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Abstract We introduce the new probabilistic description logic (DL) BEL, which
extends the light-weight DL EL with the possibility of expressing uncertainty about
the validity of some knowledge. Contrary to other probabilistic DLs, BEL is de-
signed to represent classical knowledge that depends on an uncertain context; that
is, some of the knowledge may hold or not depending on the current situation. The
probability distribution of these contexts is expressed by a Bayesian network (BN).

We study different reasoning problems in BEL, providing tight complexity
bounds for all of them. One particularly interesting property of our framework
is that reasoning can be decoupled between the logical (i.e., EL), and the prob-
abilistic (i.e., the BN) components. We later generalize all the notions presented
to introduce Bayesian extensions of arbitrary ontology languages. Using the de-
coupling property, we are able to provide tight complexity bounds for reasoning
in the Bayesian extensions of many other DLs. We provide a detailed analysis
of our formalism w.r.t. the assumptions made and compare it with the existing
approaches.

Keywords Description Logics · Bayesian Networks · Probabilistic Reasoning ·
Knowledge Representation and Reasoning

1 Introduction

Description Logics (DLs) [7] are a family of knowledge representation formalisms
that have been successfully used for representing and reasoning with the knowl-
edge of various application domains. One prominent member of this family is the
light-weight DL EL [5]. EL is a very inexpressive DL, incapable of expressing e.g.
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negations or disjunctions of concepts. Despite this limitation, many large knowl-
edge domains have been modelled using slight extensions of EL. This logic has
been particularly successful in the representation of bio-medical domains. One of
the fundamental features of EL and some of its extensions is that they allow for
polynomial-time standard reasoning. Hence, it remains feasible to reason with huge
knowledge bases.

In their classical form, DLs are not suited for handling any kind of uncer-
tainty that may arise in the application domain. This is a large limitation since,
in particular in the bio-medical domains, most of the knowledge has some level of
uncertainty attached to it. To alleviate this issue, many probabilistic extensions
of DLs have been proposed; see [31] for a thorough survey. What differentiates
all these formalisms are the assumptions made in the type of probabilities (e.g.,
subjective vs. statistical), the independence assumptions, and the way in which
uncertainty is modeled (e.g., as a concept constructor, or in the axioms).

An important issue when modelling uncertain knowledge is how to represent
the probabilistic dependencies between the different elements of the knowledge
base. Bayesian networks (BNs) [23] are probabilistic models that use a graphical
structure to express conditional independence assumptions between the variables
of the network. Over the years, BNs have been used to model probabilistic knowl-
edge in many domains. In particular, they have been used in several biological
applications. See [26, 40] for just two of the many instances that can be found in
the literature.

We propose the new probabilistic DL BEL, which extends EL by expressing the
uncertainty of the different axioms with the help of a BN. The main assumption
in this logic is that the knowledge base contains information that is certain, but
dependent on an uncertain context. For example, in a biological application, we
have the knowledge that when a cell enters mitosis, then its chromosomes are
aligned, and a sequence of other processes is activated. However, our knowledge of
whether the cell is in mitosis or not is uncertain, and dependent of other factors. To
model this knowledge, we associate each axiom of the knowledge base to a context

(essentially, a propositional conjunctive clause) that expresses when this axiom is
required to hold. The joint probability distribution of these contexts is expressed
with the help of a BN. Dually, one can think of BEL as a generalization of BNs.
Under this view, every valuation of the variables in the BN corresponds to an EL
KB, rather than just a propositional world. The inference problem in this case
extends from asking the probability of a literal to hold, to asking the probability
of an implicit consequence (of the different EL knowledge bases) to be entailed. It
is often useful to consider this view as a compact way to represent several different
classical KBs (defined by the contexts), which have different probabilities of being
correct.

In this paper, we study the complexity of standard reasoning in BEL. We show
first that every BEL knowledge base is consistent. Thus, we focus later only on
the problem of deciding subsumption: whether a concept must be interpreted as
a subclass of another one. We start by studying the problem of deciding whether
a subsumption relation is guaranteed to hold in a specific context. Afterwards, we
take into account the probabilities expressed by the BN and study the problem of
finding the probability of a subsumption relation to hold, and two special cases
where we are only interested in knowing whether this probability is positive, or
exactly 1. We show that, in this case, reasoning can be decoupled between the



The Bayesian Ontology Language BEL 3

logical (i.e., EL) component and the probabilistic structure (i.e., the BN). We also
consider the dual problem of finding, given a subsumption relation, the most likely
context in which it is guaranteed to hold.

We obtain tight complexity bounds for all these reasoning problems. Our com-
plexity analysis is supported by the novel proof structure, which provides additional
insights on the complexity of the reasoning problems. As a rule of thumb, the
complexity of each of these problems is usually the same as the maximal com-
plexity of reasoning in the BN and in EL separately. This behaviour is consistent
with the decoupling of components mentioned before. In particular, we exploit the
polynomial-time reasoning methods for EL to reduce the BEL reasoning problems
to standard inferences in an extended BN.

Later in the paper we generalize the notions introduced for BEL to obtain
Bayesian extensions of any arbitrary ontology language. Using the decoupling be-
tween the logical and the probabilistic part, we describe black-box algorithms for
reasoning in these languages. These algorithms make repeated calls to a standard
logical reasoner and to a BN inference engine. Using this idea, we also obtain tight
complexity bounds for many expressive DLs, and good upper bounds for others.

This paper collects, extends, and improves on the results previously published
in two international conferences and a workshop [14–16]; see also [13]. In particular,
in this paper we show how to handle also conditional probabilistic inferences, as
opposed to the material implication used in previous work; we provide a simpler
and smaller construction of the proof structure; and provide full proofs for our
results.

2 Preliminaries

We start by recalling the individual components of our formalism; namely the
description logic EL and Bayesian networks, followed by a brief overview on some
complexity classes relevant to our analysis.

2.1 The Description Logic EL

EL is a light-weight description logic (DL) that has been successfully applied for
modelling large application domains, specially in the bio-medical sciences. One of
its attracting features is that it allows for polynomial time reasoning [5, 12]. As
is the case with all DLs, its main building blocks are concepts (corresponding to
unary predicates of first-order logic) and roles (binary predicates). Starting from
two disjoint sets NC and NR of concept names and role names, respectively, EL
concepts are built through the syntax rule C ::= A | > | CuC | ∃r.C, where A ∈ NC

and r ∈ NR.

The semantics of this logic is defined through interpretations. An interpretation

is a pair I = (∆I , ·I) where ∆I is a non-empty set, called the domain, and ·I
is the interpretation function that maps every A ∈ NC to a set AI ⊆ ∆I and
every role name r to a binary relation rI ⊆ ∆I ×∆I . The interpretation function
·I is extended to EL concepts by defining >I := ∆I , (C uD)I := CI ∩DI , and
(∃r.C)I := {d ∈ ∆I | ∃e ∈ ∆I : (d, e) ∈ rI and e ∈ CI}.
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Table 1 The EL completion rules.

7→ Premises (S) Result (α)

1 A v B1, B1 v B A v B
2 A v A1, A v A2, A1 uA2 v B A v B
3 A v A1, A1 v ∃r.B A v ∃r.B
4 A v ∃r.A1, A1 v B1, ∃r.B1 v B A v B

The knowledge of an application domain is represented through a set of axioms
that restrict the possible interpretation of the concepts. A general concept inclusion

(GCI) is an expression of the form C v D, where C, D are concepts. A TBox T
is a finite set of GCIs. The signature of T (sig(T )) is the set of concept and role
names appearing in T . The interpretation I satisfies the GCI C v D iff CI ⊆ DI ;
it is a model of the TBox T iff it satisfies all the GCIs in T . The main reasoning
task in EL is deciding the subsumption relations between concepts. A concept C
is subsumed by D w.r.t. the TBox T (T |= C v D) iff CI ⊆ DI for all models I
of T . In particular, one can consider without loss of generality only the problem
of atomic subsumption, where the subsumption relation is to be decided between
concept names (see Lemma 16).

It is well known that subsumption in EL can be decided in polynomial time
through a completion algorithm [5]. This algorithm first transforms the TBox into
an equivalent one (w.r.t. atomic subsumption) in normal form; i.e., having only
axioms of the form

A v B, A1 uA2 v B, A v ∃r.B, or ∃r.A v B, (1)

where A,A1, A2, and B are concept names or >. Every EL TBox T can be trans-
formed into an equivalent one in normal form, whose size is linear on the size of
T [5, 12] (see also Table 2).

After this normalization step, the completion algorithm deduces the relevant
subsumption relations entailed by the TBox through an exhaustive application of
the completion rules described in Table 1. Each rule ( 7→) maps a set of premises
S to its consequence α. The algorithm uses these rules to extend a set comp(T ),
initialized as the input TBox T together with some tautological information. Let
ini(T ) := T ∪ {A v A,A v > | A ∈ sig(T )∩NC}. Starting from comp(T ) := ini(T ), a
completion rule is applicable to comp(T ) if S ⊆ comp(T ) but α /∈ comp(T ). In that
case, its application adds the consequence α to the TBox comp(T ). When no rules
are applicable, the resulting TBox contains all the atomic subsumptions that can
be derived from the original TBox. More formally, we have that T |= A v B iff
A v B ∈ comp(T ). The completion rules introduce only GCIs in normal form, and
do not change the signature. Hence, the algorithm stops after at most |sig(T )|3
rule applications. For more details, we refer the interested reader to [5].

2.2 Bayesian Networks

We will later extend EL to express and handle uncertain knowledge in the form
of probabilistic axioms. To encode the conditional probability of the knowledge,
we will use Bayesian networks [37]. Formally, a Bayesian network (BN) is a pair
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Fig. 1 The BN Bexa over Vexa = {x, y, z}

B = (G,Φ), where G = (V,E) is a finite directed acyclic graph (DAG) whose nodes
represent Boolean random variables,1 and Φ contains, for every node x ∈ V , a
conditional probability distribution PB(x | π(x)) of x given its parents π(x). If V
is the set of nodes in G, we say that B is a BN over V .

The idea behind BNs is that G = (V,E) encodes a series of conditional indepen-
dence assumptions between the random variables. More precisely, every variable
x ∈ V is conditionally independent of all its non-descendants given its parents.
Thus, every BN B defines the unique joint probability distribution (JPD) over the
set of random variables V given by the chain rule

PB(V ) =
∏
x∈V

PB(x | π(x)).

