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Abstract

Fuzzy description logics (FDLs) are knowledge representation formalisms capable of dealing with imprecise
knowledge by allowing intermediate membership degrees in the interpretation of concepts and roles. One
option for dealing with these intermediate degrees is to use the so-called Gödel semantics, under which
conjunction is interpreted by the minimum of the degrees of the conjuncts. Despite its apparent simplicity,
developing reasoning techniques for expressive FDLs under this semantics is a hard task.

In this paper, we introduce two new algorithms for reasoning in very expressive FDLs under Gödel
semantics. They combine the ideas of a previous automata-based algorithm for Gödel FDLs with the known
crispification and tableau approaches for FDL reasoning. The results are the two first practical algorithms
capable of reasoning in infinitely valued FDLs supporting general concept inclusions.

Keywords: Fuzzy Description Logics, Gödel Fuzzy Logic, Mathematical Fuzzy Logic, Tableau Algorithm,
Fuzzy OWL 2

1. Introduction

Description logics (DLs) [1] are a well-known family of knowledge representation formalisms that have
been successfully used for modeling many real-world domains. Their basic building blocks are individuals,
representing elements of the application domain, concepts expressing unary predicates over the domain, and
roles encoding binary relations. Complex statements are built using different concept constructors. For
example, the DL axioms Father(bob) and Father v ∃hasChild.> express that the individual Bob belongs to
the concept Father, and that every father must have a child, i.e. an individual that is in the hasChild-relation
with him. There is an obvious trade-off between the expressivity of a DL and the complexity of reasoning
tasks. Hence, many different DLs have been proposed in the literature. They range from ALC—the smallest
propositionally closed DL—and its sub-logics, to the very expressive SROIQ—one of the largest decidable
DLs, and the logic underlying the Web Ontology Language OWL 2 [2].

One of the known limitations of classical logic is its inability to handle imprecise concepts for which
a clear-cut characterization is impossible [3, 4]. To cover this gap, the semantics of DLs, which originally
is based on first-order logic, has been extended following the ideas of mathematical fuzzy logic [3, 5].
The resulting fuzzy description logics (FDLs) allow intermediate truth degrees—usually rational numbers
between 0 (false) and 1 (true)—to be used while defining and reasoning with imprecise knowledge [6]. To
interpret the knowledge that uses these intermediate degrees, the logical connectives need to be extended
accordingly. In general, many possible such extensions can be considered. Hence, every classical DL gives rise
to a family of FDLs, whose members differ on the interpretation of the connectives they use. Unfortunately,
it has been shown that for most of these extensions, reasoning is undecidable, even if the underlying DL
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is relatively inexpressive [7]. In fact, the only decidable expressive FDLs are those based on the Gödel
semantics [8], and the related Zadeh semantics [9]. For the rest of this paper, we focus on fuzzy DLs that
use Gödel semantics. These are denoted by the prefix “G-”.

Already in the classical case, developing a reasoning algorithm for the very expressive DL SROIQ is far
from trivial. In fact, one needs to handle all possible interactions between the many constructors available.
For instance, it is known that the combination nominals and number restrictions can be problematic. This
difficulty is accentuated when the Gödel semantics are considered, since this logic does not have the finitely
valued model property [10]. This means that there are consistent ontologies whose models must use infinitely
many truth degrees. Indeed, this is one of the reasons why the crispification approach as described in [11–
13]—in which concepts are partitioned according to the degrees of their elements—is only correct under
finitely valued semantics.

The study of reasoning algorithms for expressive Gödel FDLs that can handle infinitely many truth
degrees started in [10, 14]. The main contribution of that work was the development of automata-based
methods for testing the existence of (potentially infinite) models of a fuzzy ontology. These methods were
used to show that the loss of the finitely valued model property does not affect the complexity of reasoning
in G-ALC. Rather than trying to find a model directly, this algorithm produces an abstract representation
of a large class of models. In this representation, the actual degrees of truth used in a model are abstracted
to consider only the order among them. As an added benefit, considering only the order between concepts
allows for a more flexible representation of the domain knowledge. For instance, one can express that an
individual is taller than another, i.e. Tall(bob) > Tall(chris), without having to specify explicit degrees of
tallness for them.

In this paper, we present two algorithms that exploit the same idea of considering the order between
degrees, rather than the degrees explicitly. The first algorithm is an extension of the crispification approach
for finitely valued FDLs, which translates a fuzzy ontology into a classical ontology by using concepts that
simulate the order between the relevant truth degrees.1 Although it yields good theoretical results such as
tight complexity bounds for reasoning, this approach is restricted to sublogics of G-SROIQ that have the
forest-model property [16], and there is no obvious way to extend them to the full expressivity of G-SROIQ.
To overcome these limitations, we develop a novel combination of the classical tableau algorithm for SROIQ
with the order-based abstraction from [10]. It inherits the pay-as-you-go behavior from the classical tableau
algorithms, and is the first reasoning algorithm that can handle the full expressivity of fuzzy SROIQ under
Gödel semantics.

The paper is structured as follows. We start by recalling the basic notions of the Gödel semantics for
fuzzy logic and fuzzy description logics that are relevant for the rest of the paper. In Section 3 we provide
the main intuitions behind our algorithms with the help of a detailed example, and Section 4 describes an
automata-based method for handling complex role inclusions that is needed for the two algorithms. We then
present in detail the two proposed algorithms for reasoning in G-SROIQ: Section 5 provides a reduction
to classical DLs, followed by a new tableau algorithm in Section 6. We finish the paper with a description
of related work and some concluding remarks. To improve readability, detailed proofs of our results are
deferred to Appendix A.

2. Preliminaries

We start by recalling some of the basic notions of Gödel fuzzy logic and fuzzy description logics [3, 6, 17]
that will be used throughout the paper.

2.1. Gödel Fuzzy Logic and Order Structures
The two basic operators of Gödel fuzzy logic are conjunction and implication, interpreted by the Gödel

t-norm and residuum, respectively. The Gödel t-norm of two fuzzy degrees2 x, y ∈ [0, 1] is defined as the

1This algorithm has already been presented in the short conference paper [15].
2For the scope of this paper, we limit the possible degrees to be rational numbers only.
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minimum min{x, y}. Its residuum ⇒ is the operation uniquely defined by the equivalence min{x, y} 6 z iff
y 6 (x⇒ z) for all x, y, z ∈ [0, 1]. Equivalently, this operation can be computed as

x⇒ y =

{
1 if x 6 y,
y otherwise.

Additionally, we consider both the residual negation x 7→ (x⇒ 0) and the involutive negation x 7→ (1− x)
in this paper. Note that min is monotone in both arguments, and hence preserves arbitrary infima and
suprema, while ⇒ is monotone in the second argument and antitone in the first argument. The following
property will be useful throughout this paper [3].

Proposition 2.1. For all values x, x1, . . . , xn ∈ [0, 1], we have(
(x1 ∧ · · · ∧ xn)⇒ x

)
=
(
x1 ⇒ . . . (xn ⇒ x) . . .

)
.

An order structure S is a finite set containing at least the numbers 0, 0.5, and 1, together with an
involutive unary operation inv : S → S such that inv(x) = 1 − x for all numbers x ∈ S ∩ [0, 1]. A total
preorder (on S) is a transitive and total binary relation 4∗ ⊆ S × S. Notice that any such relation is
necessarily also reflexive. For α, β ∈ S, we write α '∗ β if α 4∗ β and β 4∗ α, and we write α ≺∗ β if it
is not the case that β 4∗ α (but then α 4∗ β holds since 4∗ is total). We emphasise here that '∗ is an
equivalence relation on S. For a relation symbol ./ ∈ {<,6,=,>, >}, we denote by ./∗ the corresponding
relation induced by 4∗; that is, ≺∗, 4∗, '∗, <∗, or �∗, respectively. The set order(S) contains exactly those
total preorders 4∗ over S which

• have 0 and 1 as least and greatest element, respectively,

• coincide with the order of the rational numbers on S ∩ [0, 1], i.e. for all α, β ∈ S ∩ [0, 1] it holds that
α 6 β iff α 4∗ β, and

• satisfy α 4∗ β iff inv(β) 4∗ inv(α) for all α, β ∈ S.

Given a preorder 4∗ ∈ order(S), the following functions extend the operators of Gödel fuzzy logic from the
elements in S ∩ [0, 1] to the whole order structure S:

min∗{α, β} :=

{
α if α 4∗ β
β otherwise,

α⇒∗ β :=

{
1 if α 4∗ β
β otherwise.

An order assertion (over S) is an expression of the form α ./ β, where ./ ∈ {<,6,=,>, >} and α, β ∈ S;
the elements α, β are not necessarily numbers from [0, 1], but arbitrary elements of S. We do not distinguish
between α E β and β D α, where E is either <, 6, or =, and D is >, >, or =, respectively. An order
formula is a Boolean combination of order assertions. An element 4∗ ∈ order(S) satisfies (or is a model of)

• the order assertion α ./ β iff α ./∗ β holds;

• an order formula if there is a satisfying Boolean valuation of all its order assertions such that 4∗
satisfies all order assertions evaluated to true, and does not satisfy any order assertions evaluated to
false;

• a set of order assertions if it satisfies all assertions contained in it.

A set of order assertions Φ is satisfiable if it has a model, and it entails an order assertion φ if all models
of Φ are also models of φ.
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In the following, we describe a procedure for deciding satisfiability of a set of order assertions Φ. We
construct the labeled directed graph GΦ = (S,EΦ) with labels from the set {6, <}, whose nodes are the
elements of the order structure S, and the labeled edges

EΦ := {(α,<, β) | α < β ∈ S or inv(α) > inv(β) ∈ S} ∪
{(α,6, β) | α 6 β ∈ S or α = β ∈ S or inv(α) > inv(β) ∈ S or inv(α) = inv(β) ∈ S} ∪
{(α,<, β) | α, β ∈ S ∩ [0, 1], α < β, there is no γ ∈ S ∩ [0, 1] with α < γ < β} ∪
{(0,6, α), (α,6, 1) | α ∈ S \ {0, 1}}

encode Φ and the properties of order(S). A cycle involving an edge labeled with < is called a <-cycle.

Lemma 2.2. A set Φ of order assertions over an order structure S is satisfiable iff GΦ has no <-cycle.

Furthermore, Φ entails α 6 β iff Φ ∪ {β > α} is unsatisfiable (and similarly for <), and Φ entails α = β
iff it entails both α 6 β and α > β. Hence, satisfiability and entailment of order assertions can be decided
in polynomial time.

