
An Automata View to Goal-directed Methods

Lisa Hutschenreiter1? and Rafael Peñaloza2

1 Technische Universität Dresden, Germany (lisa.hutschenreiter@tu-dresden.de)
2 Free University of Bozen-Bolzano, Italy (rafael.penaloza@unibz.it)

Abstract. Consequence-based and automata-based algorithms encom-
pass two families of approaches that have been thoroughly studied as rea-
soning methods for many logical formalisms. While automata are useful
for finding tight complexity bounds, consequence-based algorithms are
typically simpler to describe, implement, and optimize. In this paper,
we show that consequence-based reasoning can be reduced to the empti-
ness test of an appropriately built automaton. Thanks to this reduction,
one can focus on developing efficient consequence-based algorithms, ob-
taining complexity bounds and other benefits of automata methods for
free.

1 Introduction

In logic-based knowledge representation, the knowledge from a domain is en-
coded using a finite set of axioms, expressed and interpreted in a suitable logic,
that restrict the ways in which the domain symbols can be used. To keep the
representation task feasible, only the most relevant portions of the knowledge
are explicitly represented, while other consequences of these axioms are only im-
plicitly available. The task of making this implicit knowledge explicit is usually
known as reasoning.

For practical applications, it is fundamental to have effective reasoning meth-
ods. Ideally, these should be optimal w.r.t. the computational complexity of the
reasoning problem, easy to implement, and behave well in practice. Keeping these
desiderata in mind, many reasoning algorithms have been developed over the
years. These can be broadly classified into two approaches: the automata-based,
and the tableaux-based approaches. In a nutshell, the automata-based approach
constructs an automaton that accepts all relevant models of a knowledge base.
An emptiness test can then be used to decide whether a given (implicit) conse-
quence can be derived from it. On the other hand, tableaux methods apply rules
to extend the explicit knowledge until the consequence is derived. They can thus
be thought of as “goal-directed” approaches. Consequence-based algorithms fall
into this latter category, where rule applications have a limited effect.

Automata-based methods provide formal tools for understanding the theo-
retical properties and limitations of reasoning in the underlying logical formal-
ism. They have been successfully used to prove tight (worst-case) complexity

? Supported by the DFG Graduiertenkolleg 1763 (QuantLA).

bounds [2]. They also provide an elegant solution for dealing with supplemental
reasoning problems that can be seen as weighted model counting problems [4,20].
However, with a few notable exceptions [11], automata-based methods are not
suitable for efficient implementations due to the match between their best-case
and their worst-case behaviour.

Due to their goal-directed behaviour, tableaux-based methods are the basis
of some of the most efficient implementations of reasoning algorithms available.
However, extending these methods to handle supplemental reasoning problems
is far from obvious, and might even lead to non-terminating procedures [5]. In
fact, the known method for transforming a consequence-based algorithm into a
supplemental reasoning procedure requires the application of an NP-hard propo-
sitional entailment test on every step of the execution, potentially damaging the
overall complexity of the methods [6]. This is especially negative if one takes into
account that the supplemental extensions of automata-based methods typically
preserve the original complexity.

In this paper, we combine the benefits of consequence-based and automata-
based methods to overcome their respective drawbacks. More precisely, we show
that every consequence-based algorithm can be effectively transformed into an
automaton deciding the same reasoning problem. Thus, one can focus on design-
ing and implementing an efficient consequence-based algorithm and take advan-
tage of this transformation to obtain tight complexity bounds and extensions to
supplemental reasoning provided by the automata-based view.

Throughout this paper, we consider a general notion of consequence-based
algorithm, which makes our results applicable to a wide range of settings. To
improve readability, we use as a running example a known method for deciding
subsumption in the description logic EL.