A very simple BN over the variables Vexa = {x, y, z} is shown in Figure 1. In this
network, the parents of z are π(z) = {x, y}. Using the chain rule, we can derive
e.g. PBexa

(x,¬y, z) = PBexa
(z | x,¬y) · PBexa

(¬y | x) · PBexa
(x) = 0.1 · 0 · 0.7 = 0.

The main inference problems associated to a BN are to compute the proba-
bility of a partial observation (PR), the maximum a posteriori probability given
some evidence (MAP) and the most probable explanation for a given observa-
tion (MPE). In this paper, we are interested only on their decision variants, which
are introduced next.

Definition 1 (inferences) Let V be a finite set of Boolean variables. A V -literal

is an expression of the form x or ¬x, where x ∈ V ; a V -context is a consistent set
of V -literals. Let B be a BN over V . We define the following decision problems.

D-PR Given a V -context κ and a p > 0, is PB(κ) > p?
D-MPE Given a V -context κ and a p > 0, is there a valuation W of the variables

in V such that W extends κ and PB(W) > p?2

D-MAP Given a V -context κ, p > 0 and a set W ⊆ V is there a valuation W of
the variables in W such that PB(W ∪ κ) > p?

All these decision problems are NP-hard, and in PSpace. To provide more precise
complexity bounds for these problems, we first introduce some basic probabilistic
complexity classes.

1 In their general form, BNs allow for arbitrary discrete random variables. We restrict w.l.o.g.
to Boolean variables for ease of presentation.

2 We will often see valuations as contexts containing one literal for each Boolean variable.
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2.3 Probabilistic Complexity

Standard complexity classes do not suffice to obtain a fine-grained complexity
analysis of probabilistic decision problems as the ones presented above. This lim-
itation has motivated the study of probabilistic complexity classes, of which the
most basic representative is the class PP [27]. Briefly, PP contains all languages
that can be recognized by a polynomial-time bounded non-deterministic Turing
machine that accepts an input iff more than half of the computation paths are
accepting.

It is easily seen that PP contains NP and is contained in PSpace. From the
latter it immediately follows that NPPP ⊆ NPPSpace = PSpace. More interestingly,
PP is closed under intersection, union, and complement [11]. In addition, PP is
usually considered a hard class, since PPP contains the polynomial hierarchy [45].

Using these classes, we can characterise precisely the complexity of the deci-
sion problems introduced for BNs. Namely, D-PR is PP-complete [30], D-MPE is
NP-complete [43], and D-MAP is NPPP-complete [35].

3 Proof Structures

As described in Section 2.1, the most typical reasoning problem in EL is to decide
subsumption between concepts w.r.t. background knowledge expressed via a TBox.
For many applications, it is useful not only to decide whether a subsumption
relation follows from a TBox T , but also to find all the sub-TBoxes of T that
entail this relation. This task is known as axiom pinpointing in the literature [8].
To find these sub-TBoxes, we store all the possible traces of the completion rules
using a directed hypergraph. A directed hypergraph is a tuple H = (V,E) where
V is a non-empty set of vertices and E is a set of directed hyper-edges of the form
e = (S, v) where S ⊆ V and v ∈ V . Given S ⊆ V and v ∈ V , a path from S to v in H

of length n is a sequence (S1, v1), (S2, v2), . . . , (Sn, vn) of hyper-edges where vn = v

and Si ⊆ S ∪ {vj | 0 < j < i} for all i, 1 ≤ i ≤ n.
Given a TBox T in normal form, we build the hypergraph HT = (VT , ET ),

where VT = comp(T ) is the set of all GCIs that appear in comp(T ) after the com-
pletion algorithm has terminated and ET = {(S, α) | S 7→ α, S ⊆ VT }, with 7→ the
deduction relation defined in Table 1. We call this hypergraph the proof structure

of T . From the soundness and completeness of the completion algorithm, we get
the following lemma.

Lemma 2 Let T be a TBox in normal form, HT = (VT , ET ) its proof structure,

O ⊆ T , and A0 v B0 ∈ VT . Then, there is a path from ini(O) to A0 v B0 in HT iff

O |= A0 v B0.

The hypergraph HT can be seen as a compact representation of all the possible
derivations of a consequence from the GCIs in T [3, 8]. Traversing this hypergraph
backwards from a GCI A0 v B0 entailed by T , it is possible to construct all the
proofs for α; hence the name “proof structure.” It is well known that to decide
the existence of a path in a directed hypergraph G it is sufficient to consider only
paths whose length is at most the same as the number of nodes in G. In our case,
this means that we can focus on paths of length at most |VT | ≤ |sig(T )|3.
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A v ∃r.C ∃r.C v C

B v C

A v C

Fig. 2 Proof structure of Texa from Example 3 (simplified).

Example 3 Consider the TBox Texa := {A v B,B v ∃r.C,∃r.C v C,B v C}, which
is already in normal form. After the completion rules have been applied, we obtain
comp(Texa) = Texa ∪ {A v ∃r.C,A v C} ∪ {X v X,X v > | X ∈ {A,B,C}}. The
proof structure HTexa is depicted in Figure 2, where to improve readability all
the tautological axioms have been removed. In particular, we can see that the
consequence A v C follows already from the sub-TBox {A v B,B v C}.

Clearly, the proof structure HT can be cyclic. To simplify the process of finding
the causes of an atomic subsumption relation being entailed, we build an unfolded

version of this hypergraph by making different copies of each node. In this case,
nodes are pairs of axioms and labels, where the latter indicates the level to which
the nodes belong in the hypergraph. Given a set of axioms S, and an index i ≥ 0,
Si := {(α, i) | α ∈ S} denotes the i-labeled set of GCIs in S. Let n := |VT |. We
define the sets Wi, 0 ≤ i ≤ n inductively as follows. W0 := {(α, 0) | α ∈ ini(T )}, and
for all i, 0 ≤ i < n,

Wi+1 := {(α, i+ 1) | Si ⊆Wi, S 7→ α} ∪ {(α, i+ 1) | α ∈ ini(T )}.

In a nutshell, each Wi, i, 0 ≤ i ≤ n, contains all the GCIs that can be derived by
at most i applications of the completion rules. The unfolded proof structure of T is
the hypergraph Hu

T = (WT , FT ), where WT :=
⋃n
i=0Wi and FT :=

⋃n
i=1 Fi,

Fi+1 := {(Si, (α, i+ 1)) | Si ⊆Wi, S 7→ α} ∪ {({(α, i)}, (α, i+ 1)) | α ∈ ini(T )}.

The following theorem is a simple consequence of our constructions and Lemma 2.

Theorem 4 Let T be a TBox in normal form, HT = (VT , ET ) its proof structure

with n = |VT |, and Hu
T = (WT , FT ) the unfolded proof structure of T . Then,

1. α ∈ VT iff (α, n) ∈WT ;

2. (S, α) ∈ ET iff (Sn−1, (α, n)) ∈ FT ; and

3. for all A,B ∈ sig(T ) ∩ NC and all O ⊆ T , it holds that O |= A v B iff there is a

path from {(α, 0) | α ∈ ini(O)} to (A v B,n) in Hu
T .

Proof The statements 1. and 2. are trivial; thus, we prove only the third claim. If
there is a path from {(α, 0) | α ∈ ini(O)} to (A v B,n) in Hu

T , then by construction
and the first points of the theorem, there is a path from ini(O) to A v B in HT .
By Lemma 2 it then follows that O |= A v B.

Conversely, if O |= A v B, then by Lemma 2 there is a path from ini(O) to
A v B in HT . Without loss of generality, we can assume that this path is of the
form (S1, α1), . . . , (Sk, αk) for k ≤ n. A path from {(α, 0) | α ∈ ini(O)} to (A v B,n)
in Hu

T can then be constructed through the sequence of hyperedges (Sji , (αi, j)) for
all 1 ≤ i < j ≤ n. ut
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A v BB v ∃r.C ∃r.C v C B v C

A v BA v ∃r.CB v ∃r.C A v C ∃r.C v C B v C

A v BA v ∃r.CB v ∃r.C A v C ∃r.C v C B v C

A v BA v ∃r.CB v ∃r.C A v C ∃r.C v C B v C W3

W2

W1

W0

Fig. 3 The first four levels (W0–W3) of Hu
Texa . To improve readability, the second component

of the nodes is represented visually.

The unfolded proof structure of a TBox T is guaranteed to contain the information
of all possible causes for a consequence to follow from T . Moreover, this hypergraph
is acyclic, and has polynomially many nodes, on the size of T , by construction.
More precisely, the number of nodes of Hu

T is bounded by |VT |2, where |VT | ≤ |T |3.
Yet, this hypergraph may still contain many redundant nodes. Indeed, it can be
the case that all the simple paths in HT starting from a subset of T are of length
k < n. In that case, Wi = Wi+1 and Fi = Fi+1 hold for all i ≥ k, modulo the second
component. For example, the first four levels of the unfolded proof structure for
the TBox Texa from Example 3 are shown in Figure 3. As it can be seen, the levels
W2 and W3 are identical; moreover, if we continued the unfolding of the proof
structure, all successive levels will be the same. It can also be seen that in this
case, all the axiomatic causes for a consequence can be read by paths of length at
most 2. In general, it suffices to unfold the proof structure only up to the length
of the longest simple path from ini(T ) to any element in comp(T ) in HT . For our
purposes, we are only interested in knowing that the unfolded proof structure is of
polynomial size; hence, we consider the full unfolded proof structure for the rest
of this paper. It should be noted, however, that for efficiency reasons, a prunned
version can be also used.

In the next section we introduce a probabilistic extension of EL based on BNs.
The construction of the unfolded proof structure will be helpful in to obtain ad-
ditional insights and understanding the complexity of reasoning in this logic.

4 The Probabilistic Ontology Language BEL

BEL is an extension of EL capable of expressing uncertain knowledge in the form
of probabilistic axioms. As with classical DLs, the main building blocks in BEL
are concepts. Syntactically, BEL concepts are constructed exactly as EL concepts.
The difference arises in the description of axioms, which are now associated to a
set of literals from the BN.

Definition 5 (KB) A V -restricted general concept inclusion (V -GCI) is an expres-
sion of the form 〈C v D : κ〉 where C and D are BEL concepts and κ is a V -context.
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A V -TBox is a finite set of V -GCIs. A BEL knowledge base (KB) over V is a pair
K = (B, T ) where B is a BN over V and T is a V -TBox.