For convenience, we sometimes use a generalized form of order assertions, like α > min{β, γ} or
α = (β ⇒ γ), where min and ⇒ are interpreted using the operators min∗ and ⇒∗, respectively, intro-
duced above.

2.2. G-SROIQ
We now introduce the very expressive fuzzy description logic G-SROIQ. As is common for fuzzy DLs,

we add the involutive negation to the “pure” Gödel logic that includes the residual negation. The involutive
negation will be handled by our reasoning algorithms through appropriate (encodings of) order structures,
whose definition already accounts for the behavior of the involutive negation (through the operator inv).
The semantics of the residual negation will be handled through constructions or rules dedicated to the
implication constructor (see Sections 5 and 6).

Let NI, NC, and NR be three mutually disjoint sets of individual names, concept names, and role names,
respectively. The set of roles is N−R := NR ∪ {r− | r ∈ NR}, where the elements of the form r− are called
inverse roles. Since we need to make several syntactic restrictions based on which roles appear in which role
axioms, we first consider the notion of role hierarchies.

2.2.1. Regular Role Hierarchies
A role hierarchy Rh is a finite set of (complex) role inclusions of the form w v r > p, where r is a

role name, w ∈ (N−R )+ is a non-empty role chain, and p ∈ (0, 1]. Such a role inclusion is called simple if
w ∈ N−R . We extend the notation ·− to inverse roles and role chains as usual, by setting (r−)− := r and
(r1 . . . rn)− := r−n . . . r

−
1 .

We recall now the regularity condition from classical DLs [18, 19]. Let l be a strict partial order on N−R
such that r l s iff r− l s. A role inclusion w v r > p is l-regular if

• w is of the form rr or r−, or

• w is of the form r1 . . . rn, rr1 . . . rn, or r1 . . . rnr, and for all 1 6 i 6 n it holds that ri l r.

A role hierarchy Rh is regular if there is a strict partial order l as above such that each role inclusion
in Rh is l-regular. The set of non-simple role names (w.r.t. Rh) is the smallest set satisfying the following
condition: If w v r > p ∈ Rh is not simple or w is of the form s or s− for a non-simple role s, then r
is non-simple. All other role names are simple. An inverse role r− is simple (non-simple) if r is simple
(non-simple). For the rest of this paper, let Rh be a regular role hierarchy.
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Table 1: Syntax and semantics of G-SROIQ

Concept Syntax (C) Semantics (CI(d))

concept name A ∈ NC AI(d) ∈ [0, 1]

truth constant p p

conjunction C uD min{CI(d), DI(d)}
implication C → D CI(d)⇒ DI(d)

negation ¬C 1− CI(d)

existential restriction ∃r.C sup
e∈∆I

min{rI(d, e), CI(e)}

value restriction ∀r.C inf
e∈∆I

rI(d, e)⇒ CI(e)

nominal {a}

{
1 if d = aI

0 otherwise

at-least restriction >n s.C sup
e1,...,en∈∆I

pairwise different

n
min
i=1

min{sI(d, ei), C
I(ei)}

local reflexivity ∃s.Self sI(d, d)

Role (chain) Syntax (r) Semantics (rI(d, e))

role name r ∈ NR rI(d, e) ∈ [0, 1]

inverse role r− rI(e, d)

role chain r1 . . . rn ∈ (N−R )+ sup
d1,...,dn−1∈∆I

min{rI1 (d, d1), . . . , rIn(dn−1, e)}

2.2.2. Concepts
G-SROIQ concepts [15] are built using the constructors listed in the upper part of Table 1, where C,D

denote concepts, p ∈ [0, 1], n ∈ N, A ∈ NC, a ∈ NI, r ∈ N−R , and s ∈ N−R is a simple role. The restriction to
simple roles in at-least restrictions is necessary to ensure decidability, already in the classical case [20]. We
also use the common DL constructors > := 1 (top concept), ⊥ := 0 (bottom concept), CtD := ¬(¬Cu¬D)
(disjunction), and 6n s.C := ¬(>(n+ 1) s.C) (at-most restriction).

The semantics of G-SROIQ is based on G-interpretations, which are pairs of the form I = (∆I , ·I)
where ∆I is a non-empty set, called the domain, and ·I is the interpretation function which assign to each
individual name a ∈ NI an element aI ∈ ∆I , to each concept name A ∈ NC a fuzzy set AI : ∆I → [0, 1], and
to each role name r ∈ NR a fuzzy binary relation rI : ∆I ×∆I → [0, 1]. This G-interpretation is extended
to complex concepts, roles, and role chains as defined in the last column of Table 1, for all d, e ∈ ∆I .

Remark 2.3. In contrast to classical DLs, existential and value restrictions are not equally expressive; i.e.
in general it does not hold that (∀r.C)I(x) = (¬∃r.¬C)I(x). However, they can still be viewed as dual in
the sense that we can obtain one from the other by inverting the order on [0, 1] and replacing ⇒ by min,
or vice versa. This also means that the fuzzy semantics of existential restrictions exhibits a behavior that
is classically ascribed to value restrictions: the supremum used to define (∃r.C)I(d) implicitly imposes an
upper bound on the value of min{rI(d, e), CI(e)}, for all domain elements e. Dually, value restrictions also
require the existence of a particular element through the witnessing conditions, as described in Section 2.2.3.
This property of fuzzy role restrictions is important for the definition of the algorithms in Sections 5 and 6.
A similar behavior can be observed in at-least restrictions: the semantics of (>n r.C)I(d) puts an at-most
restriction (6 n− 1) on the number of nodes e for which min{rI(d, e), CI(e)} can exceed this value.

In some previous work on fuzzy extensions of SROIQ [12], fuzzy at-most restrictions are defined using
the residual negation; that is 6n s.C := (>(n + 1) s.C) → ⊥. This has the effect that the value of 6n r.C
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under Gödel semantics is always either 0 or 1 (see the formal semantics below). However, this discrepancy in
definitions is not an issue: as we will show, our algorithms in Sections 5 and 6 can handle both the involutive
and the residual negation, and hence also this alternative notion of at-most restrictions. More precisely, the
semantics of ¬ can be expressed by the operator inv of an appropriate order structure. In contrast, the
residual negation C → ⊥ is treated by dedicated rules for the implication and bottom constructors.

The use of truth constants p for p ∈ [0, 1] is not standard in FDLs, but it allows us to simulate e.g. fuzzy
nominals [21] of the form {p1/a1, . . . , pn/an} with pi ∈ [0, 1] and ai ∈ NI, 1 6 i 6 n, using the concept
({a1} u p1) t · · · t ({an} u pn).

2.2.3. Witnessed Interpretations
As it is usual in fuzzy DLs, we restrict reasoning to witnessed G-interpretations [22]. Intuitively, witnessed

interpretations require that the suprema and infima in the semantics are in fact maxima and minima,
respectively. In other words, the degrees of these constructors are witnessed by an element in the domain.
Formally, a G-interpretation I is witnessed if, for every d ∈ ∆I , n > 0, r ∈ N−R , simple s ∈ N−R , and
concept C, there are e, e′, e1, . . . , en ∈ ∆I such that e1, . . . , en are pairwise different,

(∃r.C)I(d) = min{rI(d, e), CI(e)},
(∀r.C)I(d) = rI(d, e′)⇒ CI(e′), and

(>n s.C)I(d) =
n

min
i=1

min{sI(d, ei), C
I(ei)}.

2.2.4. Ontologies
As we have seen already with the role inclusions, the axioms of G-SROIQ extend classical axioms by

allowing to state a degree in (0, 1] to which the axioms hold. A (classical) assertion is either a concept
assertion of the form C(a) or a role assertion of the form r(a, b) for a, b ∈ NI, a concept C, and a role r. A
(fuzzy) assertion is of the form α ./ p or α ./ β, where α, β are classical assertions, ./ ∈ {<,6,=,>, >}, and
p ∈ [0, 1]. An ABox is a finite set of fuzzy assertions and individual (in)equality assertions of the form a ≈ b
(a 6≈ b) for a, b ∈ NI. A TBox is a finite set of general concept inclusions (GCIs) of the form C v D > p for
concepts C,D and p ∈ (0, 1]. An RBox R = Rh∪Ra consists of the role hierarchy Rh and a finite set Ra of
disjoint role axioms dis(s1, s2) > p, where s1, s2 are simple roles and p ∈ (0, 1]. An ontology O = (A, T ,R)
consists of an ABox A, a TBox T , and an RBox R. For an ontology O, we denote by rol(O) the set of all
roles occurring in O, together with their inverses, and by ind(O) the set of all individual names appearing
in O.

A G-interpretation I satisfies (or is a model of)

• the fuzzy assertion α ./ β if αI ./ βI , where (C(a))I := CI(aI), (r(a, b))I := rI(aI , bI), and pI := p
for all p ∈ [0, 1];

• the (in)equality assertion a ≈ b (a 6≈ b) if aI = bI (aI 6= bI);

• the GCI C v D > p iff CI(d)⇒ DI(d) > p for all d ∈ ∆I ;

• the role inclusion r1 . . . rn v r > p iff (r1 . . . rn)I(d, e)⇒ rI(d, e) > p for all d, e ∈ ∆I ;

• the disjoint role axiom dis(s1, s2) > p iff min{sI1 (d, e), sI2 (d, e)} 6 1− p for all d, e ∈ ∆I ;

• an ontology if it satisfies all its axioms.

Using the axioms previously introduced, it is possible to simulate other expressions that are commonly
considered to be part of (fuzzy) SROIQ [12, 23] as follows, where r is a role and s is a simple role:

• transitivity axioms tra(r) > p by rr v r > p;

• symmetry axioms sym(r) > p by r− v r > p;
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• asymmetry axioms asy(s) > p by dis(s, s−) > p;

• reflexivity axioms ref(r) > p by > v ∃s.Self > 1 and s v r > p, where s is a fresh (and hence simple)
role name;

• irreflexivity axioms irr(s) > p by ∃s.Self v ¬p > 1;

• negated role assertions ¬r(a, b) > p by r(a, b) 6 1− p; and

• the universal role ru by tra(ru) > 1, sym(ru) > 1, ref(ru) > 1, r v ru > 1 for all r ∈ rol(O), and
ru(a, b) = 1 for all a, b ∈ ind(O), as it is commonly done in the literature [16, 23]. There are also other
possibilities to simulate the universal role, e.g. using nominals instead of symmetry and reflexivity.

