (and less) plausible scenarios.
We illustrate this in the next example.

Example 9. Consider the ProbDeclare model in Fig. 2. It comes with 4 constraint scenarios, ob-
tained by considering the two constraint formulae precedence(sign,close)=¬closeWsign
and response(close,sign)=2(close → ©3sign), as well as their respective negated for-
mulae ¬signUclose and 3(close∧¬©3sign). All such scenarios are logically plausible,
and hence the equations of the system are:

x00 + x01 + x10 + x11 = 1
x10 + x11 = 0.8

x01 + x11 = 0.1
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This system admits multiple solutions. In fact, by calculating the minimum and maximum values
for the 4 variables, we get that: (i) scenario S00, where the order is closed but consent is not
signed, comes with probability interval [0, 0.1]; (ii) scenario S01, where the order is closed and
consent is signed afterward, comes with probability interval [0, 0.1]; (iii) scenario S10, where the
order is closed after having signed consent, comes with probability interval [0.7, 0.8]; (iv) sce-
nario S11, where the order is closed and consent is signed at least twice (once before, and once
afterward), comes with probability interval [0.1, 0.2]. /

4 Discovering ProbDeclare Models from Event Logs

We now show that ProbDeclare models can be discovered from event data using, off-
the-shelf, already existing techniques, with a quite interesting guarantee: that the dis-
covered model is always consistent. We use the standard notation [·] for multisets, and
use superscript numbers to identify the multiplicity of an element in the multiset.

A plethora of different algorithms have been devised to discover Declare models
from event data [9,13,7,22]. In general, the vast majority of these algorithms adopt the
following approach to discovery: (1) Candidate constraints are generated by analyzing
the activities contained in the log. (2) For each constraint, its support is computed as
the fraction of traces in the log where the constraint holds. (3) Candidate constraints
are filtered, retaining only those whose support exceeds a given threshold. (4) Further
filters (e.g., considering the “relevance” of a constraint [6]) are applied. (5) The overall
model is checked for satisfiability, operating with different strategies if it is not; this
is necessary since constraints with high support, but less than 1, may actually conflict
with each other [4,5]. In this procedure, the notion of support is formalized as follows.

Definition 4. The support of an LTLf constraint ϕ in an event log L = [τ1, . . . , τn] is
suppL(ϕ) =

|Lϕ|
|L| , where Lϕ = [τ ∈ L | τ |= ϕ]. /

We can adopt this approach off-the-shelf to discover ProbDeclare constraints: we just
use the constraint support as its associated probability, with operator =. In other words,
ifϕ is discovered with support p, we turn it into the probabilistic constraint 〈ϕ, p〉. When
doing so, we can also relax step (3), e.g., to retain constraints with a very low support,
implying that their negated versions have a very high support.

Example 10. Consider L = [〈close,acc〉7, 〈close,ref〉2, 〈close,acc,ref〉1], cap-
turing the evolution of 10 orders, 7 of which have been closed and then accepted, 2 of which have
been closed and then refused, and 1 of which has been closed, then accepted, then refused. The
support of constraint response(close,acc) is 8/10 = 0.8, witnessing that 8 traces satisfy such
a constraint, whereas 2 violate it. This corresponds exactly to the interpretation of probability
0.8 for the probabilistic response(close,acc) constraint in Fig. 1. More in general, the entire
ProbDeclare model of Fig. 1 can be discovered from L. /

A second key observation is that once this procedure is used to discover ProbDeclare
constraints, step (5) is unnecessary: the overall discovered model is in fact guaranteed
to be satisfiable (in our probabilistic sense).