Example 6 Extending the TBox from Example 3, consider the Vexa-TBox

T ′exa := {〈A v B : {x}〉 , 〈B v ∃r.C : {y, z}〉 , 〈∃r.C v C : {x, y}〉 , 〈B v C : {¬z}〉}.

Then Kexa = (Bexa, T ′exa) is a BEL KB.

The intuition behind the contexts associated to axioms is that a V -GCI is only
required to hold whenever its context is satisfied. To formalize this intuition, we ex-
tend the notion of interpretations to evaluate also the Boolean variables appearing
in the BN and in the contexts.

Definition 7 (interpretation) Let V be a finite set of Boolean variables. A V -in-

terpretation is a triple I = (∆I , ·I ,VI) where ∆I is a non-empty set called the
domain, VI : V → {0, 1} is a valuation of the variables in V , and ·I is an interpre-

tation function that maps every concept name A to a set AI ⊆ ∆I and every role
name r to a binary relation rI ⊆ ∆I ×∆I .

When there is no danger of ambiguity, we will usually omit the prefix V and speak
simply of e.g. a TBox, a KB, or an interpretation. The interpretation function ·I is
extended to arbitrary concepts as done in the classical case. The valuation VI is
extended to contexts by defining, for every x ∈ V , VI(¬x) = 1 − VI(x), and for
every context κ,

VI(κ) = min
`∈κ
VI(`),

where min`∈∅ VI(`) := 1 as usual. A context κ can be thought as the conjunction
of the literals it contains; thus, it is evaluated to 1 iff each of its elements is so and
0 otherwise.

Definition 8 (model) We say that the V -interpretation I is a model of the GCI
〈C v D : κ〉, denoted as I |= 〈C v D : κ〉, iff (i) VI(κ) = 0, or (ii) CI ⊆ DI . It is a
model of the TBox T iff it is a model of all the GCIs in T .

The idea behind this semantics is that the V -GCI 〈C v D : κ〉 restricts the in-
terpretations of C and D, but only when the context κ is satisfied. Thus, any
interpretation that violates the context trivially satisfies the whole axiom. For
example, consider the interpretation I0 = ({d}, ·I0 ,V0), where V0({x,¬y, z}) = 1,
AI0 = BI0 = {d}, CI0 = ∅, and rI0 = ∅. Then I0 is a model of T ′exa; in particu-
lar, it satisfies the GCI 〈B v C : {¬z}〉 because V0({¬z}) = 0. However, this same
interpretation is not a model of the GCI 〈B v C : {z}〉.

The classical DL EL can be seen as a special case of BEL in which all GCIs
are associated with the empty context; that is, are all of the form 〈C v D : ∅〉.
Notice that every valuation satisfies the empty context ∅. Thus, a V -interpretation
I satisfies the GCI 〈C v D : ∅〉 iff CI ⊆ DI , which corresponds to the classical
semantics of EL [12]. The V -TBox T entails 〈C v D : ∅〉 (T |= C v D) if every
model of T is also a model of 〈C v D : ∅〉. For a valuation W of the variables
in V , we can define a TBox containing all axioms that must be satisfied in any
V -interpretation I = (∆I , ·I ,VI) with VI =W. For the rest of this paper, we will
use the expression 〈C v D〉 to abbreviate the V -GCI 〈C v D : ∅〉.

When reasoning in BEL, it is sometimes useful to focus on the classical EL
TBox induced by a given valuation of the variables in V .
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Definition 9 (restriction) Let K = (B, T ) be a KB. The restriction of T to a
valuation W of the variables in V is the TBox

TW := {〈C v D〉 | 〈C v D : κ〉 ∈ T ,W(κ) = 1}.

So far, our semantics have focused on the evaluation of the Boolean variables and
the interpretation of concepts, ignoring the probabilistic information provided by
the BN. To handle these probabilities, we consider multiple-world semantics. In a
nutshell, every V -interpretation describes a possible world; by assigning a probabil-
ity distribution over these interpretations, we describe the required probabilities,
which should be consistent with the BN.

Definition 10 (probabilistic model) A probabilistic interpretation is a pair of the
form P = (I, PI), where I is a set of V -interpretations and PI is a probability
distribution over I such that PI(I) > 0 only for finitely many interpretations
I ∈ I. This probabilistic interpretation is a model of the TBox T if every I ∈ I is
a model of T . P is consistent with the BN B if for every possible valuation W of
the variables in V it holds that∑

I∈I,VI=W

PI(I) = PB(W).

The probabilistic interpretation P is a model of the KB (B, T ) iff it is a (proba-
bilistic) model of T and consistent with B.

One simple consequence of this semantics is that probabilistic models preserve the
probability distribution of B for subsets of literals; i.e., contexts. The proof follows
from the fact that a context corresponds to a partial valuation of the variables in
V . Hence, the probability of a context κ is the sum of the probabilities of all (full)
valuations that extend κ.

Theorem 11 Let K = (B, T ) be a KB, and κ a context. For every model P of K it

holds that ∑
I∈I,VI(κ)=1

PI(I) = PB(κ).

Proof By definition, it holds that

PB(κ) =
∑

W(κ)=1

PB(W) =
∑

W(κ)=1

∑
I∈I,VI=W

PI(I) =
∑

I∈I,VI(κ)=1

PI(I). ut

In order to reason w.r.t. BEL KBs, it is sometimes useful to consider a spe-
cial kind of interpretations, which we call pithy. These interpretations contain at
most one V -interpretation for each valuation of the variables in V . Each of these
V -interpretations provides the essential information associated to the correspond-
ing valuation.

Definition 12 (pithy) The probabilistic interpretation P = (I, PI) is called pithy

if for every valuation W of the variables in V there exists at most one V -interpre-
tation I = (∆I , ·I ,VI) ∈ I such that VI =W.

In the following section we introduce classical and probabilistic reasoning problems
for the DL BEL, and analyse their complexity w.r.t. diverse measures.
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5 Reasoning in BEL

In the previous section we described how probabilistic knowledge can be rep-
resented using a BEL KB. We now focus our attention to reasoning with this
knowledge. The most basic reasoning problem in any DL is to decide whether a
knowledge base is consistent; that is, whether it has a model. It turns out that, as
for classical EL, this problem is trivial in BEL.

Theorem 13 Every BEL KB is consistent.

Proof Let K = (B, T ) be an arbitrary BEL KB. Let ∆I = {a} and ·I be the
interpretation function with AI = {a} and rI = {(a, a)} for all A ∈ NC and r ∈ NR.
For every valuation W, define the V -interpretation IW = (∆I , ·I ,W). It follows
that the probabilistic interpretation P = (I, PI) where I = {IW | W is a valuation}
and PI(IW) = PB(W) is a (pithy) model of K. ut

As we have seen in Section 2.1, the main reasoning problem in EL is the subsump-
tion between concepts. We generalize this problem to consider also the contexts
attached to the GCIs, and probabilities provided by the BN.

Definition 14 (subsumption) Let C,D be two BEL concepts, κ a V -context, and
K = (B, T ) a BEL KB. C is contextually subsumed by D in κ w.r.t. K, denoted as
〈C vK D : κ〉, if every V -model of T is also a model of the V -GCI 〈C v D : κ〉.

Given a probabilistic interpretation P = (I, PI), the probability of a conse-
quence is defined by P (〈C vP D : κ〉) :=

∑
I∈I,I|=〈CvD:κ〉 PI(I). The probability of

the contextual subsumption relation 〈C v D : κ〉 w.r.t. K is

P (〈C vK D : κ〉) := inf
P|=K

P (〈C vP D : κ〉). (2)

We say that C is positively subsumed by D in context κ if P (〈C vK D : κ〉) > 0,
and C is p-subsumed by D in context κ, for p ∈ (0, 1] if P (〈C vK D : κ〉) ≥ p. We
sometimes refer to 1-subsumption as almost-sure subsumption.

As before, if the context is empty we will omit it and consider e.g., 〈C vK D〉
or P (〈C vK D〉). We refer to this case as probabilistic subsumption, and to the
general case as probabilistic contextual subsumption.

As a simple consequence of the proof of Theorem 13, we have that for every
BEL KB K, every context κ, and concepts C,D, there is a model P of K such
that P (〈C vP D : κ〉) = 1. In particular, this means that the reasoning problem
obtained by replacing the infimum in Equation (2) with a supremum is trivial in
BEL. Notice moreover that if C is subsumed by D in κ w.r.t. the KB K, then
for every probabilistic model P of K we have that P (〈C vP D : κ〉) = 1; and
thus P (〈C vK D : κ〉) = 1. The converse, however, may not hold: the subsumption
relation might be violated in some V -interpretations that have probability zero.

Example 15 Consider again the KB Kexa from Example 6. For any two concept
names E,F ∈ NC \ {A,B,C} it holds that P (〈E vKexa

F : {x,¬y}〉) = 1 since the
GCI 〈E vKexa

F : {x,¬y}〉 can only be violated in V -interpretations that have prob-
ability 0. However, in general the consequence 〈E vKexa

F : {x,¬y}〉 does not hold.
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Table 2 BEL normalization rules, where A ∈ NC ∪ {>}, C,D /∈ NC ∪ {>} and X is a new
concept name.

NF1 〈A u C v E : κ〉 −→ {〈C v X : κ〉 , 〈A uX v E : κ〉}
NF2 〈∃r.C v E : κ〉 −→ {〈C v X : κ〉 , 〈∃r.X v E : κ〉}
NF3 〈C v D : κ〉 −→ {〈C v X : κ〉 , 〈X v D : κ〉}
NF4 〈A v E u F : κ〉 −→ {〈A v E : κ〉 , 〈A v F : κ〉}
NF5 〈A v ∃r.C : κ〉 −→ {〈A v ∃r.X : κ〉 , 〈X v C : κ〉}

For the rest of this paper, we consider only atomic subsumption problems; that
is, cases where we want to decide, or compute the probability of a contextual
subsumption between two concept names. As we show next, this restriction is
made without any loss of generality.