A G-SROIQ ontology is consistent if it has a witnessed G-model. Other common reasoning problems for
FDLs, such as concept satisfiability and subsumption can be reduced to consistency in linear time [14]. For
instance, the subsumption between C and D to degree p w.r.t. a TBox T and an RBox R is equivalent to the
inconsistency of ({(C → D)(a) < p}, T ,R), where a is a fresh individual name. Likewise, the satisfiability
of C to degree p w.r.t. T and R is equivalent to the consistency of ({C(a) > p}, T ,R). One can even show
that the best satisfiability and subsumption degrees are always values occurring in the input ontology, and can
be computed using linearly many consistency tests [14]. Hence, we can restrict the following considerations
to the problem of deciding consistency of ontologies.

2.2.5. Sublogics of G-SROIQ
The letter I in G-SROIQ denotes the presence of inverse roles. If such roles are not allowed (and

hence we also cannot express (a)symmetry axioms), the resulting logic is written G-SROQ. Likewise, the
name G-SRIQ indicates the absence of nominals, and G-SROI that of at-least and at-most restrictions.
Replacing the letter R with H indicates that RBoxes are restricted to simple role inclusions (i.e. r v s > p),
ABoxes are restricted to fuzzy assertions, and local reflexivity is not allowed; however, the letter S indicates
that transitivity axioms are still allowed. Hence, in G-SHOIQ we can use role inclusions of the forms
r v s > p and rr v r > p. Disallowing axioms of the first type removes the letter H, while the absence of
transitivity axioms is denoted by replacing S with ALC.

Classical DLs are obtained from the above definitions by restricting the set of truth values to 0 and 1,
and hence removing the prefix “G-” from the name. The semantics of a classical concept C is then viewed
as a set CI ⊆ ∆I instead of the characteristic function CI : ∆I → {0, 1}, and likewise for roles. In this
setting, all axioms are restricted to be of the form α > 1, and this is abbreviated to α, e.g. C v D instead
of C v D > 1. We also use C ≡ D as short-hand for the two axioms C v D and D v C. Furthermore,
the implication constructor C → D, although usually not included in classical DLs, can be expressed via
¬C tD.

In this paper, we present two algorithms for deciding consistency in (sublogics of) G-SROIQ. Before
we describe them in all details, we illustrate the main ideas on an example, involving only a small subset of
the constructors and axioms of G-SROIQ.

3. A First Example

The main idea for our two algorithms is that, instead of explicitly defining the degrees of all concepts
and roles for all domain elements, we only represent the order between different values. For example, to
satisfy the semantics of the implication →, i.e. (C → D)I(x) = CI(x) ⇒ DI(x), it suffices to consider the
two cases

• (C → D)I(x) = 1 and CI(x) 6 DI(x); or

• (C → D)I(x) = DI(x) and CI(x) > DI(x).
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In both cases, it is irrelevant what the actual values of CI(x) and DI(x) are, as long as they satisfy a
certain order relationship. We exploit this property of the Gödel operators in the following constructions,
by using order structures and order assertions to represent the semantics of concepts. This idea has also
been previously used for other reasoning problems based on the Gödel semantics [24].

Before we describe the algorithms in detail, in this section we consider the consistency problem for the
small example ontology O := (A, T , ∅), where3

A := {(∃r.A)(a) > pA, (∃r.B)(a) > pB , (61 r.C)(a) > pC},
T := {A v C > 1, B v C > 1},

and pA, pB , pC are arbitrary values, to illustrate the main ideas behind our methods. The formal details of
these approaches will be presented in Sections 4–6. For the nonce, our goal is to make the intuitions behind
these procedures clear to the reader.

3.1. Reduction to Classical DLs
Our first algorithm is based on a reduction of the fuzzy ontology O to a classical ontology red(O). We

use special concept names to express order assertions over a specific order structure U . This order structure
contains all values occurring in O, all relevant subconcepts and roles, e.g. ∃r.A1 and r, relevant assertions
over known individuals, such as (61 r.C)(a), and special role assertions of the form r(∗, a), as explained
below. For example, the concept C > (∃r.A)(a) expresses that the value of C at the current domain element
should exceed the value of ∃r.A at a. We call them order concepts, and, to improve readability, always
denote them with a surrounding box. This approach can be seen as an extension of previous algorithms for
reasoning in fuzzy DLs based on reductions to classical DLs [12, 13, 21], which use cut-concepts of the form
A > p , but are applicable only when the fuzzy semantics is based on finitely many values.

To achieve the correct behavior, our reduction explicitly specifies the semantics of the order structure
and the concept constructors. For example, we use the classical axioms > v α 6 β t β 6 α , for all α, β ∈ U ,
to express that 6 should be a total relation. The assertions in our ABox A are translated into classical
assertions, e.g. (∃r.A)(a) > pA (a). To ensure that (∃r.A)(a) actually represents the value of the existential
restriction ∃r.A at the individual a, we use the additional assertion (∃r.A)(a) = (∃r.A) (a). The GCIs from
our example ontology have the straightforward translations

> v A⇒ C > 1 and > v B ⇒ C > 1 ,

which require that they are satisfied in every element of the domain.
In the reduction, domain elements are connected via only one special role, denoted by r. This role is

used to transfer information between domain elements. The goal is that, except for the named individuals,
the role r generates a forest-shaped structure in the classical interpretation; hence this approach is restricted
to logics having the forest-model property, i.e. SRIQ, SROQ, and SROI [16].

Information about the named individuals is transferred to all r-connected domain elements using GCIs
like (∃r.A)(a) > (∃r.B)(a) v ∀r. (∃r.A)(a) > (∃r.B)(a) and pA > (∃r.B)(a) v ∀r. pA > (∃r.B)(a) , i.e. whenever
a domain element x “knows” something about the behavior of a, then all r-successors of x share that
knowledge. This is not strictly necessary for the current example, but in general it is needed to ensure the
correct treatment of nominals: if an arbitrary domain element refers back to a named individual, e.g. via
B v ∃r.({a} u A), then we need to specify the relative order of A(a) and B. This behavior can only be
modeled consistently if all (connected) domain elements share all relevant (order) information about the
named elements, in particular in relation to fixed values like pA.

Special elements of U of the form 〈C〉↑ are used to refer to the value of a concept C at the parent node
in the tree. These elements are restricted by axioms like (∃r.B) 6 C v ∀r.

(
AN → 〈∃r.B〉↑ 6 〈C〉↑

)
, which

express that order relations between concepts of the parent are known by all child nodes, i.e. r-successors. The

3Recall that 61 r.C is an abbreviation for ¬>2 r.C.
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special concept name AN is used to distinguish anonymous domain elements from those that are designated
by an individual name (and are hence not part of the forest).

In our example, to generate a witness for the existential restriction ∃r.A at a, we introduce the axiom

> v ∃r.
(
AN u 〈∃r.A〉↑ 6 min{r,A}

)
t
(
∃r.{a} u (∃r.A) 6 min{r(∗, a), A(a)}

)
. (1)

That is, either a has an anonymous (AN) r-successor at which the value of ∃r.A at the parent node (〈∃r.A〉↑),
in this case a, is bounded by the minimum between the r-connection to the parent node (r) and the value
of A at the current node (A); or there is an r-successor that satisfies {a}, i.e. a itself, and the value of ∃r.A
at a is bounded by the minimum between the value of the role connection from the current node (represented
by ∗) to a and the value of A at a (A(a)). In general, the second part has to consider all named domain
elements as possible successors; in our example we have only a.

On the other hand, all r-successors of a have to be restricted to not exceed the value of ∃r.A (cf.
Remark 2.3) using the similar axioms

> v ∀r.
(
AN→ 〈∃r.A〉↑ > min{r,A}

)
and ∃r.{a} v (∃r.A) > min{r(∗, a), A(a)} . (2)

Analogous axioms are introduced to express the semantics of ∃r.B.
For the number restriction 61 r.C = ¬>2 r.C, we first create witnesses as for the existential restrictions

above:4

> v >2 r.
(
AN u 〈>2 r.C〉↑ 6 min{r, C}

)
t
(
>1 r.

(
AN u 〈>2 r.C〉↑ 6 min{r, C}

)
u (>2 r.C) 6 min{r(∗, a), C(a)}

)
That is, either there exist two anonymous witnesses for the value of >2 r.C, or one anonymous witness and
a serves as another witness. In general, the reduction needs to consider all possible (exponentially many)
combinations of named and unnamed domain elements as witnesses for number restrictions; in this example
there are only 2 cases. Dually, there can be at most one r-successor that exceeds the value given by >2 r.C
at a, which is encoded in the assertion

61 r.
((

AN u 〈>2 r.C〉↑ < min{r, C}
)
t
(
¬AN u (>2 r.C)(a) < min{r(a, ∗), C}

))
(a).

All the axioms listed above are collected into a classical ontology red(O), and any classical model of
this ontology obtained by a classical reasoner can be used to construct a G-model of O. Hence, while this
reduction incurs an exponential blowup in the size of the ontology, it enables us to use existing optimized
reasoners to decide consistency of G-SROIQ ontologies.

3.2. The Tableau Algorithm
Our second algorithm explicitly creates a G-model of O by introducing new domain elements, called

nodes. It uses an order structure that is similar to the one used for the reduction described above. The
main difference is that the order structure now contains concept and role assertions of the form B(x) and
r(x, y), where x and y are nodes. In this way, we can express the semantics directly using order assertions,
e.g. (∃r.A)(x) > min{r(x, y), A(y)} for all nodes x and y. However, the latter expression is not fully
determined: that is, we do not know whether (∃r.A)(x) > r(x, y), or (∃r.A)(x) > A(y) holds. In our tableau
algorithm, we resolve this nondeterminism by considering only atomic order assertions, i.e. without using
the abbreviations min and ⇒. In order to guarantee that these sets can be used to construct a G-model
of O, we need to ensure that they remain satisfiable.