2 Consequence-based Algorithms

We consider a general notion of consequence-based algorithms as automated
reasoning methods. The family of these methods, also called ground tableaux in
the literature [5], encompasses many well-known algorithms, such as DPLL [8],
congruence closure [19], and the prominent methods for reasoning in EL [1] and
other description logics [13]. As a running example for all our notions, we will
adapt the consequence-based algorithm for deciding subsumption first presented
in EL from [14]. Thus we briefly recall this logic and its reasoning problem.
EL is a lightweight description logic whose main building blocks are concepts

and roles. Given two disjoint infinite sets NC and NR of concept names and
role names, respectively, EL concepts are constructed using the grammar rule
C ::= A | > | C u C | ∃r.C, where A ∈ NC and r ∈ NR. An EL TBox is a finite
set of general concept inclusions (GCIs) of the form C v D, where C,D are EL
concepts. The semantics of this logic is based on interpretations, which are pairs
of the form J = (ΛJ , ·J), with ΛJ a non-empty set called the domain and ·J the
interpretation function that maps every concept name A to a subset AJ ⊆ ΛJ

and every role name r to a binary relation rJ ⊆ ΛJ × ΛJ . This function is

extended to EL concepts by defining >J := ΛJ , (C u D)J := CJ ∩ DJ , and
(∃r.C)J := {λ ∈ ΛJ | ∃µ ∈ CJ .(λ, µ) ∈ rJ }. The interpretation J satisfies the
GCI C v D iff CJ ⊆ DJ . It is a model of the TBox T if it satisfies all GCIs
in T . The concept C is subsumed by the concept D w.r.t. the TBox T if every
model of T also satisfies the GCI C v D.

We now define the notion of consequence-based algorithm. To remain as
general as possible, for the rest of this paper we consider that we have two
arbitrary (but fixed) sets I of inputs and T of axioms. We denote by Pfin(T) the
set of all finite subsets of T. The different inputs in I will be usually denoted by
calligraphic letters like I, and the axioms with lower-case letters; e.g., s.3 We
start by defining the consequences that will be decided by our algorithms.

Definition 1 (property). A consequence property (or property for short) is
a binary relation P ⊆ I ×Pfin(T) such that if (I, T) ∈ P, then (I, T ′) ∈ P for
all T ⊆ T ′ ∈Pfin(T).

In other words, we are interested in deciding whether a given input I is entailed
by a finite set of axioms T through a monotone relation. We use monotonicity
in the standard logical sense in which new information can only generate more
consequences, but never negate previously entailed ones. Throughout this paper
we call pairs of the form (I, T) axiomatized inputs.

Consider for example the subsumption problem in EL. In this case, the set T
of axioms consists of all possible GCIs C v D. I is the class of all possible sub-
sumption relations, which will be denoted by C v? D to distinguish them from
the axioms in the TBox. The property P refers to the entailment of subsumption
relations; that is, (C v? D, T) ∈ P iff C is subsumed by D w.r.t. T .

Depending on the specific shape of the property P, there exist many different
approaches for deciding whether a given axiomatized input (I, T) belongs to P
or not. We focus on a class of decision methods which we call consequence-based
algorithms.

Definition 2 (consequence-based algorithm). Let I be a set of inputs, and
T a set of axioms. A consequence-based algorithm for I and T is a tuple of the
form S = (Σ, ·S ,R, C) where

– Σ is a set called the signature;
– ·S is the initialization function that maps every I ∈ I and every t ∈ T to a

finite subset of Σ;
– R is a set of rules of the form (B0,S) → B, where B0 and B are finite

subsets of Σ and S ∈Pfin(T); and
– C is a set of finite subsets of Σ, which are called clashes.

The idea of a consequence-based algorithm is to decide a property by making
explicit all the consequences of the given axiomatized input. The explicit knowl-
edge derived during the execution of the algorithm S is preserved in S-states.

3 In the literature (e.g. [5]) the sets of axioms allowed are sometimes restricted to
satisfy an admissibility criterion. As this criterion is irrelevant for our methods, we
leave it out for the sake of simplicity.

Formally, given a consequence-based algorithm S = (Σ, ·S ,R, C), an S-state is
a pair S = (A, T) where A is a finite subset of Σ and T ∈Pfin(T). We call the
elements of A in such an S-state assertions.

Given the axiomatized input (I, T), the decision procedure begins with the
initial S-state (I, T)S defined by (I, T)S := (IS ∪

⋃
t∈T t

S , T). That is, the
initial S-state contains all the assertions obtained by applying the initialization
function to the input I and the axioms in T . Notice that the second component
of this S-state is the same set of axioms T . As we will see, the algorithm never
modifies this set. However, preserving the information of the set of axioms used
will be helpful in the following sections. The first component of the S-state S is
iteratively extended through rule applications, which depend exclusively on the
assertions and axioms appearing in S.