Lemma 16 Let K = (B, T ) be a BEL KB, C,D two BEL concepts, κ a context,

and A0, B0 two concept names not appearing in T ∪ {〈C v D〉}. Consider the KB

K′ = (B, T ∪ {〈A0 v C〉 , 〈D v B0〉}). Then,

1. 〈C vK D : κ〉 iff 〈A0 vK′ B0 : κ〉, and

2. P (〈C vK D : κ〉) = P (〈A0 vK′ B0 : κ〉).

Proof The result follows from the fact that every model of K′ is also a model of K
and, conversely, every model I of K can be extended to a model of K′ by setting
AI0 = CI and BI0 = DI . The full details of this construction can be developed
analogously to [5]. ut

Moreover, we can also assume w.l.o.g. that the V -TBox is in normal form; that is,
all the V -GCIs in T are of the form 〈C v D : κ〉, where C v D is an EL GCI in nor-
mal form (see Expression (1)). For every V -TBox T , it is possible to build in linear
time a new V -TBox in normal form that preserves all the subsumption relations
between concept names appearing in T . More formally, let T be a V -TBox, and T ′
be the TBox obtained after an exhaustive application of the normalization rules
from Table 2. Each normalization rule takes a V -GCI that is not in normal form
and replaces it by two simpler V -GCIs. Notice that the normalization rules never
change the context in which the axioms hold. It is easy to see that the resulting
TBox T ′ is in normal form. Let now K = (B, T ) and K′ = (B, T ′), where B is an
arbitrary BN over V . Then, for every two concept names A,B ∈ sig(T ) and every
context κ, it holds that 〈A vK B : κ〉 iff 〈A vK′ B : κ〉. The full proof of this claim
is equivalent to the one presented in [5] for EL. Hence, we leave it as an exercise
to the interested reader.

We now analyse the reasoning problems defined in this section in detail, start-
ing with contextual subsumption, followed by the case where the probabilistic in-
formation is also relevant. Afterwards, we consider other non-standard inferences
that can be made over Bayesian KBs.

5.1 Contextual Subsumption

In this section we consider the problem of deciding whether a contextual sub-
sumption relation follows from all models of the KB in a classical sense; that
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is, whether 〈A vK B : κ〉 holds. Contrary to classical EL, subsumption in BEL is
already intractable, even if we consider only the empty context.

Theorem 17 Let K be a KB and A,B ∈ NC. Deciding 〈A vK B〉 is coNP-hard.

Proof We present a reduction from validity of DNF formulas, which is known to
be coNP-hard [19]. Let φ = σ1 ∨ . . . ∨ σn be a DNF formula where each σi is
a conjunctive clause and let V be the set of all variables appearing in φ. For
each variable x ∈ V , we introduce the concept names Bx and B¬x and define
the TBox Tx := {〈A v Bx : {x}〉 , 〈A v B¬x : {¬x}〉}. For every conjunctive clause
σ = `1∧. . .∧`m define the TBox Tσ := {

〈
B`1 u . . . uB`m v C

〉
}. Let now K = (B, T )

where B is an arbitrary BN over V and T =
⋃
x∈V Tx ∪

⋃
1≤i≤n Tσi . It is easy to

see that φ is valid iff 〈A vK C〉. ut

The main reason for this hardness is that the interaction of contexts might produce
consequences that are not obvious at first sight. For instance, a consequence might
follow in context κ not because the axioms explicitly labeled with κ entail the
consequence, but rather because any valuation satisfying κ will yield it. That
is the main idea in the proof of Theorem 17; the axioms that follow directly
from the empty context never entail the subsumption A v C, but if φ is valid,
then this subsumption follows from all valuations. Following this intuition, we can
characterize contextual subsumption in terms of classical subsumption.

Lemma 18 Let K = (B, T ) be a KB. Then 〈A vK B : κ〉 iff for every valuation W
with W(κ) = 1, it holds that TW |= A v B.

Proof Suppose that 〈A vK B : κ〉. Let W be a valuation such that W(κ) = 1, and
I = (∆I , ·I) be a (classical) model of TW . By definition, J = (∆I , ·I ,W) is a
V -model of T and hence also of 〈A vK B : κ〉. In particular, AI ⊆ BI . Since I was
an arbitrary model of TW , this implies that TW |= A v B.

Conversely, let I = (∆I , ·I ,VI) be a V -model of T . If VI(κ) = 0, then by
definition I is a model of 〈A v B : κ〉. Otherwise, by assumption we know that
TVI |= A v B; i.e., AI ⊆ BI . Hence, I is also a model of 〈A v B : κ〉. ut

This lemma yields a tight upper bound for the complexity of contextual subsump-
tion. If the subsumption does not hold, then we can guess a valuationW and verify
in polynomial time that W(κ) = 1 and TW 6|= A v B.

Corollary 19 Contextual subsumption is coNP-complete. The lower bound holds even

if κ = ∅.

This result provides a tight complexity bound for the problem of contextual
subsumption w.r.t. BEL KBs. Notice moreover that Lemma 18 shows that the
problem is fixed-parameter tractable over the parameter |V |.3 However, the non-
deterministic algorithm suggested by this lemma is not practical, as it requires to
perform reasoning on all valuations that satisfy the context κ.

We now propose a different approach that is based on techniques developed
for axiom-pinpointing [4], access control [9], and context-based reasoning [10]. Our
goal is to find, for a given subsumption relation A v B, the set of all valuations

3 Recall that a problem is fixed-parameter tractable if it can be solved in polynomial time,
assuming that the parameter has a fixed (i.e., constant) size [25].
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Table 3 The BEL completion rules.

Premises (S) Result (lab(α))

1 A v B1
φ1 , B1 v Bφ2 lab(A v B) := lab(A v B) ∨ (φ1 ∧ φ2)

2 A v A1
φ1 , A v A2

φ2 , A1 uA2 v Bφ3 lab(A v B) := lab(A v B) ∨ (φ1 ∧ φ2 ∧ φ3)

3 A v A1
φ1 , A1 v ∃r.Bφ2 lab(A v ∃r.B) := lab(A v ∃r.B) ∨ (φ1 ∧ φ2)

4 A v ∃r.A1
φ1 , A1 v B1

φ2 , ∃r.B1 v Bφ3 lab(A v B) := lab(A v B) ∨ (φ1 ∧ φ2 ∧ φ3)

W such that TW |= A v B. We will use this set to decide, through a propositional
entailment test, whether 〈A vK B : κ〉 holds or not. Recall that contextual sub-
sumption relations depend only on the TBox and not on the BN. For that reason,
for the rest of this section we focus only on the terminological part of the KB.

We can think of every context κ as the conjunctive clause χκ :=
∧
`∈κ `. In

this view, the V -TBox T is a labeled TBox over the distributive lattice B of all
Boolean formulas over the variables V , modulo equivalence. Each formula φ in this
lattice defines a sub-TBox Tφ which contains all axioms 〈C v D : κ〉 ∈ T such that
χκ |= φ. Using the terminology from [10], we are interested in finding a boundary

for a subsumption relation. Given a TBox T labeled over the lattice B and concept
names A,B, a boundary for A v B w.r.t. T is an element φ ∈ B such that for every
join-prime element ψ ∈ B it holds that ψ |= φ iff Tψ |= A v B (see [10] for further
details). Notice that the join-prime elements of B are exactly the valuations of
variables in V . Using Lemma 18 we obtain the following result.

Theorem 20 Let φ be a boundary for A v B w.r.t. T in B. Then, for any context κ

we have that 〈A vK B : κ〉 iff χκ |= φ.

While several methods have been developed for computing the boundary of a con-
sequence, they are based on a black-box approach that makes several calls to an
external reasoner. We present a glass-box approach that computes a compact rep-
resentation of the boundary directly. This method, based on the standard comple-
tion algorithm for EL [12], can in fact compute the boundaries for all subsumption
relations between concept names that follow from the KB.

Recall that we assume w.l.o.g. that the V -TBox is in normal form. We extend
the completion algorithm from Section 2.1 to include a function lab that maps
every derived subsumption relation to a Boolean formula over the variables in V .
Intuitively, lab(C v D) = φ expresses that TW |= C v D in all valuations W that
satisfy φ. The algorithm is initialized with the labeling of axioms

lab(α) :=

{
t α is of the form A v > or A v A for A ∈ NC ∪ {>}
f otherwise,

where t is a tautology and f a contradiction in B. Let now T ′ := {α | 〈α : κ〉 ∈ T }.
The algorithm initializes the labels of each GCI in T ′ to include all the contexts
that are already known to entail them; that is, for every GCI α ∈ T ′, we set
lab(α) :=

∨
〈α:κ〉∈T χκ. This labeling function is modified by applying the rules

from Table 3 where for brevity, we denote lab(α) = φ by αφ. Every rule applica-
tion changes the label of one subsumption for a more general formula; to ensure
termination, the rule is only applied if the new label is strictly more general than
the previous one. The number of such subsumption relations is polynomial on T
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and the depth of the lattice B is exponential on |V |. Thus, in the worst case, the
number of rule applications is bounded exponentially on |V |, but polynomially
on T . Clearly, all the rules are sound; that is, at every step of the algorithm it
holds that TW |= C v D for all concept names A,B and all valuations W that
satisfy lab(C v D). It can be shown using techniques from axiom-pinpointing (see
e.g. [8, 10]) that after termination the converse also holds; i.e., for every valuation
W, if TW |= A v B, then W |= lab(A v B). Thus, we obtain the following result.

Theorem 21 ([8, 10]) Let lab be the labelling function obtained through the comple-

tion algorithm. For every two concept names A,B appearing in T , lab(A v B) is a

boundary for A v B w.r.t. T .

Using the boundary φ for A v B w.r.t. T , it is possible to decide whether the
contextual subsumption 〈A vK B : κ〉 holds; we need only to check if χκ |= φ. This
decision is in NP on |V |.

Example 22 Consider the BEL KB Kexa from Example 6. The modified completion
algorithm starts with the labeled GCIs

A v Bx, B v ∃r.Cy∧z , ∃r.C v Cx∧y, B v C¬z

Applying the first rule with the premises A v Bx, B v C¬z we obtain A v Cx∧¬z.
From the third rule, we then get A v ∃r.Cx∧y∧z. One last application of the fourth
rule changes the label of A v C to (x ∧ ¬z) ∨ (x ∧ y ∧ z). From this label, we can
deduce that 〈A vKexa

C : {x,¬y,¬z}〉 holds, but 〈A vKexa
C : {x,¬y, z}〉 does not.

Indeed, Texa{x,¬y,z} = {〈A v B〉} 6|= A v C.

Clearly, the boundary for the atomic subsumption relation A v B provides more
information than necessary for deciding whether the subsumption holds in a given

context κ. It encodes all contexts that entail the desired subsumption. We can
use this knowledge to deduce other kinds of knowledge from the KB, like the
most likely context. Before considering this non-standard inference, we examine
the computation of the probability of a subsumption relation.