In our example, the tableau algorithm is initialized with one node a representing the individual of the
same name, and the order assertions from A, where the at-most assertion is equivalent to an upper bound
on the corresponding at-least-restriction: (>2 r.C)(a) 6 1 − pC . Afterwards, (nondeterministic) tableau
rules are applied exhaustively to create new nodes and order assertions; we only present a few selected

4The negation ¬ will be handled by the involution inv of the order structure, and hence does not have to be explicitly
represented in the reduction.
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1

C(x)

A(x)

(∃r.A)(a), r(a, x)

r(a, y)

(∃r.B)(a), B(y)

B(x)

0

C(y)

A(y)

1
4

1
2

Figure 1: Order diagram of the preorder induced by the order assertions produced in the example by the first applications of
tableau rules. The dashed boxes indicate a value assignment that satisfies O in the case that pA = 1

2
and pC = pB = 1

4
.

nondeterministic choices here. Similar to classical tableau algorithms, first we create two witnesses x and y
for the existential restrictions ∃r.A and ∃r.B, respectively, at a. For example, we need to ensure that
(∃r.A)(a) = min{r(a, x), A(x)} is satisfied. One possibility is to introduce the order assertions

(∃r.A)(a) = r(a, x) and (∃r.A)(a) 6 A(x),

expressing that the above minimum is realized by the value of the role connection from a to x. Likewise,
for y we assert that

(∃r.B)(a) 6 r(a, y) and (∃r.B)(a) = B(y).

Moreover, the supremum-based semantics of existential restrictions imposes an upper bound on all other
r-successors. Hence, we also assert that

(∃r.B)(a) > B(x) and (∃r.A)(a) > r(a, y).

In the next step, the GCIs are applied to all nodes; we ignore a here since it is not relevant for this
example. For the node x, we know already that

B(x) 6 (∃r.B)(a) 6 r(a, y) 6 (∃r.A)(a) 6 A(x),

and hence it suffices to assert in addition that A(x) 6 C(x), which then implies that also B(x) 6 C(x)
holds. For y, we introduce the order assertions

A(y) 6 C(y) and B(y) 6 C(y).

The resulting set of assertions entails the preorder depicted in Figure 1, where we ignore pA, pB , pC , and all
irrelevant elements of the order structure. Note that, although we consider as models only total preorders,
the assertions themselves need not define a single total order over all elements of the order structure.

Now we deal with the number restriction (61 r.C)(a). In the following, we ignore the required witnesses,
as they are not essential for the example. As in the classical tableau algorithm, we use a tableau rule that
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forces each r-successor of a to choose whether it wants to contribute to the number restriction or not. In the
classical setting, this means choosing whether to satisfy C or not. An r-successor satisfying C contributes
to a number restriction 61 r.C in the sense that it reduces the total number of other r-successors that can
also satisfy C (in this case to 0); in contrast, r-successors satisfying ¬C do not contribute to the number
restriction since they are irrelevant to its satisfaction. However, it is important that we know which of the
nodes contribute to the number restriction, and which do not.

With the Gödel semantics, this corresponds to checking whether ¬(61 r.C)(a) < min{r(a, x), C(x)}
holds for a node x. If this inequality holds for at least 2 nodes, then the supremum in the semantics of the
at-least restriction (>2 r.C) = ¬(61 r.C) is violated. We analyze several possibilities:

• If (>2 r.C)(a) > r(a, x) = min{r(a, x), C(x)} and (>2 r.C)(a) < min{r(a, y), C(y)}, then

r(a, y) 6 (∃r.A)(a) = r(a, x) 6 (>2 r.C)(a) < min{r(a, y), C(y)} 6 r(a, y).

In this case, the resulting set of order assertions is not satisfiable anymore.

• If (>2 r.C)(a) < r(a, x) and (>2 r.C)(a) > min{r(a, y), C(y)}, then it depends on the values pA, pB ,
and pC whether we can build a G-model. If (>2 r.C)(a) 6 1−pC < pB 6 (∃r.B)(a) 6 (>2 r.C)(a), then
this is obviously not possible. On the other hand, supposing that pA = 1

2 and pC = pB = 1
4 , we can con-

struct a G-model by assigning the value 1
4 to A(y), B(x), B(y), r(a, y), C(y) and 1

2 to r(a, x), A(x), C(x).
This means that (∃r.A)(a) evaluates to 1

2 , (∃r.B)(a) to 1
4 , and (61 r.C)(a) to 1

4 , and hence O is satisfied
(see Figure 1).

• If (>2 r.C)(a) < r(a, x) and (>2 r.C)(a) < min{r(a, y), C(y)}, then the at-least restriction is violated.
Thus, we have to apply another rule to merge the node y into x (or vice versa), which essentially
amounts to discarding the node y and replacing all occurrences of y in the order assertions by x.
Hence, almost all relevant elements of the order structure become equivalent, the only exception being
(>2 r.C)(a), which must be strictly smaller than all other elements. A possible resulting G-model
could simply assign 1 to A(x), B(x), C(x), r(a, x), which would result in (>2 r.C)(a) being evaluated
to 0. Again, all axioms of O are satisfied.

4. Weighted Automata Recognizing Complex Role Inclusions

Before we can finally describe the algorithms in detail, we first need to lift a method of dealing with
complex role inclusions from classical SROIQ to the Gödel semantics. Let O = (A, T ,Rh ∪ Ra) be a
G-SROIQ ontology. We extend the idea from [18] of using finite automata to characterize all role chains
that imply a given role w.r.t. Rh. In our setting, we need to use a certain kind of weighted automata [25],
which compute a weight for any given input word.

Definition 4.1 (WFA). A weighted finite automaton (WFA) is a tuple A = (Q,Σ, qini,wt, qfin), consisting
of a non-empty set Q of states, a non-empty input alphabet Σ, an initial state qini ∈ Q, a transition weight
function wt : Q× (Σ∪{ε})×Q→ [0, 1], and a final state qfin ∈ Q. Given an input word w ∈ Σ∗, a run of A
on w is a non-empty sequence of pairs r = (wi, qi)06i6m such that (w0, q0) = (w, qini), (wm, qm) = (ε, qfin),
and for each i, 1 6 i 6 m, it holds that wi−1 = xiwi for some xi ∈ Σ ∪ {ε}. The weight of such a run is
wt(r) := minmi=1 wt(qi−1, xi, qi). The behavior of A on w is defined as (‖A‖, w) := supr run of A on w wt(r).

We abbreviate by q x,p−−→ q′ ∈ A the fact that wt(q, x, q′) = p. Further, for a state q of A, we denote
by Aq the automaton resulting from A by making q the initial state. The following connection is a direct
consequence of the definition of the behavior of a WFA.

Proposition 4.2. Let A be a WFA, q x,p−−→ q′ ∈ A, and w ∈ Σ∗. Then we have

(‖Aq‖, xw) > min{p, (‖Aq′‖, w)}.
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In the following, we consider WFA over the input alphabet rol(O). The mirrored copy A− of the WFA A

over rol(O) is constructed by exchanging initial and final states, and replacing each transition q x,p−−→ q′ by

q′
x−,p−−−→ q, where ε− := ε.

Proposition 4.3. Let A be a WFA, A′ be a mirrored copy of A, and w ∈ rol(O)∗. Then we have

(‖A‖, w) = (‖A′‖, w−).

Following [18], we now construct, for each role r, a WFA Ar that recognizes all role chains that “imply” r
w.r.t. Rh (with associated degrees). This construction proceeds in several steps. The first automaton,
denoted A0

r, contains the initial state ir, the final state fr, and the transition ir
r,1−−→ fr, as well as the

following states and transitions for each w v r > p ∈ R:

• if w = rr, then fr
ε,p−−→ ir;

• if w = r1 . . . rn with r1 6= r 6= rn, then ir
r1,1−−→ q1

w
r2,1−−→ . . .

rn,1−−−→ qnw
ε,p−−→ fr;

• if w = rr1 . . . rn, then fr
r1,1−−→ q1

w
r2,1−−→ . . .

rn,1−−−→ qnw
ε,p−−→ fr; and

• if w = r1 . . . rnr, then ir
r1,1−−→ q1

w
r2,1−−→ . . .

rn,1−−−→ qnw
ε,p−−→ ir,

where all states qiw are distinct. Here and in the following, all transitions that are not explicitly mentioned
have weight 0.

The next WFA A1
r is the same as A0

r if there is no role inclusion of the form r− v r > p ∈ R; otherwise,
A1
r is the disjoint union of A0

r and a mirrored copy of A0
r, where ir is the only initial state, fr is the only

final state, and the following transitions are added for the copy f ′r of fr and the copy i′r of ir: ir
ε,p−−→ f ′r,

f ′r
ε,p−−→ ir, fr

ε,p−−→ i′r, and i′r
ε,p−−→ fr.

Finally, we define the WFA Ar by induction on the regular order l as follows:

• If r is minimal w.r.t. l, then Ar := A1
r.

• Otherwise, Ar is the disjoint union of A1
r with a copy A1

s
′ of A1

s for each transition q s,1−−→ q′ in A1
r

with s 6= r, and we add ε-transitions with weight 1 from q to the initial state of A1
s
′ and from the final

state of A1
s
′ to q′.5

• The automaton Ar− is a mirrored copy of Ar.

The difference to the construction in [18] is only the inclusion of the appropriate weights for each considered
role inclusion. As shown in [18], the size of each Ar is bounded exponentially in the length of the longest
chain r1 l · · ·l rn for which there are role inclusions uiri−1vi v ri > pi ∈ Rh for all i, 2 6 i 6 n.

We now present the promised characterization of the role inclusions in Rh in terms of the behavior of the
automata Ar. Intuitively, the degree to which the interpretation of w must be included in the interpretation
of r is determined by the behavior of ‖Ar‖ on w.

Lemma 4.4. A G-interpretation I satisfies Rh iff for every r ∈ rol(O), every w ∈ rol(O)+, and all d, e ∈ ∆I ,
it holds that

wI(d, e)⇒ rI(d, e) > (‖Ar‖, w).

For the final observation of this section, we define the relation vp as the “transitive closure” of the simple
role inclusions in Rh: we set r vp s iff p is the supremum of the values min{p1, . . . , pn} over all sequences
r v r1 > p1, . . . , rn−1 v s > pn in Rh. Note that r v1 r holds because of the empty sequence.

5Note that all transitions labeled with roles have weight 0 or 1, and the only roles occurring in A1
r (except r itself) are

smaller than r w.r.t. l.
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Proposition 4.5. For a simple role r and w ∈ rol(O)∗, we have

(‖Ar‖, w) =

{
p if w = s ∈ rol(O) and s vp r,
0 otherwise.