Definition 3 (rule application). Let S = (A, T) be an S-state. The rule
R : (B0,S)→ B is applicable to S iff (i) S ⊆ T , (ii) B0 ⊆ A; and (iii) B 6⊆ A.
The application of R to S yields the new S-state S′ := (A∪B, T). In this case,
we write S→R S′, or S→S S′ if the specific rule applied is irrelevant.

As usual, the reflexive and transitive closure of →S is denoted by
∗−→S .

Starting from the initial state, consequence-based algorithms apply rules in
a not-care non-deterministic manner until a saturated state is reached; that is, a
state for which no rule is applicable. In this case, the not-care non-determinism
means that whenever more than one rule can be applied to a given state, any
one of them can be chosen. Finally, the set of clashes C is used to decide the
property once a saturated S-state is reached: the axiomatized input is accepted
(i.e., it belongs to the property P) if and only if it contains a clash.

A consequence-based algorithm decides a property P if it always terminates
and the resulting saturated S-state contains a clash whenever the axiomatized
input belongs to P. This notion is formalized next.

Definition 4 (correct). The consequence-based algorithm S = (Σ, ·S ,R, C) is
correct for the property P iff for every axiomatized input Γ = (I, T), the follow-
ing two conditions hold:

1. S terminates on Γ ; that is, there exists no infinite chain of rule applications
S0 →S S1 →S · · · starting with S0 = Γ ; and

2. for every chain of rule applications S0
∗−→S Sn with S0 = Γ and Sn a

saturated S-state, Γ ∈ P iff Sn contains a clash.

Example 5. A consequence-based algorithm for deciding subsumption in EL is
given by SEL = (Σ, ·SEL ,R, C), where

– Σ := {C v D,C v? D | C,D are EL concepts};
– for every GCI in T, (C v D)SEL := {C v C,C v >};
– for every C v? D ∈ I, (C v? D)SEL := {C v? D};
– the set of rules R is depicted in Figure 1; and
– C := {{C v D,C v? D}}

B0 S → B

R−u : {C v D1 uD2} ∅ → {C v D1, C v D2}
R+
u : {C v D1, C v D2} ∅ → {C v D1 uD2}

R∃: {E v ∃r.C,C v D} ∅ → {E v ∃r.D}
Rv: {C v D} {D v E} → {C v E}

Fig. 1. Rules for the consequence-based algorithm SEL

Intuitively, the algorithm makes all the relevant subsumption relations that fol-
low from the TBox T explicit by applying the rules. The input subsumption
relation, whose entailment is being decided, is kept in the set of assertions to be
able to produce a clash when it is derived through the application of rules. The
correctness of this algorithm has been shown in [14].

Notice that the second condition from Definition 4 requires that the algorithm
yields the same answer regardless of the order in which the rules were applied.
This corresponds to the not-care non-determinism mentioned above. As a con-
sequence, any order chosen suffices for deciding whether a property holds or
not; i.e., there is no need to backtrack if a saturated S-state without a clash is
found. In fact, for consequence-based algorithms, the second condition is equiv-
alent to requiring that there exists one sequence of rule applications that leads
to a saturated state with a clash. More precisely, for every axiomatized input
Γ and saturated S-states S,S′, if ΓS

∗−→S S and ΓS
∗−→S S′, then S and S′

must be equivalent. This can be easily seen from the fact that whenever a rule
(B0,S)→ B is applicable in an S-state, it remains applicable to any successive
S-state until all the assertions in B have been introduced, which has the same ef-
fect as having applied the rule before-hand. Once again, this in particular means
that the order in which the rules are applied is irrelevant for deriving a clash or
not.

For supplemental reasoning, it is often important to know all the possible
ways in which clashes can be generated by rule applications (see Section 5).
In order to keep track of the different orders that have already been followed,
extensions of consequence-based algorithms developed for dealing with these
problems require the use of an NP oracle [5].

3 Tree Automata

We briefly recall the basic notions of tree automata. These automata receive
finite trees of a fixed arity k with identified successors as inputs. For the rest
of this paper, given a positive integer k, we will denote by K the set {1, . . . , k}.
As is usual, we identify the nodes in a k-ary tree by words in K∗: the root node
is identified by the empty word ε, and the i-th successor of the node u ∈ K∗ is
identified by the word ui for all i ∈ K.