5.2 Probabilistic Subsumption

We consider now the problem of computing the probability of a subsumption
and other associated problems; namely, deciding positive, p-subsumption, and
almost-sure subsumption. First, we consider the special case in which the context
is empty; i.e., we focus on the problem of finding P (〈A vK B〉). In other words, we
are interested in the probability of a subsumption relation without any knowledge
of the context in which it should hold. Afterwards, we generalize our methods to
take into account also the contextual information and study first contextual posi-
tive, almost-sure, and p-subsumption. At the end of this section, we also introduce
the conditional subsumption problems.

We start by proving a fundamental result for this logic. Specifically, that it is
possible w.l.o.g. to restrict reasoning to pithy models only (recall Definition 12).

Lemma 23 Let K be a BEL KB, and A,B ∈ NC. For every probabilistic model P of

K there is a pithy model Q of K such that P (〈A vQ B〉) ≤ P (〈A vP B〉).
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Proof Let P = (I, PI) be a probabilistic model of K and assume w.l.o.g. that
PI(I) > 0 for all I ∈ I. In particular, this means that I is finite. If P is already
pithy, then the result holds trivially. Otherwise, there exist two interpretations
I,J ∈ I such that VI = VJ .

If (i) I |= 〈A v B〉 and J |= 〈A v B〉, or (ii) I 6|= 〈A v B〉 and J 6|= 〈A v B〉 then
set H := I \ {I}. Otherwise, assume w.l.o.g. that I |= 〈A v B〉 but J 6|= 〈A v B〉;
then, we define H := I \ {I}. The probabilistic interpretation P ′ = (H, PH) with

PH(H) :=

{
PI(H) H 6= J
PI(I) + PI(J ) H = J

is still a model of K and P (〈A vP′ B〉) ≤ P (〈A vP B〉). Moreover, |H| < |I|; thus
this construction leads to the desired pithy model. ut

Using this lemma, it is possible to show that the probability of a consequence can
be computed by a simple algorithm that performs standard (classical) reasoning
over the restrictions TW of T (recall Definition 9).

Theorem 24 Let K = (B, T ) be a KB, and A,B two concept names. Then

P (〈A vK B〉) =
∑

TW |=AvB

PB(W).

Proof For every valuation W, we construct the V -interpretation IW as follows.
If TW |= A v B, then IW is any model (∆IW , ·IW ,W) of TW ; otherwise, IW
is any model (∆IW , ·IW ,W) of TW that does not satisfy 〈A v B〉, which must
exist by definition. Let now PK = (I, PI) be the probabilistic interpretation where
I = {IW | W a valuation of V } and PI(IW) = PB(W) for all W. Then PK is a
model of K. Moreover, it holds that

P (〈A vPK B〉) =
∑

IW |=〈AvB〉

PI(IW) =
∑

TW |=AvB

PB(W). (3)

Thus, P (〈A vK B〉) ≤
∑
TW |=AvB PB(W). If this inequality is strict, then there

exists a probabilistic model P = (J, PJ) of K with P (〈A vP B〉) < P (〈A vPK B〉).
By Lemma 23, we can assume w.l.o.g. that P is pithy, and hence for every valuation
W with PB(W) > 0 there exists exactly one JW ∈ J with VJW =W. We thus have∑

JW |=〈AvB〉

PJ(JW) <
∑

IW |=〈AvB〉

PI(IW).

Since PI(IW) = PJ(JW) for all W, then there must exist a valuation V such
that IV |= 〈A v B〉 but JV 6|= 〈A v B〉. As JV is a model of TV , it follows that
TV 6|= A v B. By construction, then we have that IV 6|= 〈A v B〉, which contradicts
the conditions made during the construction of IV . ut

Example 25 Consider again the KB Kexa from Example 6. There are three valu-
ations W such that TexaW |= A v C; namely, {x, y,¬z}, {x,¬y,¬z}, and {x, y, z}.
Thus, P (〈A vKexa

C〉) = 0.49 + 0 + 0.21 = 0.7.
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Algorithm 1 Probability of Subsumption

Input: KB K = (B, T ) over V ; concept names A,B
Output: P (〈A vK B〉)
1: P ← 0
2: for all valuations W of V do
3: if TW |= A v B then
4: P ← P + PB(W)

5: return P

Based on Theorem 24, we can compute the probability of a subsumption as de-
scribed in Algorithm 1. The algorithm simply verifies for all possible valuations
W, whether TW entails the desired subsumption. Clearly, the for loop is executed
2|V | times; that is, once for each possible valuation of the variables in V . Each of
these executions needs to decide whether TW |= A v B, and possibly compute the
probability PB(W). The latter can be done in polynomial time on the size of B,
using the standard chain rule [23], while deciding subsumption w.r.t. an EL TBox
is polynomial on T [12]. Overall, Algorithm 1 runs in time exponential on B but
polynomial on T . Moreover, the algorithm requires only polynomial space since
the different valuations can be enumerated using only |V | bits. Thus, we obtain
the following result.

Corollary 26 Deciding p-subsumption is PP-hard and in PSpace. Moreover, it is

fixed-parameter tractable w.r.t. the parameter |V |.

Proof The upper bounds follow directly from the correctness of Algorithm 1, which
is a consequence of Theorem 24. To prove the lower bound we reduce the D-PR
problem for BNs, which is PP-complete. Let B be an arbitrary BN over a set
V , and λ be a V -context. Define the KB K = (B, {〈A v B : λ〉}). It then follows
that P (〈A vK B〉) =

∑
W(λ)=1 PB(W) = PB(λ). Hence, we have that PB(λ) ≥ p iff

P (〈A vK B〉) ≥ p. ut

This corollary provides already an insight on the computational complexity of
performing probabilistic reasoning in BEL, and a reasoning algorithm that is easy
to implement combining state-of-the-art BN inference engines and EL reasoners [6,
28, 33]. It is also possible to use the boundary, as described in Section 5.1 to find
the valuations W such that TW entails the subsumption relation.

To provide a tight complexity bound, we develop a new algorithm that exploits
the construction of the (unraveled) proof structure introduced in Section 2.1. We
first show that p-subsumption w.r.t. a BEL KB can be reduced in polynomial
time to the D-PR problem over a special Bayesian network. Let K = (B, T ) be
an arbitrary but fixed BEL KB. From the V -TBox T , we construct the EL TBox
T ′ := {α | 〈α : κ〉 ∈ T }. That is, T ′ contains the same axioms as T , but ignores the
contextual information encoded in their labels. Let now Hu

T be the unraveled proof
structure for T ′. By construction, Hu

T is a directed acyclic hypergraph. Our goal
is to transform this hypergraph into a DAG and construct a BN, from which all
the p-subsumption relations between concept names can be read through standard
BN inferences. The basic idea of the reduction is depicted in Figure 4, using the
KB Kexa from Example 6. On the upper part of the figure, the unraveled proof
structure of Texa has been transformed into a DAG, by adding a new node for each
hyper-edge used. Each of the nodes of this DAG is associated with a conditional
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Fig. 4 Reduction of the KB Kexa to a BN

probability table expressed by a logical condition. In the lower part, we have the
original BN from the KB. The two components are connected at the base through
the context associated to each axiom. We explain this construction in detail next.

Recall that hypergraphs generalize graphs by allowing edges to connect many
vertices. These hyperedges can be seen as an encoding of a formula in disjunc-
tive normal form. An edge (S, v) expresses that if all the elements in S can be
reached, then v is also reachable; we see this as an implication:

∧
w∈S w ⇒ v. Sev-

eral edges sharing the same head (S1, v), (S2, v), . . . , (Sk, v) in the hypergraph can

be described through the implication
∨k
i=1(

∧
w∈Si

w) ⇒ v. We can thus rewrite
any directed acyclic hypergraph into a DAG by introducing auxiliary conjunctive

and disjunctive nodes; the proper semantics of these nodes will be guaranteed by
the conditional probability distribution defined later. Since the space needed for
describing the conditional probability tables in a BN is exponential on the number
of parents of the node, we also ensure that all the nodes in this DAG have at most
two parent nodes.

Algorithm 2 constructs such a DAG from a directed hypergraph. The algorithm
adds a new node ∧i for each hyperedge (S, v) in the input hypergraph H, and
connects it with all the nodes in S. If there are k hyperedges that lead to a single
node v, it creates k−1 nodes ∨i. These are used to represent the binary disjunctions
among all the hyperedges leading to v. The algorithm runs in polynomial time on
the size of H, and if H is acyclic, the resulting graph G is acyclic too. Moreover,
all the nodes v ∈ V that existed in the input hypergraph have at most one parent
node after the translation; every ∨i node has exactly two parents, and the number
of parents of a node ∧i is given by the set S from the hyperedge (S, v) ∈ E that
generated it. In particular, if the input hypergraph is the unraveled proof structure
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Algorithm 2 Construction of a DAG from a hypergraph

Input: H = (V,E) directed acyclic hypergraph
Output: G = (V ′, E′) directed acyclic graph
1: V ′ ← V , i, j ← 0
2: for each v ∈ V do
3: S← {S | (S, v) ∈ E}, j ← i
4: for each S ∈ S do
5: V ′ ← V ′ ∪ {∧i}, E′ ← E′ ∪ {(u,∧i) | u ∈ S}
6: if i > j then
7: V ′ ← V ′ ∪ {∨i}, E′ ← E′ ∪ {(∧i,∨i)}
8: i← i+ 1

9: if i = j + 1 then . If the GCI has only one explanation
10: E′ ← E′ ∪ {(∧j , v)}
11: else
12: E′ ← E′ ∪ {(∨k,∨k+1) | j < k < i− 1} ∪ {(∨i−1, v), (∧j ,∨j+1)}
13: return G = (V ′, E′)

for a TBox T , then the size of the generated graph G is polynomial on the size of
T , and each node has at most three parent nodes.

The next step is to build a BN that preserves the probabilistic entailments of
a BEL KB. Let K = (B, T ) be such a KB, with B = (G,Φ), and let GT = (VT , ET )
be the DAG obtained from the unraveled proof structure of T using Algorithm 2.
Recall that the nodes of GT are either (i) pairs of the form (α, i), where α is a GCI
in normal form built from the signature of T , or (ii) an auxiliary disjunction (∨i)
or conjunction (∧i) node introduced by Algorithm 2. Moreover, (α, 0) is a node
of GT iff there is a context κ with 〈α : κ〉 ∈ T . We assume w.l.o.g. that for node
(α, 0) there is exactly one such context. If there were more than one, then we could
extend the BN B with an additional variable which describes the disjunctions of
these contexts, as in the construction from Algorithm 2. Similarly, we assume
w.l.o.g. that each context κ appearing in T contains at most two literals. For a
context κ, let var(κ) denote the set of all variables appearing in κ. We construct a
new BN BK as follows.