Theorem 1. Let Σ be a set of activities, L an event log over Σ, and C =
{〈ϕ1, p1〉, . . . , 〈ϕn, pn〉} a set of probabilistic constraints, such that for each i ∈
{1, . . . , n}, pi = suppL(ϕi). The ProbDeclare model 〈Σ, C〉 is satisfiable. /
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Proof. Technically, 〈Σ, C〉 is satisfiable if its corresponding PLTL0
f formula Φ :=

{}p1ϕ1, . . . ,}pnϕn} is satisfiable. To show this, we simply use L to build a model of
Φ. For every set I ⊆ {1, . . . , n}, letϕI be the LTLf formulaϕI :=

∧
i∈I ϕi∧

∧
i/∈I ¬ϕi,

and let LI be the sublog of L containing all the traces that satisfy ϕI . Note that the
sublogs LI form a partition of L; that is, every trace appears in exactly one such LI .
For each I such that LI is not empty, choose a representative tI ∈ LI and let pI :=

|LI |
|L|

be the fraction of traces that belong to LI . We build a stochastic language ρ by setting
ρ(tI) = pI for each I such that LI 6= ∅ and ρ(τ) = 0 for all other traces. We need
to show that ρ satisfies C. Consider a constraint 〈ϕ, p〉 ∈ C; we need to show that∑
τ |=ϕ ρ(τ) = p. Note that by construction,

∑
τ |=ϕ ρ(τ) =

∑
tI |=ϕ pI and since LI

form a partition, the latter is in fact the fraction of traces that satisfy ϕ. On the other
hand, p is also the support of ϕ; that is, the proportion of traces satisfying ϕ. Hence,
both values are equal, and ρ satisfies the ProbDeclare model. a

By this theorem, probabilistic constraints can be discovered in a purely local way, hav-
ing the guarantee that they will never conflict with each other. Obviously, non-local
filters can still prove useful to prune implied constraints and select the most relevant
ones. Also, note that the probabilities of the discovered constraints can be easily ad-
justed when new traces are added to the log, by incrementally recomputing the support
values after checking how many new traces satisfy the various constraints.

There are many open questions that deserve a dedicated investigation, such as: when
do we stop the discovery procedure, now that every constraint can be retained, irrespec-
tively of its support? What is the impact of retaining constraints with various degrees of
support in terms of over/under-fitting? How to learn constraints with probability opera-
tors different from just equality? And how does this impact generalization?

5 Monitoring Probabilistic Constraints

In Sect. 3.2, we have shown how we can take a ProbDeclare model and generate its
constraint scenarios, together with their corresponding probability intervals. We now
describe how this technique can be directly turned into an operational probabilistic
monitoring and conformance checking framework.

Let M = 〈Σ, C〉 be a ProbDeclare model with n probabilistic constraints. For sim-
plicity, we do not distinguish between crisp and genuinely probabilistic constraints,
nor prune away implausible scenarios: the produced monitoring results do not change,
but obviously our implementation, presented at the end of this section, takes into ac-
count these aspects for optimization reasons. M generates 2n constraint scenarios.
As discussed in Sect. 3.2, each scenario S comes with a corresponding characteris-
tic LTLf formula, which amounts to the conjunction of positive and negated constraints
in C, where the decision of which ones are taken positive and which negative is de-
fined by the scenario itself. We denote such a formula by formula(S). For example,
if C = {〈ϕ1, p1〉, 〈ϕ2, p2〉, 〈ϕ3, p3〉}, then formula(S101) = ϕ1 ∧ ¬ϕ2 ∧ ϕ3. In addi-
tion, if M is satisfiable, and hence LM is solvable, each scenario S comes with its own
probability. More specifically, we have to consider the case where multiple (possibly
infinite) solutions exist for LM . There are various possibilities to handle this case. We
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tackle it by resorting to a quite direct approach: for each scenario S, we solve LM twice
by respectively imposing, as an additional constraint, that the probability variable for S
has to be minimized/maximized. This, in turn, yields a probability interval for S, which
we denote by prob(S). From Example 9, we have, e.g., that prob(S10) = [0.7, 0.8].
More sophisticated ways to extract probabilities from LM can be investigated.