Definition 6 (finite tree). A finite k-ary tree is a finite subset t ⊆ K∗ such that
for every node ui ∈ t it holds that (i) u ∈ t, and (ii) uj ∈ t for all j, 1 ≤ j ≤ i.

Intuitively, Condition (i) states that the parent of every node belongs to the tree;
this in particular means that a non-empty tree will always contain the root node
ε. The second condition ensures that all the successors of a node are adequately
identified by the smallest possible natural numbers without gaps. We say that a
tree is full if every node is either a leaf (i.e., has no successors), or has exactly
k successors.

A labelled tree is a tree t ⊆ K∗ extended with a labelling function lab. If the
labels belong to a given set Q, we will often denote labelled trees as a function
lab : t → Q. For this paper, we focus on tree automata that receive full finite
unlabelled trees of a fixed arity k as inputs.

Definition 7 (finite tree automaton). A finite tree automaton of arity k is
a tuple A = (Q,∆, I, F) where

– Q is a finite set, whose elements are called states;
– ∆ ⊆ Qk+1 is the transition relation;
– I ⊆ Q is the set of initial states; and
– F ⊆ Q is the set of final states.

A run of this automaton on the full unlabelled finite tree t is a labelled tree of
the form lab : t → Q such that for every non-leaf node u ∈ t, it holds that
(lab(u), lab(u1), . . . , lab(uk)) ∈ ∆. This run is successful iff for every leaf node
u ∈ t, lab(u) ∈ F .

The emptiness problem for finite tree automata refers to the problem of deciding
whether there exists a finite unlabelled tree t and a successful run on t with
lab(ε) ∈ I. In this case, we say that the automaton is non-empty. We often
refer to successful runs with lab(ε) ∈ I as accepting. It is well known that the
emptiness problem can be solved in polynomial time on the number of states.
This general bound can be in fact improved to linear time in the number of
states through a bottom-up approach that identifies the states that may appear
in a successful run—we call these good states. All final states are clearly good.
Further good states can be iteratively found by adding all states q ∈ Q such that
there is a transition of the form (q, q1, . . . , qk) ∈ ∆ where every qi, 1 ≤ i ≤ k is a
good state. This iteration detects an initial state that is good if and only if the
automaton is non-empty.

4 From Consequence-based to Automata

We now show how to translate any given consequence-based algorithm S into a
finite tree automaton of an appropriate arity in such a manner that the emptiness
test of the latter can be used to verify whether an axiomatized input Γ belongs
to the property decided by the former or not.

For this section we consider an arbitrary but fixed consequence-based algo-
rithm S = (Σ, ·S ,R, C). We fix the constant k := max{|B0| | (B0,S)→ B ∈ R}.
In the following, whenever we refer to a tree, we implicitly assume that it is a
finite k-ary tree, where k is defined as before.

⊥

A v? C A v C

A v C uD ♦

A v B ♦

A v A ♦

Fig. 2. A derivation tree for (A v? C, {A v B,B v C uD}) and its binary padding.

We can assume w.l.o.g. that all the rules in R are of the form (B0,S)→ {σ}
with σ ∈ Σ; that is, a rule application adds only one alphabet symbol as a conse-
quence. To see this, notice that the rule (B0,S)→ B can be equivalently replaced
in R by the set of rules {(B0,S)→ {σ} | σ ∈ B}. Similarly, we assume that the
set of clashes C contains only the singleton {⊥}. Otherwise, we can extend the
set of rules R to include (C, ∅)→ {⊥} for every C ∈ C. This extension does not
change the behaviour of the algorithm S, as it will still detect the presence of
a clash by verifying whether the new symbol ⊥ was derived. For example, we
can change the rule R−u of the consequence-based algorithm SEL (see Example 5)
into two rules that derive C v D1 and C v D2, respectively, and add a new rule
Rc : ({C v D,C v? D}, ∅) → {⊥} to satisfy the aforementioned assumptions
without compromising its correctness for deciding subsumption relations.