Let VK := V ∪ VT and EK := E ∪ ET ∪ {(x, (α, 0)) | 〈α : κ〉 ∈ T , x ∈ var(κ)}. By
construction GK = (VK, EK) is a DAG. We now need only to define the conditional
probability tables for the nodes in VT given their parents in GK; notice that the
structure of the graph G remains unchanged for the construction of GK. For every
node (α, 0) ∈ VT , there is a κ such that 〈α : κ〉 ∈ T ; the parents of (α, 0) in GK
are then var(κ) ⊆ V . The conditional probability of (α, 0) given its parents is
defined, for every valuation V of var(κ) as PB((α, 0) = true | V) = V(κ); that is, the
probability of (α, 0) being true given a valuation of its parents is 1 if the valuation
makes the context κ true; otherwise, it is 0. Recall now that each auxiliary node has
at most three parents. The conditional probability of a conjunction node ∧i being
true is 1 iff all parents are true, and the conditional probability of a disjunction
node ∨i being true is 1 iff at least one parent is true. Finally, every (α, i) with
i > 0 has exactly one parent node v; (α, i) is true with probability 1 iff v is true.
From the properties of proof structures and Theorem 4 we have that

PBK((α, n)) =
∑
V
PBK((α, n) | V)PBK(V) =

∑
TW |=α

PBK(W). (4)

which yields the following result.
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Theorem 27 Let K = (B, T ) be a BEL KB, A,B ∈ NC, and n = |sig(T )|3. Then

P (〈A vK B〉) = PBK((A v B,n)).

This theorem states that we can reduce p-subsumption w.r.t. the BEL KB K to a
probabilistic inference in the BN BK. Notice that the size of BK is polynomial on
the size of K. This means that p-subsumption is at most as hard as deciding D-PR
problems over the BN BK.

Corollary 28 Deciding p-subsumption is PP-complete in the size of the KB.

Proof The upper bound is a direct consequence of Theorem 27 and Equation (5).
The lower bound was already shown in Corollary 26. ut

Depending on the intended use of the KB, knowing the precise probability of a
consequence is not always fundamental, but it might suffice to know whether it
is at least possible (with probability greater than zero), or almost certain. If we
consider only these cases as decision problems, then the complexity of probabilistic
reasoning decreases to the first level of the polynomial hierarchy.

Theorem 29 Positive subsumption is NP-complete, and almost-sure subsumption is

coNP-complete.

Proof To decide positive subsumption, we can guess a valuation W and verify in
polynomial time that (i) PB(W) > 0 and (ii) TW |= A v B. The correctness of this
approach is given by Theorem 24. Thus the problem is in NP.

Recall now that deciding, given a BN B and a variable x ∈ V , if PB(x) > 0
is already NP-hard [20]. Consider the KB K = (B, {〈A v B : {x}〉}), where A,B

are two arbitrary concept names. It follows from Theorem 24 that PB(x) > 0 iff
P (〈A vK B〉) > 0. Thus positive subsumption is NP-hard. The coNP-completeness
of almost-sure subsumption can be shown by analogous (but dual) arguments. ut

Notice that the non-determinism needed to solve these problems is limited to
the number of random variables in B. More precisely, exactly |V | bits need to be
non-deterministically guessed, and the rest of the computation runs in polynomial
time. In practical terms this means that subsumption is tractable as long as the
DAG representing the BN remains small. On the other hand, Algorithm 1 shows
that the probabilistic and the logical components of the KB can be decoupled
while reasoning. This is an encouraging result as it means that one can apply the
optimized methods developed for BN inference and for DL reasoning directly in
BEL without major modifications.

We now look at the general case, where we are interested in P (〈A vK: κ〉) for
some potentially non-empty context κ. As for the special case without contexts,
the fundamental property for the contextual case is that we can restrict reasoning
to pithy models without loss of generality. Formally, for every probabilistic model
P of K there is a pithy model Q of K such that P (〈A vQ B : κ〉) ≤ P (〈A vP B : κ〉).
The proof of this claim follows the same steps as the proof of Lemma 23, and hence
we do not present it in detail here. Using this result, we can generalize Theorem 24
to consider the contextual information.

Theorem 30 Let K = (B, T ) be a KB, A,B ∈ NC, and κ a context. Then

P (〈A vK B : κ〉) = 1− PB(κ) +
∑

TW |=AvB
W(κ)=1

PB(W).
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Once again, the proof is very similar to the proof of Theorem 24. The biggest
change is in Equation (3), which now becomes

P (〈A vPK B : κ〉) =
∑

IW |=〈AvB:κ〉

PI(IW)

=
∑

W(κ)=0

PI(IW) +
∑

W(κ)=1,
IW |=〈AvB:κ〉

PI(IW)

= 1− PB(κ) +
∑

TW |=AvB
W(κ)=1

PB(W).

Example 31 Consider again the KB Kexa from Example 6. Notice that for ev-
ery valuation W that evaluates x to false, TW 6|= A v C. Thus, we have that
P (〈A vKexa

C : {¬x}〉) = 1−PBexa
(¬x)+0 = 0.7. Moreover, since PBexa

(¬x, y, z) = 0,
we get P (〈A vKexa

C : {¬x, y, z}〉) = 1.

Theorem 30 tells us that, to compute the probability of a contextual subsumption,
it suffices to compute the probability of the context in the original BN and the
probability of all the valuations that satisfy both, the context and the subsumption
relation. To compute the last term in this equation, we can once again use the proof
structure as described before. In fact, from the properties of proof structures, it
follows that

PBK((α, n), κ) =
∑
V(κ)=1

PBK((α, n) | V)PBK(V) =
∑
TW |=α
W(κ)=1

PBK(W), (5)

and hence P (〈A vK B : κ〉) = 1−PB(κ) +PBK((A v B,n), κ). Altogether, we have
the following result.

Theorem 32 Contextual p-subsumption is PP-complete, contextual positive subsump-

tion is NP-complete, and contextual almost-sure subsumption is coNP-complete.

The probabilistic semantics of BEL, as introduced in the previous section, consider
the relationship between a context and the logical subsumption relation that fol-
lows the structure of the so-called material implication. More precisely, we logically
express that if the context is satisfied, then the subsumption relation must hold
too. The V -GCI is then trivially satisfied whenever the context is violated, follow-
ing the classical rules of implication. As we have already shown in Example 31, this
kind of implication may produce some counter-intuitive results. Indeed, it is easy to
see that 〈A vKexa

C : {¬x, y, z}〉 does not hold, but P (〈A vKexa
C : {¬x, y, z}〉) = 1.

The reason for this is simply that the context {¬x, y, z} has probability zero of
occurring. To avoid this unexpected behaviour, one possibility is to use a condi-
tional implication and compute the probability of the subsumption to hold, given
that the context is known to be satisfied. Intuitively, the conditional implication
rescales the probability distribution to only the space where the antecedent of
the implication is true. The following definition translates this idea to the case of
probabilistic subsumption.
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Definition 33 (conditional subsumption) Let A,B be two concept names, κ a
V -context, K = (B, T ) a BEL KB, and P = (I, PI) a probabilistic interpretation.
The conditional probability of A v B given κ is defined by the rule

P (〈A vP B | κ〉)
∑

I∈I,VI(κ)=1

PI(I) =
∑

I∈I,VI(κ)=1,AI⊆BI

PI(I). (6)

The conditional probability of A v B given κ w.r.t. K is

P (〈A vK B | κ〉) := inf
P|=K

P (〈A vP B | κ〉).

The notions of p-subsumption, positive subsumption, and almost-sure subsumption
are extended to conditional subsumption in the obvious manner.

Recall from Theorem 11 that for every model P of K = (B, T ) it holds that∑
I∈I,VI(κ)=1 PI(I) = PB(κ). Thus, if PB(κ) > 0, the rule from Equation (6) is

equivalent to

P (〈A vP B | κ〉) =

∑
I∈I,VI(κ)=1,AI⊆BI PI(I)

PB(κ)
.

Interestingly, the techniques that we have developed for probabilistic contextual
subsumption can also be used for deciding the different conditional subsumption
problems. Moreover, the complexity of all these decision problems remains the
same as for the contextual case.

Theorem 34 Conditional p-subsumption is PP-complete, conditional positive sub-

sumption is NP-complete, and conditional almost-sure subsumption is coNP-complete.

Proof By Theorem 24, we know that

P (〈A vK B〉) =
∑

TW |=AvB

PB(W) =

∑
TW |=AvB PB(W)

PB(∅)
= P (〈A vK B | ∅〉).

The hardness results follow directly from Corollary 28 and Theorem 29.
To decide conditional p-subsumption, we can use the proof structure as before.

Indeed, from Equation (5), we know that P (〈A vK B | κ〉)PB(κ) = PBK((α, n), κ).
This means that p-subsumption can be decided by a linear number of probabilistic
tests on the BN BK, whose size is polynomial on K. Thus p-subsumption is in
PP. Conditional positive subsumption can be decided by the non-deterministic
algorithm that guesses a valuation W that extends κ and verifies in polynomial
time that PB(W) > 0 and TW |= A v B. The upper bound for conditional almost-
sure subsumption is dual. ut

A simple consequence of the proof of this theorem is that both implications coincide
when the context is empty; i.e., P (〈A vK B : ∅〉) = P (〈A vK B | ∅〉). In terms of
practical applications, it is usually this case that is considered: we want to know
how likely it is to observe a consequence, without having any knowledge of the
context in which we are currently at. In the next section, we consider a dual
problem: knowing that an entailment holds, try to deduce the current context.
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Table 4 The contexts κ such that 〈A vKexa C : κ〉 holds, and their probability.

Context Probability

{x, y,¬z} P (x, y,¬z) = P (¬z | x, y)P (y | x)P (x) = 0.7 · 1 · 0.7 = 0.49
{x,¬y,¬z} P (x,¬y,¬z) = P (¬z | x,¬y)P (¬y | x)P (x) = 0.9 · 0 · 0.7 = 0
{x,¬z} P (x,¬z) = P (x, y,¬z) + P (x,¬y,¬z) = 0.49 + 0 = 0.49
{x, y, z} P (x, y, z) = P (z | x, y)P (y | x)P (x) = 0.3 · 1 · 0.7 = 0.21

5.3 Most Likely Context

Finding the most likely context for a consequence can be seen as the dual of
computing the probability of this consequence. Intuitively, we are interested in
finding the most likely explanation for an event; if a consequence holds, we want
to find the context with the highest probability in which we are making this
observation.