5.1 Prefix Monitoring

A very direct form of monitoring consists in checking whether a partial trace, that is,
the prefix of a full trace whose continuation is yet to be determined, conforms to a
given ProbDeclare model M . This amounts to a probabilistic version of conformance
checking that can be tackled as follows. We fix an order over the constraints in M , and
precompute the probability intervals of the scenarios induced by M . At runtime, we
consider the current prefix τ and, for every formula ϕ of each probabilistic constraint
〈ϕ, ./, p〉 ∈ M considered in isolation, we output 1 if τ |= ϕ, and 0 otherwise. One
effective way to do this check is to precompute the finite-state automaton that recog-
nizes all and only the finite traces accepted by ϕ [1], then checking at runtime whether
τ is recognized by that automaton. The automaton can be determinized upfront, making
in turn possible to perform this check incrementally. The overall, so-produced output,
interpreted as an array of bits, matches exactly one and only one scenario of M . If the
scenario has probability 0, then τ is not conforming to M , whereas if the scenario has
a proper probability (interval), then τ conforms to M , and the actual probability value
can be used to understand whether τ represents a common or an outlier behavior - that
is, coupling “conformance” with an estimation of the degree of “conformism”. This ap-
proach comes with a main limitation though: it does not reason on the possible future
continuations of the current prefix. This is particularly limiting in a probabilistic setting:
monitoring a prefix makes it impossible to understand if and how its matching scenario
will change as new events are acquired.

5.2 Full Monitoring

We now show how prefix monitoring can be further developed into full monitoring of
prefixes and their possible continuations in our probabilistic setting. In this case, we
cannot consider anymore the constraints in isolation, but we have to reason at the level
of scenarios. Notice that most of the computational burden is at design time, whereas at
runtime we incur simply in the cost of incrementally recognizing a growing prefix on a
fixed set of deterministic finite-state automata, which is computationally lightweight.

To handle full monitoring, first notice that the characteristic formula of a scenario is
in standard LTLf , and so we can construct a scenario monitor by recasting well-known
automata-theoretic techniques [16,1]. Specifically, given an LTLf formula ϕ over a
set Σ of activities, and a partial trace τ representing an ongoing process execution, a
monitor outputs one of the four following truth values:
• τ (permanently) satisfies ϕ, if ϕ is currently satisfied (τ |= ϕ), and ϕ stays satisfied

no matter how the execution continues, that is, for every possible continuation trace
τ ′ overΣ, we have τ ·τ ′ |= ϕ (the · operator denotes the concatenation of two traces);
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Fig. 3: Result computed by monitoring the ProbDeclare model on the top left against
the trace 〈close,acc,ref〉, which conforms to the outlier constraint scenario where
the two response constraints are satisfied, while the not− coexistence one is violated.

trace 〈close,sign〉 trace 〈sign,close〉
Fig. 4: Output of the implemented tool on the example in Fig.2.

• τ possibly satisfies ϕ, if ϕ is currently satisfied (τ |= ϕ), but ϕ may become violated
in the future, that is, there exists a continuation trace τ ′ over Σ such that τ · τ ′ 6|= ϕ;
• τ possibly violates ϕ, if ϕ is currently violated (τ 6|= ϕ), but ϕ may become satisfied

in the future, that is, there exists a continuation trace τ ′ over Σ such that τ · τ ′ |= ϕ;
• τ (permanently) violates ϕ, if ϕ is currently violated (τ 6|= ϕ), and ϕ stays violated

no matter how the execution continues, that is, for every possible continuation trace
τ ′ over Σ, we have τ · τ ′ 6|= ϕ.
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This is used as follows. For each plausible scenario S over M , we construct the
monitor for S.5 We then track the evolution of a running trace by delivering its events
to all such monitors in parallel, returning the truth values they produce. As pointed out
in Sect. 5.1, at runtime we do not always know to which scenario the trace will belong
to once completed. However, we can again combine logical and probabilistic reasoning
to obtain a meaningful feedback.

A first key observation is that, for every partial trace, at most one scenario can turn
out to be permanently or temporarily satisfied. Call this scenario S. In the first case, this
verdict is irrevocable, and also implies that all other scenarios are permanently violated.
This witnesses that no matter how the execution continues, the resulting trace will for
sure belong to S. We then return immediately that the trace is conforming, and also
return prob(S) to give an indication about the degree of conformism of the trace (see
above). In the second case, the verdict may instead change as the execution unfolds, but
would collapse to the previous case if the execution terminates, which is communicated
to the monitors by a special complete event.