Under these assumptions, we can view the possible derivations of the clash
⊥ as labelled trees, where each node is labelled with an assertion from Σ, the
root node is labelled by ⊥, and the children of each node represent the set of
assertions needed to apply a rule that generates them.

Definition 8 (derivation tree). A derivation tree for the axiomatized input
Γ = (I, T) w.r.t. the consequence-based algorithm S is a labelled finite k-ary tree
lab : t→ Σ such that the following conditions hold:

1. lab(ε) = ⊥;
2. for every leaf node u ∈ t, lab(u) ∈ ΓS; and
3. for every non-leaf node u ∈ t with i successors, there exists a rule of the

form ({lab(u1), . . . , lab(ui)},S)→ {lab(u)} in R such that S ⊆ T .

Example 9. Consider again the algorithm SEL for deciding subsumption in EL
from Example 5. Since the rules in SEL have at most two assertions as prerequisite
for application, derivation trees for this algorithm will be binary. If we want to
decide whether A is subsumed by C w.r.t. the TBox T = {A v B,B v C uD},
we will call SEL with the axiomatized input Γ = (A v? C, T). A derivation tree
for this input w.r.t. SEL is depicted in Figure 2 (ignore the nodes labelled with ♦
for the moment). Notice that there are only two leaf nodes, labelled with A v? C
and A v A. Both of them belong to ΓSEL .

As shown by the following theorem, to decide whether the axiomatized input Γ
belongs to the property P, it suffices to check for the existence of a derivation
tree.

Theorem 10. Let S be a consequence-based algorithm that is correct for the
property P, and Γ = (I, T) an axiomatized input. Then Γ ∈ P iff there exists a
derivation tree for Γ w.r.t. S.

Proof. Let S = (A, T) be a saturated S-state such that ΓS
∗−→S S. It suffices to

show that ⊥ ∈ A iff there exists a derivation tree for Γ w.r.t. S.
(if) Assume first that lab : t→ Σ is a derivation tree. We show by induction on
the tree structure that lab(u) ∈ A holds for all u ∈ t. First, for all leaf nodes u, we
have by definition that lab(u) ∈ ΓS ⊆ A. For the induction step consider a node
u such that all its successors satisfy the property. By Condition 3 of Definition 8,
there exists a rule ({lab(u1), . . . , lab(ui)},S)→ {lab(u)} in R with S ⊆ T . Since
this rule is not applicable to S, it must be the case that lab(u) ∈ A, which
finishes the induction proof. In particular, this means that lab(ε) = ⊥ ∈ A.
(only if) Assume now that ⊥ ∈ A. We construct a derivation tree lab : t → Σ
recursively as follows. First set lab(ε) := ⊥. For each node u ∈ t do the following.
If lab(u) ∈ ΓS , then u is a leaf node. Otherwise, since lab(u) ∈ A, there exists
a rule (B0,S) → {lab(u)} ∈ R with B0 ⊆ A and S ⊆ T such that for all
predecessors v of u it holds that lab(v) /∈ B0. Let B0 = {b1, . . . , bn}. Then we
add n new nodes u1, . . . , un to t with lab(ui) := bi for all i, 1 ≤ i ≤ n. It is easy
to see that this construction yields a derivation tree for Γ . ut

Based on this result, we will construct an automaton that produces derivation
trees as its accepting runs. If such a run exists—i.e., if the automaton is not
empty—then the axiomatized input belongs to the property.

Recall that we are interested only in consequence-based algorithms that can
correctly decide a given property P. In particular, this means that the algorithm
S must terminate on all axiomatized inputs Γ . It is thus reasonable to assume
that for every such axiomatized input Γ = (I, T), there exists a finite subset
ΣΓ ⊆ Σ of signature symbols that contains ΓS and ⊥, and is closed under
rule applications w.r.t. the axioms in T . In other words, ΣΓ is a known over-
approximation of all the symbols that will be used during the execution of the
consequence-based algorithm. Such a set may e.g., be known from the proof of
termination. For example, many reasoning algorithms—including SEL from our
running example—satisfy the subformula property that states that all assertions
derived during the rule applications are subformulas of the input provided; i.e.,
of the concepts appearing in the TBox and in the subsumption relation to be
verified.