Definition 35 (most likely context) Let K = (B, T ) be a BEL KB, and A,B

two concept names. A V -context κ is a most likely context (mlc) for A v B if
(i) 〈A vK B : κ〉 and (ii) for all contexts κ′ with

〈
A vK B : κ′

〉
, PB(κ) ≥ PB(κ′).

Continuing with our running example, it is easy to see that the mlcs for A v C

w.r.t. Kexa are {x,¬z} and {x, y,¬z}. Indeed, from the boundary computed in Ex-
ample 22, we know that there are only four contexts κ such that 〈A vKexa

C : κ〉
holds. These contexts are shown in the first column of Table 4. In the second col-
umn, we compute their probability. Highlighted with a gray background are those
contexts that have the highest probability among those that entail the subsump-
tion relation. Since {x, y,¬z} contains {x,¬z}, one can think of the latter as a
more informative mlc than the former. Usually, one might be interested in finding
such mlcs. The techniques that we present next can be easily adapted to find these
mlcs, too.

A simple algorithm for computing all most likely contexts for a given subsump-
tion relation is to enumerate all the (exponentially many) contexts κ, test whether
〈A vK B : κ〉 holds, and if so compute PB(κ). Such an algorithm runs in exponen-
tial time on the size of K. This complexity bound cannot be further improved,
since a single consequence may have exponentially many mlcs. We consider now
the problem of finding one mlc; or, more precisely, its associated decision problem:
decide, given a p ∈ (0, 1], whether there exists an context κ such that 〈A vK B : κ〉
and PB(κ) > p.4

This problem is clearly in NPPP: given p > 0 we can guess a V -context κ, and
check with a PP oracle that 〈A vK B : κ〉 and PB(κ) > p, using the construction
from Section 5.2. To show that it is also NPPP-hard, we provide a reduction from
D-MAP, which corresponds to finding a valuation that maximizes the probability
of an event.

Theorem 36 Deciding whether κ is an mlc for A v B w.r.t. K is NPPP-complete.

Proof The upper bound can be shown as described above. Hence we focus here
on proving the lower bound by a reduction from D-MAP. Let B = ((V,E), Φ)

4 We use a different formulation than in our previous work [14] to better align the decision
problem with existing literature.
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be an arbitrary but fixed BN, κ a V -context, Q = {x1, . . . , xk} ⊆ V , and p > 0.
Define V ′ = V ] {x+, x− | x ∈ Q} ] {z}, where ] denotes the disjoint union,
and E′ = E ∪ {(x, x+), (x, x−) | x ∈ Q}. We construct B′ = ((V ′, E′), Φ′) where Φ′

contains PB′(v | π(v)) = PB(v | π(x)) for all v ∈ V , and PB′(z) = p, PB′(x+ | x) = 1,
PB′(x+ | ¬x) = 0, PB′(x− | x) = 0, and PB′(x− | ¬x) = 1 for all x ∈ Q. Let now

T = {
〈
Ai−1 v Ai : x+i

〉
,
〈
Ai−1 v Ai : x−i

〉
| 1 ≤ i ≤ k} ∪

{〈Ak v B : κ〉 , 〈A0 v B : z〉},

and K = (B′, T ). For any V ′-context κ′ it holds that if 〈A0 vK B : κ〉 and z /∈ κ′,
then κ ⊆ κ′ and for every x ∈ Q, {x+, x−} ∩ κ′ 6= ∅. Moreover, by construction
PB(z) = p and PB(x+, x−) = 0 for all x ∈ Q. ut

Notice that part of the hardness of this problem arises from the fact that contexts
represent only partial valuations of the variables in V . Computing the probability
of these partial valuations is already hard, since it is necessary to consider all the
valuations that extend the context itself. If we restrict the search to only the most
probable valuations, then the complexity of the problem decreases to NP. Formally,
we say that a valuation W is a most likely world (mlw) for A v B if 〈A vK B :W〉
and for all valuationsW ′ such that

〈
A vK B :W ′

〉
, it holds that PB(W) ≥ PB(W ′).

In our running example, we have only one mlw for A v C; namely {x, y,¬z} (see
Table 4).

Theorem 37 Deciding whether W is an mlw for A v B w.r.t. K is NP-complete.

Proof For the upper bound, we can guess a valuation W and decide in polynomial
time using the chain rule that PB(W) > p. For the lower bound, we reduce the
D-MPE problem, following the same approach described in the proof of Theo-
rem 36. ut

This finishes our analysis of the complexity of reasoning in BEL. In the next section,
we generalize some of these results to arbitrary ontology languages.

6 Bayesian Ontology Languages

In Section 4 we defined BEL as a Bayesian extension of the classical DL EL. Ob-
viously, the main ideas behind this extension are independent of the specific DL
used, and can in fact be generalized to any ontology language. An ontology language

L defines possibly infinite classes (i) A of well-formed axioms; (ii) C of consequences;
and (iii) O of ontologies such that every element of O is a finite subset of A, and
if O ∈ O, then every subset of O is also an ontology in O. Examples of ontology
languages are all usual DLs; e.g., ALC or SHOIQ. In this case, axioms can be
GCIs or assertions, and the class of ontologies may be the set of all TBoxes, or
even be restricted to acyclic TBoxes only [7]. Consequences in these languages can
be, for instance, concept unsatisfiability, concept subsumption, or ontology incon-
sistency. Notice however that the notion of an ontology language is not restricted
to DLs [10].

The semantics of an ontology language is given by a class I of interpretations and
an entailment relation |= ⊆ I× (A ∪ C) that expresses which interpretations satisfy
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which axioms and consequences. An interpretation I is a model of the ontology O,
denoted by I |= O if I |= α for all α ∈ O. O is called consistent if it has at least one
model. O entails the consequence c, denoted by O |= c if every model of O satisfies
c. Notice that the entailment relation is monotonic; i.e., if O |= c and O ⊆ O′ ∈ O,
then O′ |= c.

For the rest of this section, we consider L to be an arbitrary but fixed ontology
language, with axioms A, ontologies O, consequences C, and interpretations I. In
the Bayesian ontology language BL, ontologies are generalized by annotating every
axiom with a context.

Definition 38 (KB, model) A V -axiom is of the form 〈α : κ〉 where α ∈ A and κ is
a V -context. A V -ontology is a finite set O of V -axioms with {α | 〈α : κ〉 ∈ O} ∈ O.
A V -consequence is a pair 〈c : κ〉, where c ∈ C and κ is a V -context. A BL knowledge

base (KB) over V is a pair K = (B,O) where B is a BN over V and O is a V -ontology.
A V -interpretation is a pair I = (I,VI) where I ∈ I and VI : V → {0, 1} is a

valuation of the variables in V . This V -interpretation is a model of the V -axiom
〈α : κ〉 or the V -consequence 〈c : κ〉, denoted as I |= 〈α : κ〉 (respectively I |= 〈c : κ〉),
iff VI(κ) = 0 or I |= α (resp., I |= c). It is a model of the V -ontology O iff it is a
model of all the V -axioms in O. The ontology O entails 〈c : κ〉 if every model of O
is a model of 〈c : κ〉.

The notion of a probabilistic interpretation is a straightforward adaptation from
Definition 10. A probabilistic interpretation is a pair P = (I, PI), where I is a set of
V -interpretations and PI is a probability distribution over I such that PI(I) > 0
only for finitely many interpretations I ∈ I. It is a model of the V -ontology O

(resp., of the V -consequence 〈c : κ〉) if every I ∈ I is a model of O (resp., of 〈c : κ〉).
P is consistent with the BN B if for every valuation W of the variables in V it
holds that ∑

I∈I,VI=W

PI(I) = PB(W).

The probabilistic interpretation P is a model of the KB (B,O) iff it is a (proba-
bilistic) model of O and consistent with B. This KB is consistent if it has at least
one model.

Definition 39 (entailment) The BL KB K entails the V -consequence 〈c : κ〉, de-
noted as K |= 〈c : κ〉, if every probabilistic model of K is a model of 〈c : κ〉.
The probability of 〈c : κ〉 w.r.t. the probabilistic interpretation P = (I, PI) is
PP(〈c : κ〉) :=

∑
I∈I,I|=〈c:κ〉 PI(I). The probability of 〈c : κ〉 w.r.t. K is

PK(〈c : κ〉) := inf
P|=K

PP(〈c : κ〉).

Notice that, contrary to the case of EL, in an arbitrary ontology language L there
might be consequences that do not hold in any model of a given ontology. In
such cases, it can be meaningful to compute the supremum of all the probabilities
given by models of the KB, in addition to the infimum, as defined above. Such
supremum corresponds to some kind of brave reasoning, where one is interested
in consequences that follow from at least one model, rather than in all models.
However, in general it is not clear how to compute such brave entailments, even in
classical ontology languages. For that reason, we focus on entailments as introduced
in Definition 39.
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Clearly, the complexity of reasoning in BL depends on the complexity of de-
ciding entailments in the original ontology language L. Hence, it is impossible to
provide a general complexity bound for reasoning in arbitrary Bayesian ontology
languages. Nonetheless, we can still apply some of the results presented in the
previous sections to obtain some understanding of the computational properties
of these problems on Bayesian extensions of different ontology languages.

Notice first that if a BL KB K = (B,O) is inconsistent, then by definition all
entailments hold with probability 1. It is easy to see that K is inconsistent iff there
is a valuationW such that PB(W) > 0 and OW is an inconsistent L-ontology. Thus,
BL KB consistency can be decided by guessing such a world W and verifying that
it satisfies both conditions.

Theorem 40 Let C be the complexity of deciding consistency in the ontology language

L. Then consistency in BL is in NPC.

Recall that the ontology language L can be seen as a special case of its Bayesian
extension BL, as described in Section 4. In particular, this means that consistency,
contextual entailment, p-entailment, positive entailment, and almost-sure entail-
ment in BL are necessarily at least as hard as classical entailment in L. To obtain
an upper bound for p-entailment, notice that the proofs of Lemma 23 and Theo-
rem 24 only depend on the fact that the entailment relation in EL is monotonic,
as is the case for all ontology languages. To decide p-entailment, it then suffices to
make an entailment test and a probability computation for each possible valuation
of the variables in V , as suggested by Algorithm 1. Similarly, for deciding positive
and almost-sure entailment it suffices to guess an adequate valuation.