In the following algorithms, we use a new kind concepts of the form ∃Aq
r.C and ∀Aq

r.C that allow us
to ignore the complex role inclusions for checking the satisfaction of ∃r.C and ∀r.C, but instead we have
to follow the transitions of Ar. For any WFA A, the semantics of ∀A.C is defined in analogy to ordinary
value restrictions as follows (see also Lemma 4.4):

(∀A.C)I(d) := inf
w∈rol(O)∗

inf
e∈∆I

min{(‖A‖, w), wI(d, e)} ⇒ CI(e),

where εI(d, e) := 1 if d = e, and εI(d, e) := 0 otherwise. For ∃A.C, we similarly define

(∃A.C)I(d) := sup
w∈rol(O)∗

sup
e∈∆I

min{(‖A‖, w), wI(d, e), CI(e)}.

5. A Reduction to Classical SROIQ

We now describe a method for reasoning in Gödel FDLs based on transforming a given fuzzy ontology
O = (A, T ,Rh∪Ra) into a classical ontology red(O). As mentioned before, it is only applicable to G-SRIQ,
G-SROQ, and G-SROI. This reduction always uses nominals, even if they are not present in the ontologyO,
but it does not require complex role constructors or axioms. Hence, red(O) will be formulated in ALCOQ.
However, if number restrictions are not present in O, then red(O) is an ALCO ontology. The main case
distinctions we need to make in the following description are whether the following (groups of) constructors
or axioms are present in the input ontology or not:

• inverse roles,

• number restrictions,

• nominals,

• disjointness axioms or local reflexivity.

Parts of the reduction that are contingent on the presence of these constructors are labeled with (I), (Q),
(O), and (R), respectively. Additionally, we require that any roles occurring in a concept (axiom) labeled
by (R) are simple; otherwise, the whole concept (axiom) is omitted. If no inverse roles occur, then we modify
the set rol(O) to also not contain any inverse roles.

As a first pre-processing step, we eliminate role assertions r(a, b) from the ABox by replacing them with
equivalent concept assertions using nominals: (∃r.{b})(a). We denote by val(O) the smallest set containing
the following values:

• the constants 0, 0.5, and 1;

• all elements of [0, 1] appearing in O, either in axioms or as truth constants; and

• for each p ∈ val(O), its involutive negation 1− p.

The size of this set is linear in the size of O.
We further define the set sub(C) of (extended) subconcepts of a concept C, which contains at least C

and ¬C, as well as the following concepts, which are defined recursively:

sub(D) if C = ¬D or C = >n r.D,
sub(D) ∪ sub(E) if C ∈ {D u E,D → E},
sub(D) ∪ {∀Aq

r.D,¬∀Aq
r.D | q is a state of Ar} if C = ∀r.D,

sub(D) ∪ {∃Aq
r.D,¬∃Aq

r.D | q is a state of Ar} if C = ∃r.D,
∅ otherwise.
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To simplify the descriptions, we do not distinguish between ¬¬C and C. The set sub(O) of all relevant
subconcepts of O is defined as

sub(O) :=
⋃
{sub(C), sub(D) | C v D > p, C(a) ./ D(b), or C(a) ./ p occurs in O} ∪

{{a} | a ∈ ind(O)} ∪ (O)
{∃r.Self | r ∈ rol(O), r is simple} (R)

The size of sub(O) is exponential in the size of the role hierarchy (due to the use of the automata Ar in the
definition); since we eliminate complex role inclusions in the reduction, this blowup cannot be avoided in
general [26]. However, if all roles are simple, then the size of these automata is polynomial in the size of Rh.

In our reduction, we do not explicitly represent all role connections, but only a “skeleton” of connections
that are necessary to satisfy the witnessing conditions for role restrictions. The restrictions for all implied
role connections are then handled by the concepts ∀Ar.C and ∃Ar.C by simulating the transitions of Ar;
each transition corresponds to a role connection to a new domain element. We do not need to introduce
concepts of the form >nAr.C since all roles in at-least restrictions must be simple, i.e. there can be no role
chains of length > 1 that imply them (at least not with a degree that is strictly greater than 0).

A restriction of our reduction is that we consider only (quasi-)forest-shaped models of O [16]. In such
a model, the domain elements identified by individual names serve as the roots of several tree-shaped
structures. The roots themselves may be arbitrarily interconnected by roles. Due to nominals, there may
also be role connections from any domain element back to the roots. Although complex role inclusions can
imply role connections between arbitrary domain elements, the underlying tree-shaped “skeleton” is what is
important for reasoning (for details, see [16] and our correctness proof in the appendix). This dependence
on forest-shaped models is the reason why our reduction works only for G-SROI, G-SROQ, and G-SRIQ.
Notice that even classical ALCOIQ does not have the forest model property [27].

We now formally define the order structure U introduced in the example of Section 3.1:

UA := val(O) ∪ {C(a) | a ∈ ind(O), C ∈ sub(O)} ∪ {s(a, b) | a, b ∈ ind(O), r ∈ rol(O), s ∈ {r,¬r}}
U := UA ∪ sub(O) ∪ sub↑(O) ∪ {s, s(a, ∗), s(∗, a) | a ∈ ind(O), r ∈ rol(O), s ∈ {r,¬r}},

where sub↑(O) := {〈C〉↑ | C ∈ sub(O)} and the function inv is defined using negation; that is, inv(C) := ¬C,
inv(C(a)) := (¬C)(a), inv(r(a, ∗)) := (¬r)(a, ∗), etc.

Total preorders on assertions in UA are used to describe the behavior of the named root elements in the
forest-shaped model. For each domain element of I, total preorders on the elements of sub(O) describe the
degrees of all relevant concepts in a similar way. The elements of sub↑(O) are used to refer back to degrees of
concepts at the unique predecessor element in the tree-shaped parts of the interpretation. For convenience,
we also define 〈α〉↑ := α for all α ∈ UA since the elements of UA are global, i.e. their values do not depend
on the current domain element. The elements r ∈ rol(O) represent the values of the role connections from
the predecessor. The special assertions r(∗, a) and r(a, ∗) are used to describe role connections between the
current domain element (represented by ∗) and the named elements in the roots.

5.1. The Reduction
In order to describe total preorders over U in a classical ALCOQ ontology, we use special concept names

of the form α 6 β for α, β ∈ U , which we call order concepts. This differs from previous reductions for
finitely valued FDLs [11, 12, 28] in that we not only consider cut concepts like q 6 α with q ∈ val(O), but
also relationships between different concepts.6 We can express arbitrary order assertions over U through
the abbreviations α > β := β 6 α , α < β := ¬α > β , α > β := ¬α 6 β , and α = β := α 6 β u α > β . For
brevity, we further extend this notation as follows:

• α > min{β, γ} := α > β t α > γ ,

6For the rest of this paper, the expressions α 6 β always denote DL concept names.
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• α 6 min{β, γ} := α 6 β u α 6 γ ,

• α > β ⇒ γ := ( β 6 γ → α > 1 ) u ( β > γ → α > γ ),

• α 6 β ⇒ γ := β 6 γ t α 6 γ ,

and analogously define α ./ β ⇒ γ and α ./ min{β, γ} , with ./ ∈ {<,=, >}. This can be straightforwardly
extended to even more complex expressions using ⇒ and min.

In our reduction, we additionally use the special concept name AN to identify the anonymous domain
elements, i.e. those which are not of the form bI for any b ∈ ind(O). The reduction uses only one role name r.
The reduced ontology red(O) is divided into several parts, called red(U), red(A), red(AN), red(↑), red(R),
red(T ), and red(C) for all C ∈ sub(O), which we describe in the following. Before giving the full details, we
want to emphasize that red(O) is formulated in ALCOQ, whenever O is in G-SRIQ or G-SROQ, and in
ALCO if O is a G-SROI ontology. This is due to the fact that we always use nominals to distinguish the
named from the anonymous part of the forest-shaped model, and the inverse of the (unique) role r is not
needed in the reduction.

The first part of red(O) is

red(U) := {α 6 β u β 6 γ v α 6 γ | α, β, γ ∈ U} ∪
{> v α 6 β t β 6 α | α, β ∈ U} ∪
{> v 0 6 α u α 6 1 | α ∈ U} ∪
{> v α / β | α, β ∈ val(O), α / β, / ∈ {<,6}} ∪
{α 6 β v inv(β) 6 inv(α) | α, β ∈ U}.

In this order, these axioms ensure that the relation formalized by “6” is transitive on all elements of U , it is
total on U , it has 0 and 1 as least and greatest elements, respectively, it reflects the natural order on val(O),
and inv is antitone w.r.t. 6. In short, 6 represents an element of order(U).

To describe the behavior of all named elements, we use the following axioms:

red(A) := {α ./ β (c) | α ./ β ∈ A} ∪
{a ≈ b ∈ A} ∪ {a 6≈ b ∈ A} ∪
{r(a, b) | a, b ∈ ind(O)} ∪
{α / β v ∀r. α / β | α, β ∈ UA, / ∈ {<,6}} ∪
{C(a) = C (a) | a ∈ ind(O), C ∈ sub(O)} ∪
{ r(a, b) = r(a, ∗) (b) | a, b ∈ ind(O), r ∈ rol(O)} ∪
{ r(a, b) = r(∗, b) (a) | a, b ∈ ind(O), r ∈ rol(O)} ∪
{> v r(a, a) = (∃r.Self)(a) | a ∈ ind(O), r ∈ rol(O)} ∪ (R)

{> v r(a, b) = r−(b, a) | a, b ∈ ind(O) ∪ {∗}, r ∈ rol(O)}, (I)

where c is an arbitrary individual name. The first four lines are responsible for enforcing that the ABox
is satisfied and that information about the behavior of the named individuals is available throughout the
whole model. The remaining axioms describe various equivalences for named individuals, e.g. that r(a, b)
and r(∗, b) should have the same value when evaluated at a.

Example 5.1. The fuzzy assertion (∃r.A)(a) > pA of Section 3 is encoded by first asserting that it holds
at the individual designated by c (see the first line of red(A)):

(∃r.A)(a) > pA (c).

Since all individual names are connected by r (third line), this statement is transferred to a by the axioms
in the fourth line; note that both (∃r.A)(a) and pA are elements of UA. Hence, red(A) enforces that
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(∃r.A)(a) > pA (a) holds as well. Since we have (∃r.A)(a) = ∃r.A (a) by the fifth line, together with red(U) we
arrive at ∃r.A > pA (a), which intuitively corresponds directly to the original assertion.

The axioms of red(A) ensure that this information about the order relationship between ∃r.A and pA at a
is also available to all other domain elements connected via r. This is important if these domain elements
refer back to a via the nominal {a}.

The next axiom defines the concept AN of all anonymous elements:

red(AN) :=
{

AN ≡ ¬
⊔

a∈ind(O)

{a}
}
.