We will use the transitions from the automaton to search for the preconditions
of a rule application, which correspond to the successor nodes in a derivation
tree. Notice, however, that while tree automata accept only full k-ary trees,
nodes in a derivation tree can have less than k successors. To solve this issue,
we will complete the trees through a distinguished new symbol ♦ /∈ Σ, that will
be used as padding for labelling all the irrelevant nodes from the input tree.

Let R : (B0,S)→ {σ} ∈ R with B0 = {b1, . . . , bn}, 1 ≤ n ≤ k. We define the
tuple δR := (σ, b1, . . . , bn) × {♦}k−n; that is, the trailing n − k symbols in the
tuple δR are filled with the special symbol ♦. Using these notions, we can now
construct the family of automata AS .

Definition 11 (AS). Let S = (Σ, ·S ,R, {{⊥}}) be a consequence-based algo-
rithm for I and T, and Γ = (I, T) be an axiomatized input. The finite tree
automaton AS(Γ) = (Q,∆, I, F) is defined by

– Q := ΣΓ ∪ {♦}
– ∆ = {δR | R : (B0,S)→ {σ} ∈ R,S ⊆ T }
– I := {⊥}
– F := ΓS ∪ {♦}.

Our goal is to prove that if S is correct for the property P, then for every
axiomatized input Γ , it holds that Γ ∈ P iff AS(Γ) has a successful run lab on
some finite unlabelled tree with lab(ε) = ⊥. To achieve this, it would suffice to
prove that the automaton is non-empty iff there exists at least one derivation
tree. We will in fact provide a stronger result and show that the accepting runs
of AS(Γ) correspond exactly to the (padded) derivation trees of Γ w.r.t. S.

We start by showing that all successful runs that label the root node with
⊥ correspond to derivation trees. Given a run lab : t → Q of AS(Γ) we define
the sub-tree tΣ ⊆ t as the set of all nodes not labelled with ♦; in other words,
tΣ := {u ∈ t | lab(u) ∈ Σ}. Since ∆ does not have any transition with ♦
in the head, the tree tΣ is well-defined. The labelled tree labΣ : tΣ → Σ is
defined by restricting the labelling function lab to the nodes of tΣ only. Formally,
labΣ(u) = lab(u) for all u ∈ tΣ . Notice that by construction, no node in tΣ can
be labelled with the distinguished symbol ♦.

Lemma 12. If lab : t → Q is an accepting run of AS(Γ), then labΣ : tΣ → Σ
is a derivation tree for Γ w.r.t. S.

Proof. Since lab : t → Q is an accepting run, it follows that lab(ε) = ⊥ ∈ Σ,
and hence also labΣ(ε) = ⊥. Moreover, lab is successful. Thus, for every node
u ∈ tΣ , if u is a leaf, then u was also a leaf in t and thus labΣ(u) ∈ ΓS . If
u is not a leaf, then there is a transition (lab(u), lab(u1), . . . , lab(uk)) ∈ ∆. By
construction, this transition is of the form (σ, b1, . . . , bn)×{♦}k−n for some rule
({b1, . . . , bn},S) → {σ} ∈ R with S ⊆ T , n ≤ k. Thus labΣ satisfies also the
third condition from Definition 8. ut

Conversely, every derivation tree can be padded to form a full tree by adding the
necessary nodes labelled with ♦. If lab : t→ Σ is a derivation tree, we construct
the tree t♦ by adding all missing nodes needed to have a full tree from t; that is,
t♦ := t ∪ {uj | u1 ∈ t, 1 ≤ j ≤ k}. The labelling function lab♦ : t♦ → Q extends
lab by mapping all new nodes to ♦:

lab♦(u) :=

{
lab(u) if u ∈ t
♦ otherwise

For instance, the gray nodes and edges in Figure 2 show the padding for the
derivation tree described in Example 9.

Lemma 13. If lab : t→ Σ is a derivation tree for Γ w.r.t. S, then lab♦ : t♦ → Q
is a successful run of AS(Γ) on t♦ and lab♦(ε) = ⊥ ∈ I.