Theorem 41 Let C be the complexity of deciding entailment in the ontology language

L. Then p-entailment in BL is in PSpaceC, positive entailment is in NPC and almost-

sure entailment is in coNPC.

Notice that the same upper bounds hold for the case where the material implication
is substituted by the conditional implication. In particular, this theorem implies
that if C is a deterministic class containing PSpace, then all these decision problems
are C-complete.

When considering contextual entailment, it is easy to see an analogous of
Lemma 18 holds for all Bayesian ontology languages. This lemma yields an al-
gorithm for proving that contextual entailment does not hold: guess a valuation
W and verify using standard reasoning that the entailment does not hold.

Theorem 42 Let C be the complexity of deciding entailment in the ontology language

L. Then contextual entailment is in coNPC.

To conclude, we consider the problems of deciding whether a context is a most
likely context, or a valuation being a most likely world for a given entailment. As
described in Section 5.3, all mlcs and mlws can be computed by an exponential-
time algorithm with a standard L-entailment oracle. In general, however, we cannot
improve this upper bound as done for BEL. In this case, the upper bound obtained
is slightly more elaborate.

Theorem 43 Let C and D be two complexity classes containing PP and P, respec-

tively. Then (i) if L-entailment is decidable in C, then mlc is in (∆p2)C; and (ii) if

L-entailment is in D, then mlw is in NPD.
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Table 5 Complexity bounds for reasoning in Bayesian extensions of different DLs.

entailment
Logic classic p positive almost-sure context mlc mlw consistent

EL PTime PP NP coNP coNP NPPP NP 1
ALCa PSp PSp PSp PSp PSp PSp PSp PSp
ALC ExpT ExpT ExpT ExpT ExpT ExpT ExpT ExpT
SHOIQ NE ≤PSpNE ≤NPNE ≤coNPNE ≤coNPNE ≤(∆p2)NE ≤NPNE ≤NPNE

Proof Given a p > 0, we can guess a context κ and a world W with W(κ) = 1.
verify in PP that PB(κ) > p and in coNPC that K |= 〈c : κ〉 (see Theorem 42). For
mlw, on the other hand, verifying PB(W) > p can be done in polynomial time and
K |= 〈c :W〉 requires only an L-entailment check. ut

Using all these results, we obtain complexity bounds for reasoning in the Bayesian
extensions of many DLs. Some of these results, including the tight bounds proven
for BEL in previous sections, are shown in Table 5. In the table, all the bounds
are tight, except for the last row (SHOIQ), where only upper bounds are known
(denoted by ≤C). For brevity, we write PSp for PSpace, ExpT for ExpTime, and
NE for NExpTime. In the second row, ALCa stands for ALC with acyclic TBoxes.
Notice that the results shown in the table refer to only a few of the many possible
ontology languages. These are intended only as a sample of the results that one
can obtain from the arguments presented in this paper. Moreover, we believe that
the upper bounds for SHOIQ can be further reduced to NExpTime in all cases.

7 Related Work

Probabilistic extensions of DLs and other formalisms for representing and reason-
ing with uncertainty have been studied for several decades. We refer the interested
reader to a deep, although slightly outdated survey [31].

One of the first attempts for combining BNs and DLs was P-Classic [29],
which extended the Classic system through probability distributions over the
interpretation domain. The more recent PR-OWL [21] uses multi-entity BNs to
describe the probability distributions of some domain elements. In both cases, the
probabilistic component is interpreted providing individuals with a probability
distribution; this differs greatly from our multiple-world semantics, in which we
consider a probability distribution over a set of classical DL interpretations.

The approaches that most resemble ours are perhaps the Bayesian extension of
DL-Lite [22] and the extensions of DL with distribution semantics DISPONTE [38,
39]. The latter allows for so-called epistemic probabilities that express the uncer-
tainty associated to a given axiom. Their semantics are based, as ours, on a prob-
abilistic distribution over a set of interpretations. The main difference with our
approach is that in [38, 39], the authors assume that all probabilities are indepen-
dent, while we provide a joint probability distribution through the BN. Another
minor difference is that in DISPONTE it is impossible to obtain classical conse-
quences, as we do. In practical terms, our Bayesian ontology languages are a strict
generalization of the distribution semantics from [39].

Moreover, we provide (tight) complexity bounds for reasoning in these logics.
A different approach is followed in [34], where EL axioms are attached with weights
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that indirectly determine a probability distribution. The main difference is that
in [34], these weights are not restricted to be between 0 and 1, and even if they
do, they do not correspond directly to the probability of the axiom to hold.

Abstracting from the different logical constructors used, the logic in [22] looks
almost identical to ours. There is, however, a subtle but important difference.
In our approach, an interpretation I satisfies an axiom 〈C v D : κ〉 if VI(κ) = 1
implies CI ⊆ DI . In [22], the authors employ a closed-world assumption over the
contexts, where this implication is substituted for an equivalence; i.e., VI(κ) = 0
also implies CI 6⊆ DI . The use of such semantics can easily produce inconsistent
KBs, which is impossible in BEL. For example, using the semantics proposed in [22],
the TBox {〈A v B : {x}〉 , 〈A v B : {¬x}〉} is inconsistent: every valuation must
either satisfy x or ¬x. In the first case, the interpretation must satisfy AI ⊆ BI ;
but then, due to the second axiom in the TBox, it must also satisfy ¬x, which
is impossible. The dual argument holds for interpretations that satisfy ¬x. With
our semantics, as given in Definition 8, the TBox given above is equivalent to
{〈A v B : ∅〉}; i.e., to requiring the subsumption relation to hold in every context.

Although its representation as a hypergraph, and its translation into a DAG are
new, the main insights that give rise to our proof structures and their properties
have a long history. It is well known that every Horn theory can be represented as a
hypergraph, where each Horn clause is a directed hyperedge from the set of all the
premises to the conclusion [36]. Under this view, the proof structure corresponds
to a simplified version of the formula proposed by Sebastiani and Vescovi for axiom
pinpointing in EL+ [41, 42].

In this paper, we have proposed two kinds of algorithms for deciding prob-
abilistic subsumption in BEL. The first one makes repeated calls to a classical
EL reasoner and a BN inference engine to find the probability of all the restricted
TBoxes that entail the desired subsumption. This algorithm is a typical example of
a black-box method, in which an unmodified and highly-optimized engine is called
repeatedly. Although easy to implement, such methods are typically inefficient re-
quiring, in this instance, exponential time in the best case. The second algorithm
follows a glass-box approach, producing a larger BN from which the probabilities
of the subsumption relations can be derived through standard probabilistic infer-
ences. Such an approach should behave better in practice, but requires a larger
implementation effort. A different glass-box algorithm was proposed in [18], where
probabilistic subsumption in BEL KBs is reduced to inferences in a probabilistic
logic program. This algorithm was implemented in the system BORN, which uses
the efficient system ProbLog [24] as a back-end for probabilistic logic program
inferences. Preliminary tests performed on BORN over different BEL KBs show
that reasoning in this logic is feasible in practice. Among these tests, BORN was
used to compute the probability of different subsumption relations w.r.t. the well-
known Gene Ontology (GO) [44], which has over 23,000 axioms, extended with
two different BNs containing 200 nodes each. To relate GO with the BNs, all the
axioms were annotated with literals. The running time required to compute the
probabilistic subsumptions in these KBs was in most cases below three seconds,
with only one instance requiring 3.5 seconds. Although such results are promising,
we must emphasise that more thorough testing and analysis is required before any
conclusions can be made about the implementation.
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8 Conclusions

We have introduced BEL, a Bayesian extension of the light-weight DL EL for
expressing uncertainty attached to contextual knowledge of the domain. The main
purpose of BEL is to represent certain knowledge that is dependent on an uncertain
context. The uncertainty of the different contexts is expressed by a probability
distribution represented via a Bayesian network. One of the main insights obtained
studying this logic is that reasoning can be decoupled into the logical part and
the probabilistic part. This means that standard EL reasoners and BN inference
engines can be used to perform all the studied inferences in BEL.

The goal of the paper was to provide tight complexity bounds for different
reasoning problems in BEL. All these results are summarized in the first row of
Table 5. Interestingly, most of the upper bounds obtained are consequence of a
reduction from BEL into standard inference problems over a Bayesian network. To
obtain this translation, we exploit the so-called proof structure: a directed hyper-
graph that preserves the information of all the possible subsumption relations that
can be derived by application of the completion algorithm. Such a proof structure
is then modified into a DAG, which serves as the basis for a newly constructed
BN. We can thus exploit state-of-the-art BN engines to reason in BEL efficiently.
We have also extended the notion of a Bayesian logic to arbitrary ontology lan-
guages, which include but are not restricted to all standard DLs. Exploiting the
decoupling between the logical and the probabilistic components of these logics,
we provided upper bounds for the reasoning problems associated to them, which
in many cases are tight (see Table 5). These upper bounds can be implemented
via a black-box algorithm that makes repeated calls to a standard logical reasoner
and a BN inference tool. It is a matter of future work to develop more efficient
algorithms that exploit the properties of each ontology language, as we have done
for EL already.

There exist many directions for future work. The most obvious and urgent
of them is the implementation and evaluation of a BEL reasoner. Towards this
goal, we can further optimize the reasoner BORN [18], or extend the methods for
axiom-pinpointing that exploit the proof structure [1, 2, 32] to consider also the
probabilistic contexts. In the same direction, we will study further optimizations
and special cases where the complexity of reasoning can be further decreased. For
instance, it is well known that the complexity of probabilistic inferences in BNs
depends strongly on the structure of the underlying DAG [23]. Unfortunately, the
construction proposed in Section 5.2 produces a highly interconnected DAG for
which these inferences are hard. It would thus be interesting to find restrictions
or new constructions that preserve the structure of the original BN.

Here we have considered subsumption as the standard reasoning problem in
EL. In case there is knowledge about individuals of the application domain, it is
also relevant to answer queries about these individuals and their properties. We
have started studying the problem of probabilistic query answering in BEL [17].
However, there still remain many open questions that need to be addressed.
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2. Arif MF, Menćıa C, Marques-Silva J (2015) Efficient MUS enumeration of
Horn formulae with applications to axiom pinpointing. CoRR abs/1505.04365,
URL http://arxiv.org/abs/1505.04365
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