In other words, AN denotes the complement of the set of all named individuals.
Next, we need to ensure that the order of a node in a tree-shaped part of the model is known at each of

its successors via the elements of sub↑(O). This is guaranteed through the axioms

red(↑) := {α / β v ∀r.
(
AN→ 〈α〉↑ / 〈β〉↑

)
| α, β ∈ UA ∪ sub(O), / ∈ {<,6}}.

We now come to the reduction of the RBox:

red(R) :=
⋃

rvs>p∈Rh
r,s simple

red(r v s > p) ∪
⋃

dis(r,s)>p∈Ra

red(dis(r, s) > p),

where

red(r v s > p) := {> v r(a, b)⇒ s(a, b) > p | a, b ∈ ind(O) ∪ {∗}} ∪
{> v r ⇒ s > p ,

> v r− ⇒ s− > p , (I)
> v ∃r.Self ⇒ ∃s.Self > p } (R)

red(dis(r, s) > p) := {> v min{r(a, b), s(a, b)} 6 1− p | a, b ∈ ind(O) ∪ {∗}} ∪
{> v min{r, s} 6 1− p ,

> v min{r−, s−} 6 1− p , (I)

> v min{∃r.Self,∃s.Self} 6 1− p } (R)

These axioms ensure that the various elements of U that represent the values of role connections, such as
r(a, b), ∃r.Self, and r, respect the axioms in R. Although the simple role inclusions r v s > p are already
expressed in the automata Ar, we include them also in red(R). The reason for this is that the reduction of
at-least restrictions below does not use these automata since only simple roles can occur in them.

The GCIs in T are translated in a straightforward manner, ensuring that all domain elements satisfy the
necessary order relation between the concepts:

red(T ) := {> v C ⇒ D > p | C v D > p ∈ T }

We now describe the reductions of the concepts. Intuitively, the axioms in red(C) describe the semantics
of C in terms of its order relationships to other elements of U . Note that the semantics of the involutive
negation ¬C = inv(C) is already handled by the operator inv (see the definition of red(U) above):

red({a}) := {{a} v 1 6 {a} , ¬{a} v {a} 6 0 } (O)

red(p) := {> v p = p }
red(∃r.Self) := {> v ∃r.Self = ∃r−.Self } (I,R)

red(¬C) := ∅
red(C uD) := {> v C uD = min{C,D} }
red(C → D) := {> v C → D = C ⇒ D }
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The constructions needed for handling role restrictions are more involved. In particular, in the case of value
and existential restrictions we have to deal with non-simple roles, for which we employ the automata Ar

from Section 4.

red(∃r.C) := {> v (∃r.C) > (∃Ar.C) ,

AN v ∃r.
(
AN u 〈∃r.C〉↑ 6 min{r, C}

)
t

(∃r.C) 6 min{r−, 〈C〉↑} t (I)

(∃r.C) 6 min{∃r.Self, C} t (R)⊔
a∈ind(O)

(
∃r.{a} u (∃r.C) 6 min{r(∗, a), C(a)}

)
} ∪ (O)

{∃r.
((

AN u 〈∃r.C〉↑ 6 min{r, C}
)
t
(
¬AN u (∃r.C)(a) 6 min{r(a, ∗), C}

))
(a) | a ∈ ind(O)}

The second axiom of red(∃r.C) ensures the existence of a witness for ∃r.C at each anonymous domain
element. This roughly corresponds to axiom (1) from Section 3, where we did not need the parts indicated
by (I) and (O); a slight difference is that we used this axiom for the named domain element a, and hence
the precondition AN was missing.

Example 5.2. Assume for instance that the preorder represented by the order concepts at some anonymous
domain element d satisfies 0 < ∃r.C < 0.5. The first possibility is that there is an anonymous element e
that is connected to d via r, and hence by red(↑) we know that e satisfies 0 < 〈∃r.C〉↑ < 0.5. The axiom
further requires that 〈∃r.C〉↑ 6 min{r, C}, which implies that 0 < 〈∃r.C〉↑ 6 C and 0 < 〈∃r.C〉↑ 6 r. We
will see below that the reduction of ∃Ar.C further ensures that 〈∃r.C〉↑ > min{r, C}, and thus we obtain
〈∃r.C〉↑ = min{r, C}. Hence, e can be seen as an abstract representation of the witness of ∃r.C at d; the
precise values of C at e and of the r-connection between d and e (represented by the element r) is irrelevant,
as long as their minimum is equal to the value of ∃r.C at d.

The other disjuncts of this axiom deal with the possibilities that (i) d itself, (ii) its predecessor, or (iii) a
named domain element acts as the witness for the existential restriction in a similar way. The assertions
in the last line of red(∃r.C) deal with the case of a named domain element, in which case the options (i)
and (ii) are already covered by (iii).

Together with the first axiom of red(∃r.C), the following axioms ensure that no other r-successor of d
violates the upper bound on min{r, C} given by ∃r.C at d:

red(∃Aq.C) := {> v (∃Aq.C) > C | q is final} ∪
⋃

q
x,p−−→q′∈A

redx,p,q′(∃Aq.C)

redε,p,q′(∃Aq.C) := {> v (∃Aq.C) > min{p,∃Aq′ .C} }

reds,p,q′(∃Aq.C) := {> v ∀r.
(
AN→ 〈∃Aq.C〉↑ > min{p, s,∃Aq′ .C}

)
,

AN v (∃Aq.C) > min{p, s−, 〈∃Aq′ .C〉↑} , (I)

> v (∃Aq.C) > min{p,∃s.Self,∃Aq′ .C} } ∪ (R)

{∃r.{a} v (∃Aq.C) > min{p, s(∗, a), (∃Aq′ .C)(a)} ,

∃r.{a} v (∃Aq.C)(a) > min{p, s−(∗, a),∃Aq′ .C} | a ∈ ind(O)} (I,O)

Example 5.3. The connection between this construction and the axioms (2) in Section 3 is less obvious,
because there we did not consider automata to simulate role inclusions. Since the example ontology has no
role inclusions, the automaton Ar only contains the initial state ir, the final state fr, and the transition
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ir
r,1−−→ fr. Hence, we have Ar = Air

r , and we obtain

red(∃Air
r .A) = redr,1,fr (∃Air

r .A)

= {> v ∀r.
(
AN→ 〈∃Air

r .A〉↑ > min{1, r,∃Afr
r .A}

)
,

∃r.{a} v (∃Air
r .A) > min{1, r(∗, a), (∃Afr

r .A)(a) },

red(∃Afr
r .A) = {> v (∃Afr

r .A) > A }, and

red(∃r.A) ⊇ {> v (∃r.A) > (∃Air
r .A) }.

Now red(U), red(A), and red(↑) tell us that in the first two axioms we can essentially replace 〈∃Air
r .A〉↑

by 〈∃r.A〉↑, ∃Afr
r .A by A, ∃Air

r .A by ∃r.A, and (∃Afr
r .A)(a) by A(a), which yields the two axioms of (2).

Again, the other axioms in redr,1,fr (∃Air
r .A) deal with the other possible kinds of successors (inverse and

self), which were not relevant for Section 3.

To illustrate the treatment of complex role inclusions, not shown in the previous example, we return to
Example 5.2.

Example 5.4. Recall Example 5.2. If rI(d, e1) = 0.6 and rI(e1, e2) = 0.5 for two other (anonymous)
domain elements e1, e2, and we further have the role inclusion rr v r > 0.7, then we know that rI(d, e2)
is at least 0.5. Although this r-connection is not explicitly represented in the forest structure, concepts
of the form ∃Aq

r.C are appropriately transferred from d via e1 to e2 in order to ensure that the value
of C at e2 satisfies 0.5 > (∃r.C)I(d) > min{rI(d, e2), CI(e2)}. In this example, since we know only that
rI(d, e2) > 0.5, it must be the case that CI(e2) 6 (∃r.C)I(d) < 0.5.

The reduction for value restrictions is dual to the one for existential restrictions; intuitively, it is obtained
from red(∃r.C) by exchanging > with 6 and min with ⇒:

red(∀r.C) := {> v (∀r.C) 6 (∀Ar.C) ,

AN v ∃r.
(
AN u 〈∀r.C〉↑ > r ⇒ C

)
t

(∀r.C) > r− ⇒ 〈C〉↑ t (I)

(∀r.C) > (∃r.Self)⇒ C t (R)⊔
a∈ind(O)

(
∃r.{a} u (∀r.C) > r(∗, a)⇒ C(a)

)
} ∪ (O)

{∃r.
((

AN u 〈∀r.C〉↑ > r ⇒ C
)
t
(
¬AN u (∀r.C)(a) > r(a, ∗)⇒ C

))
(a) | a ∈ ind(O)},

where

red(∀Aq.C) := {> v (∀Aq.C) 6 C | q is final} ∪
⋃

q
x,p−−→q′∈A

redx,p,q′(∀Aq.C)

redε,p,q′(∀Aq.C) := {> v (∀Aq.C) 6 p⇒ (∀Aq′ .C) }

reds,p,q′(∀Aq.C) := {> v ∀r.
(
AN→ 〈∀Aq.C〉↑ 6 min{p, s} ⇒ (∀Aq′ .C)

)
,

AN v (∀Aq.C) 6 min{p, s−} ⇒ 〈∀Aq′ .C〉↑ , (I)

> v (∀Aq.C) 6 min{p,∃s.Self} ⇒ (∀Aq′ .C) } ∪ (R)

{∃r.{a} v (∀Aq.C) 6 min{p, s(∗, a)} ⇒ (∀Aq′ .C)(a) ,

∃r.{a} v (∀Aq.C)(a) 6 min{p, s−(∗, a)} ⇒ (∀Aq′ .C) | a ∈ ind(O)}. (I,O)
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We now define final component of red(O) for handling number restrictions, namely red(>n r.C), as{
AN v

1⊔
zi=0

1⊔
zs=0

n−zi−zs⊔
m=0

⊔
S⊆ind(O)

|S|=n−m−zi−zs

l
redzi,zs,m,S,6(>n r.C),

AN v ¬
1⊔

zi=0

1⊔
zs=0

n−zi−zs⊔
m=0

⊔
S⊆ind(O)

|S|=n−m−zi−zs

l
redzi,zs,m,S,<(>n r.C)

}
∪

{
>n r.