Proof. First, since ε ∈ t, we immediately have that lab♦(ε) = lab(ε) = ⊥, where
the last equality follows from the first condition in Definition 8. Similarly, for
every leaf node u ∈ t♦, if u ∈ t, then lab♦(u) = lab(u) ∈ ΓS and if u /∈ t, then
lab♦(u) = ♦. In both cases, lab♦(u) ∈ F = ΓS ∪{♦}. We now only need to show
that for every non-leaf node u it holds that (lab♦(u), lab♦(u1), . . . , lab♦(uk)) ∈ ∆.
Notice first that the nodes in t♦ that are labelled with ♦ are all leafs. Hence,
all non-leaf nodes of this extended tree existed already in the derivation tree
t. Given such a non-leaf node u ∈ t, by the conditions of derivation trees, we
know that there exists a rule R : ({lab(u1), . . . , lab(un)},S) → {lab(u)} ∈ R
with S ⊆ T , and 1 ≤ n ≤ k. Hence, δR ∈ ∆. But

δR := (lab(u), lab(u1), . . . , lab(un))× {♦}k−n

= (lab♦(u), lab♦(u1), . . . , lab♦(uk)),

which concludes the proof. ut

From these two lemmas it follows that the family of automata AS(Γ) decides
the same property as the consequence-based algorithm S.

Theorem 14. Let S be a consequence-based algorithm that is correct for the
property P. For every axiomatized input Γ it holds that Γ ∈ P iff AS(Γ) is
non-empty.

Recall from the last paragraph of Section 3 that the emptiness test iteratively
constructs the set of all good states, starting from the final states, making the
transition relation explicit, and at the end verifies whether an initial state is good.
In the case of the automaton AS(Γ), the final states are exactly those from ΓS ;
the transition relation emulates the rules from S, and the only initial state is ⊥
expressing that there is a clash found. Thus, the execution of the consequence-
based algorithm S over the axiomatized input Γ is in fact an application of the
emptiness test of the automaton AS(Γ).

As mentioned already, the relationship between a consequence-based algo-
rithm S and its associated family of automata AS is much stronger. Rather
than merely checking whether the execution of S over Γ yields the clash ⊥, the
automaton AS(Γ) accepts all possible derivation trees. These trees can be seen
as different proofs for the existence of a clash, and hence for the derivation of
the properties. Notice that each of these proofs may require the presence of dif-
ferent axioms to trigger the rule applications. By tracing these axioms through
the rule applications, it is possible to understand the axiomatic causes for this
derivation, which is a fundamental task for many non-standard reasoning tasks
that have been studied for many different formalisms.

5 Supplemental Reasoning

The automata AS(Γ) can be seen as dual constructions to the axiomatic au-
tomata from [4]. Similar to that approach, associating a weight to every transi-
tion of the automaton—i.e., to every rule application of the original algorithm
S—one can define the weight of every derivation tree. By extension, every axiom-
atized input is associated to the weight obtained from aggregating the weights of
all its derivation trees. Supplemental reasoning refers to the task of computing
the weight of each axiomatized input according to different interpretations.

Some of the typical examples of supplemental reasoning are axiom pinpoint-
ing [6, 12, 22] and MUS enumeration [7, 15, 18], in which the goal is to compute
all the sets of axioms that entail the consequence, and its weaker version of lean
kernel computation [16,17]; probabilistic logics with distribution semantics [21];
access control [3] and reasoning with meta-knowledge [9], to name a few.

An automaton that decides a property through an emptiness test can be
modified into a weighted automaton [10] as described in [4] to solve these sup-
plemental reasoning tasks through a so-called behaviour computation execution.
Interestingly, if the weights of the automaton (which arise from the supple-
mental reasoning task under consideration) form a distributive lattice, then the
behaviour of this automaton can be computed in polynomial time. That is, sup-
plemental reasoning is as expensive as standard reasoning, when the underlying
reasoning method is automata-based.

6 Conclusions

We have shown that reasoning with consequence-based methods can be reduced
to the emptiness test of an automaton that accepts all the derivation trees of the
former. In fact, the execution of a consequence-based method and the emptiness
test of its associated automaton can be seen as two faces of the same process.
This duality seamlessly combines the benefits of both approaches. On the one
hand, we have a method that is easy to describe, implement, and optimize;
and on the other, we have the complexity bounds and supplemental reasoning
extensions that automata provide. As a simple application of our techniques, we
obtain the first pinpointing extension of the consequence-based approach for EL.
Further similar results can be attained by instantiating our framework.