A second key observation is that multiple scenarios may be at the same time tem-
porarily or permanently violated. For this reason, we need to aggregate in some way
the probabilities of the scenarios that produce the same truth value to have an indication
of the overall probability associated with that value. Having this aggregated probabil-
ity is useful to have sophisticated feedback about the monitored trace. For example,
the aggregated probability for permanently violated scenarios is useful as it can never
decrease over time: it is possible that new scenarios become permanently violated, but
those that already are will never switch to a different truth value. So a high value asso-
ciated to permanent violation can be interpreted as a clear indication that the monitored
trace will turn out to be either a conforming outlier or not conforming at all. At the same
time, the aggregated value of permanent violation can be used as a conditional proba-
bility, when one is interested in understanding what is the probability that a trace will
end up in a given scenario. The extreme values of the aggregated probability interval
for temporary/permanent violations are computed using the system of inequalities LM .
In particular, this is done by adding a constraint that minimizes/maximizes the sum of
the probability variables associated to the scenarios that produce that truth value.

Example 11. Consider the ProbDeclare model in Fig. 1 with its three plausible scenarios (recall
that four scenarios are logically plausible there, but one of those has probability 0, so only three
remains to be monitored). Fig. 3 shows the result produced when monitoring a trace that at some
point appears to belong to the most plausible scenario, but in the end turns out to conform to the
least plausible one. From the image, we can also clearly see that the trace consisting only of a
close order activity would be judged as non-conforming, as it would violate all scenarios. /

This probabilistic monitoring technique has been fully implemented.6 For solving
systems of inequalities, we use the LP solver7. The implementation comes with various
optimizations. First, scenarios are computed by directly imposing that crisp constraints
with probability 1 must hold in their positive form in all scenarios. Second, only plausi-
ble scenarios are retained for monitoring. Third, the results obtained by minimizing and

5 Implausible scenarios are irrelevant: they produce an output that is associated to probability 0.
6 https://bitbucket.org/fmmaggi/probabilisticmonitor/src/master/
7 http://lpsolve.sourceforge.net/5.5/

https://bitbucket.org/fmmaggi/probabilisticmonitor/src/master/
http://lpsolve.sourceforge.net/5.5/
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maximizing for aggregate probability variables are cached, to avoid solving multiple
times the same problem. Fig.4 shows the output of the implemented monitoring tool
on the example in Fig.2 and for two different traces.8 Here, the aggregated probability
intervals are shown with a dark gray or light gray background depending on whether
their midpoint is closer to 1 or to 0, respectively. The first trace (on the left) is classified
as belonging to scenario S01 and is an outlier because this scenario has low probability
(corresponding to a probability interval of prob(S01) = [0.0, 0.1]). The second trace (on
the right) is classified as belonging to the highly plausible scenario S10 (corresponding
to a probability interval of prob(S10) = [0.7, 0.8]).

6 Conclusion

In this paper, we have introduced the notion of probabilistic business constraint and
demonstrated how this notion affects the outcomes of standard process monitoring (and
mining) approaches based on Declare, when standard Declare is replaced by its proba-
bilistic counterpart. We have introduced a framework for monitoring a trace with respect
to a set of probabilistic constraints. The framework classifies completed traces as vio-
lating a given probabilistic model or as belonging to a certain constraint scenario (i.e.,
satisfying a certain combination of probabilistic constraints). Technically, our approach
seamlessly handles more sophisticated logics for specifying constraints, only requiring
that they have a corresponding automata-theoretic characterization. Thus, for example,
regular expressions or LDLf [1] can be used in place of LTLf , as well as FO-LTLf [3].

For future work, we plan to better investigate the influence of probabilistic con-
straints on the state-of-the-art techniques for declarative process mining. In addition,
as it has been shown in the paper, very sophisticated monitoring feedbacks can be ex-
tracted, but their interpretation is not at all straightforward. A dedicated study focused
on end user-tailored feedbacks is needed. Last but not least, we plan to relate, and possi-
bly integrate, the declarative approach presented in this paper with recent advancements
in stochastic conformance checking on imperative process models [10]. Note that if we
extend our approach with probabilities within constraints (ending up in the full logic
studied in [15]), we have to manipulate more sophisticated automata that are reminis-
cent of the stochastic automata used in [10]. At the same time, the entropy-based ap-
proach brought forward in [10] could be used in our setting to measure the “distance”
between a set of probabilistic constraints and an event log whose trace frequencies are
not fully aligned to what prescribed by the probabilistic constraints.
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