((
AN u 〈>n r.C〉↑ 6 min{r, C}

)
t
(
¬AN u (>n r.C)(a) 6 min{r(a, ∗), C}

))
(a),

¬>n r.
((

AN u 〈>n r.C〉↑ < min{r, C}
)
t
(
¬AN u (>n r.C)(a) < min{r(a, ∗), C}

))
(a) | a ∈ ind(O)

}
,

where

redzi,zs,m,S,C(>n r.C) := {>m r.
(
AN u 〈>n r.C〉↑ C min{r, C}

)
} ∪

{AN u (>n r.C) C min{r−, 〈C〉↑} | zi = 1} ∪ (I)

{ (>n r.C) C min{∃r.Self, C} | zs = 1} ∪ (R)

{∃r.({a} u ¬{b}) | a, b ∈ S, a 6= b} ∪ (O)

{ (>n r.C) C min{r(∗, a), C(a)} | a ∈ S} (O)

If we do not have inverse roles, local reflexivity, or nominals in the source language, then we fix the numbers
zi, zs, or m, respectively, to 0, 0, or n − zi − zs, which effectively eliminates the conjuncts using these
constructors from the above axioms.

The reduction of at-least restrictions works similarly to the one of existential restrictions: the first axiom
ensures the existence of the n required witnesses, while the second one ensures that no n different elements
can exceed the value of the at-least restriction. Unfortunately, the number of named successors cannot be
counted using a classical at-least restriction in our encoding, since these named successors do not know about
the degree of the role connection from an anonymous element; otherwise they would have to store a possibly
infinite amount of information since they may have infinitely many anonymous role predecessors. For this
reason, the above axioms first guess how many (m−n) and which (S) named elements are connected to the
current domain element to the appropriate degrees (given by r(∗, a)). For named elements, however, this
additional guess is not necessary.

Finally, we define

red(O) := red(U) ∪ red(A) ∪ red(AN) ∪ red(↑) ∪ red(R) ∪ red(T ) ∪
⋃

C∈sub(O)

red(C).

5.2. Correctness and Complexity
The reduction is correct in the sense that the resulting ontology red(O) has a classical model iff O has

a G-model. As mentioned before, this holds only for the sublogics G-SRIQ, G-SROQ, and G-SROI that
have the forest model property [16]. However, the correctness is not affected by the presence or absence of
local reflexivity statements.

Lemma 5.5. In G-SRIQ, G-SROQ, or G-SROI, O has a G-model iff red(O) has a classical model.

Proof sketch. If the ALCOQ ontology red(O) is consistent, then it also has a quasi-forest model [16], whose
structure we exploit in our reduction. At each domain element, the satisfaction of the order concepts α 6 β
uniquely defines a total preorder over the relevant concepts and assertions. Due to red(A), the preorder
over UA is shared by all domain elements. To obtain a G-interpretation, we can thus define an instantiation
of all relevant values, starting with UA, and continuing by induction on the tree structure. Whenever a
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domain element d refers back to a named individual, the already fixed values are taken into account to find
appropriate instantiations for the concepts and roles at d. The density of the rational numbers in [0, 1]
ensures that we can find enough values for all domain elements. The so defined G-interpretation is a model
of O due to the axioms in red(O).

Conversely, from a G-model of O we construct a forest-shaped classical model of red(O) by the well-
known unraveling technique. Again, this is only possible because of the quasi-forest model property of
SRIQ, SROQ, and SROI, which, as we show, is inherited by their Gödel extensions. The interpretation
of the order concepts is derived from the actual values in the G-model I, i.e. a domain element d satisfies
α 6 β iff αI(d) 6 βI(d). The interpretation of the elements of U is straightforward; for example, (r(a, b))I(d)
is the value rI(aI , bI), and rI(d) := rI(e, d), where e is the parent of d in the tree. The witnessed Gödel
semantics of O then implies the satisfaction of all axioms in red(O).

We now analyze the complexity of the reduction. As in [18], the construction of the automata Ar causes
an exponential blowup in the size of R, which cannot be avoided [26]. Independently of this, our reduction
also involves an exponential blowup in the (binary encoding of) the largest number n involved in a number
restriction in O, and in the number of individual names occurring in O, since the number of disjuncts in
each GCI from red(>n r.C) is linear in n ·2|ind(O)|. However, we can avoid both if either nominals or number
restrictions are disallowed. Hence, we obtain the following complexity results.

Theorem 5.6. Deciding consistency is

• 2-ExpTime-complete in G-SRIQ, G-SROI, and G-SROQ, and

• ExpTime-complete in all FDLs between G-ALC and G-SHOI or G-SHIQ.

Proof. The consistency of the ALCOQ ontology red(O) is decidable in exponential time in the size of
red(O) [16]. The first upper bound thus follows from the fact that the size of red(O) is exponential in the
size of O. 2-ExpTime-hardness, even without involutive negation and assertions restricted to the form
α > p, follows from classical results [26] since in this case reasoning in sublogics of G-SROIQ is equivalent
to reasoning in the underlying classical DLs [7].

Without complex role inclusions, i.e. restricting to simple role inclusions and transitivity axioms, the
size of the automata Ar is polynomial in the size of R [18]. The other exponential blowup can be avoided
by disallowing nominals or number restrictions. Hence, for G-SHOI and G-SHIQ, the size of red(O) is
polynomial in the size of O, and the lower bound follows again from the reduction in [7] and ExpTime-
hardness of consistency in classical ALC [29].

These results hold regardless of whether the numbers in number restrictions are encoded in unary or
in binary. We leave open the complexity of consistency in G-SHOQ, which is ExpTime-complete in the
classical case [16, 29].

6. A Tableau Algorithm

In this section, we extend the classical tableau construction from [23, 30] with the ideas developed
in [10, 15] to produce a tableau-based reasoning algorithm capable of handling full G-SROIQ. Although
this algorithm does not allow us to derive tight complexity bounds, it constructs a G-model in a goal-oriented
way and exhibits the same pay-as-you-go behavior as the classical tableau algorithm [23]. When the ontology
is well-behaved, the tableau algorithm can avoid the exponential blowup arising from the combination of
nominals and number restrictions.

Again, we consider O = (A, T ,R) to be an arbitrary, but fixed, G-SROIQ ontology. We assume without
loss of generality that the ABox A contains no individual (in)equality assertions. In fact, a ≈ b is equivalent
to the assertion {b}(a) > 1, and a 6≈ b to {b}(a) 6 0.7 As in Section 5, we also do not consider role assertions
explicitly.

7We did not use these replacements in Section 5, because a ≈ b and a 6≈ b can be expressed directly in classical SROIQ.
In contrast, for the tableau algorithm we would need to introduce additional rules, making the approach less readable.
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We again use the set sub(O) defined in Section 5. However, we modify the definition of sub(C) for at-least
restrictions as follows (this is needed for the rule (NN) in Table 6 below):

sub(>n r.D) := sub(D) ∪ {>mr.D,¬>mr.D | 1 6 m 6 n}.

Due to this construction, the size of sub(O) is now also exponential in the largest number appearing in
number restrictions in O (assuming that such numbers are given in binary encoding). We also need to use
the larger order structure

U(∆) := val(O) ∪
{
C(x) | C ∈ sub(O), x ∈ ∆

}
∪
{
r(x, y),¬r(x, y) | r ∈ rol(O), x, y ∈ ∆

}
,

where ∆ is a set of nodes, inv(C(x)) := ¬C(x), and inv(r(x, y)) := ¬r(x, y). The tableau algorithm uses sets
of order assertions over this order structure in order to characterize the behavior of a model of O.

To simplify dealing with constants, inverse roles, and local reflexivity, in the following we will treat the
expressions p(x) and p as if they were the same, and likewise for r(x, y) and r−(y, x), and (∃r.Self)(x) and
r(x, x). This is clearly justified by the semantics. In essence, this corresponds to implicitly adding the order
assertions p(x) = p, r(x, y) = r−(y, x), and (∃r.Self)(x) = r(x, x), respectively.

6.1. Tableaux
As in [23, 30], we first define the notion of a tableau, which is essentially an abstract version of a model

of O that may still be infinite, but allows us to simplify the semantics. For example, all complex role
inclusions are handled by three simple rules for the behavior of the concepts ∀A.C. The conditions are
very similar to the reduction of Section 5, but are simpler to formulate since we do not distinguish between
r-successors in a tree structure, r−-predecessors, and named r-successors. As in Section 5, we will need
more sophisticated techniques to deal with the interactions between nominals and number restrictions (see
Section 6.2). Note that in the following the term entailment is used exclusively in for sets of order assertions
(cf. Lemma 2.2).

Definition 6.1 (Tableau). A tableau for O is a pair (∆,A∗), where ∆ is a non-empty set of nodes and A∗
is a satisfiable set of order assertions over U(∆), such that the following conditions hold, for all x, y ∈ ∆,
C,D ∈ sub(O), r, s ∈ rol(O), and a ∈ ind(O):

(T1) If (C uD)(x) occurs in A∗, then A∗ entails (C uD)(x) = min{C(x), D(x)}.

(T2) If (C → D)(x) occurs in A∗, then A∗ entails (C → D)(x) = C(x)⇒ D(x).

(T3) If (¬C)(x) occurs in A∗, then C(x) also occurs in A∗.

(T4) If (∃r.C)(x) occurs in A∗, then there is a y ∈ ∆ such that A∗ entails (∃r.C)(x) 6 min{r(x, y), C(y)}.

(T5) If (∃r.C)(x) occurs in A∗, then A∗ entails (∃r.C)(x) > (∃Ar.C)(x).

(T6) If (∃Aq.C)(x) and r(x, y) occur in A∗ and q r,p−−→ q′ ∈ A, then A∗ entails

(∃Aq.C)(x) > min{p, r(x, y), (∃Aq′ .C)(y)}.

(T7) If (∃Aq.C)(x) occurs in A∗ and q ε,p−−→ q′ ∈ A, then A∗ entails (∃Aq.C)(x) > min{p, (∃Aq′ .C)(x)}.

(T8) If (∃Aq.C)(x) occurs in A∗ and q is final, then A∗ entails (∃Aq.C)(x) > C(x).

(T9) If (∀r.C)(x) occurs in A∗, then there is a y ∈ ∆ such that A∗ entails (∀r.C)(x) > r(x, y)⇒ C(y).

(T10) If (∀r.C)(x) occurs in A∗, then A∗ entails (∀r.C)(x) 6 (∀Ar.C)(x).