One important consideration for future work is to consider the application
of non-deterministic rules in consequence-based methods. We notice, however,
that tree automata can only provide deterministic complexity classes, due to
their polynomial-time emptiness test. Thus, the benefits of translating non-
deterministic procedures into automata are less obvious.

References

1. Baader, F., Brandt, S., Lutz, C.: Pushing the EL envelope. In: Proc. of IJCAI’05.
Morgan Kaufmann, Edinburgh, UK (2005)

2. Baader, F., Hladik, J., Peñaloza, R.: Automata can show PSPACE results for
description logics. Information and Computation 206(9–10), 1045–1056 (2008)

3. Baader, F., Knechtel, M., Peñaloza, R.: Context-dependent views to axioms and
consequences of semantic web ontologies. J. of Web Semantics 12–13, 22–40 (2012)

4. Baader, F., Peñaloza, R.: Automata-based axiom pinpointing. J. of Autom. Reas.
45(2), 91–129 (August 2010)

5. Baader, F., Peñaloza, R.: Axiom pinpointing in general tableaux. Journal of Logic
and Computation 20(1), 5–34 (2010)

6. Baader, F., Peñaloza, R., Suntisrivaraporn, B.: Pinpointing in the description logic
EL+. In: Proc. of KI 2007. LNAI, vol. 4667, pp. 52–67. Springer (2007)

7. Belov, A., Lynce, I., Marques-Silva, J.: Towards efficient MUS extraction. AI Com-
mun. 25(2), 97–116 (2012)

8. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal
of the ACM 7(3), 201–215 (1960)

9. Dividino, R.Q., Schenk, S., Sizov, S., Staab, S.: Provenance, trust, explanations -
and all that other meta knowledge. KI 23(2), 24–30 (2009)

10. Droste, M., Gastin, P.: Weighted automata and weighted logics. Theoretical Com-
puter Science 380(1-2), 69–86 (2007)

11. Gastin, P., Oddoux, D.: Fast LTL to büchi automata translation. In: Proc. of CAV
2001. LNCS, vol. 2102, pp. 53–65. Springer (2001)

12. Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding all justifications of OWL
DL entailments. In: Proc. of ISWC 2007. LNCS, vol. 4825, pp. 267–280. Springer
(2007)

13. Kazakov, Y.: Consequence-driven reasoning for Horn SHIQ ontologies. In:
Boutilier, C. (ed.) Proc. of IJCAI’09. pp. 2040–2045 (2009)

14. Kazakov, Y., Krötzsch, M., Simanč́ık, F.: The incredible ELK: From polynomial
procedures to efficient reasoning with EL ontologies. J. of Autom. Reas. 53, 1–61
(2014)

15. Kleine Büning, H., Kullmann, O.: Minimal unsatisfiability and autarkies. In: Hand-
book of Satisfiability, pp. 339–401 (2009)

16. Kullmann, O.: Investigations on autark assignments. Discrete Applied Mathemat-
ics 107(1-3), 99–137 (2000)

17. Kullmann, O., Lynce, I., Marques-Silva, J.: Categorisation of clauses in conjunctive
normal forms: Minimally unsatisfiable sub-clause-sets and the lean kernel. In: SAT.
pp. 22–35 (2006)

18. Liffiton, M.H., Previti, A., Malik, A., Marques-Silva, J.: Fast, flexible MUS enu-
meration. Constraints 21(2), 223–250 (2016)

19. Nieuwenhuis, R., Oliveras, A.: Fast congruence closure and extensions. Information
and Computation 205(4), 557–580 (2007)

20. Peñaloza, R.: Using sums-of-products for non-standard reasoning. In: Proc. of
LATA 2010. LNCS, vol. 6031, pp. 488–499. Springer (2010)

21. Riguzzi, F., Bellodi, E., Lamma, E., Zese, R.: Probabilistic description logics under
the distribution semantics. Semantic Web 6(5), 477–501 (2015)

22. Schlobach, S., Cornet, R.: Non-standard reasoning services for the debugging of
description logic terminologies. In: Proc. of IJCAI’03. pp. 355–362. Morgan Kauf-
mann (2003)

	An Automata View to Goal-directed Methods