(T11) If (∀Aq.C)(x) and r(x, y) occur in A∗ and q r,p−−→ q′ ∈ A, then A∗ entails

(∀Aq.C)(x) 6 min{p, r(x, y)} ⇒ (∀Aq′ .C)(y).

21



(T12) If (∀Aq.C)(x) occurs in A∗ and q ε,p−−→ q′ ∈ A, then A∗ entails (∀Aq.C)(x) 6 p⇒ (∀Aq′ .C)(x).

(T13) If (∀Aq.C)(x) occurs in A∗ and q is final, then A∗ entails (∀Aq.C)(x) 6 C(x).

(T14) If (>n r.C)(x) occurs in A∗, then there are at least n elements y ∈ ∆ for which A∗ entails

(>n r.C)(x) 6 min{r(x, y), C(y)}.

(T15) If (>n r.C)(x) occurs in A∗, then there are at most n− 1 elements y ∈ ∆ for which A∗ entails

(>n r.C)(x) < min{r(x, y), C(y)}.

(T16) If (>n r.C)(x) and r(x, y) occur in A∗, then A∗ entails either

(>n r.C)(x) > min{r(x, y), C(y)} or (>n r.C)(x) < min{r(x, y), C(y)}.

(T17) If {a}(x) occurs in A∗, then A∗ entails either {a}(x) > 1 or {a}(x) 6 0.

(T18) There is exactly one xa ∈ ∆ such that A∗ entails {a}(xa) > 1.

(T19) If C(a) ./ D(b) ∈ A (resp. C(a) ./ p ∈ A), then A∗ entails C(xa) ./ D(xb) (resp. C(xa) ./ p).

(T20) If C v D > p ∈ T , then A∗ entails C(x)⇒ D(x) > p.

(T21) If r v s > p ∈ R, then A∗ entails r(x, y)⇒ s(x, y) > p.

(T22) If dis(r, s) > p ∈ R, then A∗ entails min{r(x, y), s(x, y)} 6 1− p.
The main differences to the classical tableau conditions for classical SROIQ from [23, 30], in addition

to the use of order assertions, are the following:

• The semantics of the involutive negation is handled by the conditions that define the order struc-
ture U(∆). Hence, we do not need a dedicated condition for it beyond adding the relevant subconcept
to the tableau (see (T3)). This addition is necessary in order to be able to decompose this subconcept
further.

• We do not internalize any axioms of the ontology. For this reason, we need to include the dedicated
conditions (T19)–(T22).

• Although we do not explicitly consider at-most restrictions here, the corresponding conditions from [23,
30] are mirrored in (T15) and (T16). The reason for this is that fuzzy at-least restrictions exhibit a
behavior similar to that of at-most restrictions, as explained in Remark 2.3.

As shown in the next lemma, it suffices to construct a countable tableau to verify that the ontology O is
consistent. The requirement on the cardinality of the tableau is the main difference to the corresponding re-
sult in [23]. This restriction is necessary to ensure that there exist enough rational values in the interval [0, 1]
to instantiate all relevant concepts and roles.

Lemma 6.2. If O is consistent, then it has a tableau, and if it has a countable tableau, then O is consistent.

Proof sketch. Given any G-model I of O, we obtain a tableau (∆I ,A∗) by collecting all order assertions
u ./ v for which uI ./ vI holds. For this, we consider pI := p, C(d)I := CI(d), r(d, e)I := rI(d, e), and
(¬r(d, e))I := 1−rI(d, e). By construction, A∗ is satisfiable, and it is easy to verify that the conditions (T1)–
(T22) hold. For example, if (∀Aq.C)(d) occurs in A∗ and q is final, then we have (‖Aq‖, ε) = 1, and thus

(∀Aq.C)I(d) = inf
w∈rol(O)∗

inf
e∈∆I

wI(d, e)⇒ CI(e) 6 εI(d, d)⇒ CI(d) = CI(d).

By our construction, this means that (∀Aq.C)(d) 6 C(d) is contained in A∗, and thus (T13) is satisfied.
Conversely, from any countable tableau we obtain a G-interpretation by taking all nodes as domain

elements and instantiating the values for all concepts and roles according to the order assertions. Such an
instantiation must exist since the set of order assertions is satisfiable and we only need to find countably
many rational numbers from [0, 1]. The tableau conditions ensure that this G-interpretation satisfies O.
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6.2. Tableau Rules
The construction of a possibly infinite tableau for O is hardly a decision procedure for consistency, as

it might not terminate in finite time. To achieve termination, we need to appropriately lift the notion of
blocking [23, 30] to sets of order assertions, in a way that guarantees that at a finite structure is generated.
We also need to take a more fine-grained view at the structure of a tableau. First, we designate a subset
∆o ⊆ ∆ that contains all nominal nodes. Furthermore, in the tableau algorithm we need to introduce new
individual names that do not occur in ind(O), and we assume that the corresponding nominals are contained
in sub(O). Instead of allowing to connect arbitrary pairs of individuals with roles, we will maintain a binary
neighbor relation N on ∆, which represents a tree-shaped substructure of a model of O. For a node x, we
define its neighborhood N (x) as the projection to one component of the reflexive, symmetric closure of N ;
that is

N (x) := {x} ∪
{
y | (x, y) ∈ N or (y, x) ∈ N

}
.

It is important to note the difference between (x, y) ∈ N and y ∈ N (x). If (x, y) ∈ N , then y is called a
successor of x, and x is a predecessor of y. Ancestor is the transitive closure of predecessor, and descendant
the transitive closure of successor. Finally, instead of a global set A∗, we will maintain for each node x ∈ ∆
a local set of order assertions L(x) over the localized order structure

U(x) := Uo ∪
{
C(y) | C ∈ sub(O), y ∈ N (x)

}
∪
{
r(x, y),¬r(x, y) | r ∈ rol(O), y ∈ N (x)

}
, where

Uo := val(O) ∪
{
C(a) | C ∈ sub(O), a ∈ ∆o

}
∪
{
r(a, b),¬r(a, b) | r ∈ rol(O), a, b ∈ ∆o

}
,

and inv is defined as for U(∆). It is easy to see that U(x) is always a subset of U(∆). However, apart from
information about nominal nodes, order assertions over U(x) can only talk about the concepts at neighbors
of x and role connections between x and its neighbors. The goal is to keep inferences local to the nodes,
and share information between two neighbors only when it is relevant for both of them.

In addition, the algorithm maintains a global set Lo that contains all order assertions over the designated
elements in Uo. These assertions represent the knowledge about the named individuals, which is shared by
all nodes and implicitly present in all sets L(x), for x ∈ ∆. More precisely, whenever we say that some
expression φ occurs in L(x), it should be read as “φ occurs in Lo ∪ L(x)”, and similarly for the entailment
of order assertions by L(x). Moreover, the process of adding an order assertion α ./ β over U(x) to L(x)
distinguishes between two kinds of assertions: if α and β both belong to Uo, then this assertion is added to
the shared set Lo; otherwise, it is directly added to L(x). These conventions ensure that the set Lo is not
replicated in the label of every node.

We can now define the data structure that is used by the tableau algorithm.

Definition 6.3. A completion graph for O is a tuple G = (∆,∆o,N ,L,Lo, 6=· ), where ∆ is a finite set of
nodes, ∆o ⊆ ∆ contains the nominal nodes, N is a binary neighbor relation on ∆, L is a labeling function
that assigns each node x ∈ ∆ a set L(x) of oder assertions over U(x), Lo is a shared set of order assertions
over Uo, and 6=· is a binary relation on ∆.

The relation 6=· indicates the nodes from ∆ that must be kept different. If x 6=· y does not hold, then the
two nodes x and y can be merged into a single node if it is needed, e.g. in order to satisfy some number
restrictions. We denote by .

= the complement of 6=· . Notice that x .
= y does not mean that x and y will

necessarily be merged, but only that it is possible to do so.

Nominal nodes and blockable nodes. The set ∆o is not fixed a priori, but rather defined as the set of all
x ∈ ∆ such that L(x) entails {a}(x) > 1 for some a ∈ NI. Recall that we may need to introduce more such
individual names in the construction of the completion graph, and hence the set ∆o changes dynamically. All
nodes in ∆\∆o are called blockable nodes. The idea is that nominal nodes may be arbitrarily interconnected,
but blockable nodes always form a tree structure among themselves (represented by N ). Each nominal node
may be the root of such a tree, and additionally all blockable nodes may have N -successors that are nominal
nodes.
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Table 2: The tableau rules for the propositional constructors

(u) If (C uD)(x) occurs in L(x),
then ensure that L(x) entails (C uD)(x) = min{C(x), D(x)}.

(→) If (C → D)(x) occurs in L(x),
then ensure that L(x) entails (C → D)(x) = C(x)⇒ D(x).

(¬) If (¬C)(x) occurs in L(x), but C(x) does not occur in L(x),
then add C(x) 6 C(x) to L(x).

(cho) If {a}(x) occurs in L(x),
then do the following:

• if L(x) entails {a}(x) > 0, then ensure that L(x) entails {a}(x) > 1,

• if L(x) entails {a}(x) < 1, then ensure that L(x) entails {a}(x) 6 0,

• otherwise, ensure that L(x) entails either {a}(x) > 1 or {a}(x) 6 0.

(o) If for some a ∈ NI there are two nodes x, y such that L(x) entails {a}(x) > 1, L(y) entails
{a}(y) > 1, and x .

= y,
then merge x into y.

Table 3: The tableau rules for axioms, and transfer of order assertions between neighbors

(vT ) If C v D > p ∈ T ,
then ensure that L(x) entails C(x)⇒ D(x) > p.

(vR) If r v s > p ∈ R and y ∈ N (x),
then ensure that L(x) entails r(x, y)⇒ s(x, y) > p.

(dis) If dis(r, s) > p ∈ R and y ∈ N (x),
then ensure that L(x) entails min{r(x, y), s(x, y)} 6 1− p.

( ) If 1.L(x) entails α / β, where / ∈ {<,6}, and
2. there is a y ∈ ∆ such that {α, β} ⊆ U(y),

then ensure that L(y) entails α / β.

Rule applications and clashes. The initial completion graph for O is G0 := (∆0,∆o,0,N0,L0,Lo,0, 6=· 0), where
∆o,0 := ∆0 := ind(O), N0 := 6=· 0 := ∅, L0(a) := ∅ for all a ∈ ind(O), and Lo,0 consists of all assertions
from A, together with the assertions {a}(a) > 1, for all a ∈ ind(O).

Example 6.4. For the example ontology from Section 3, the initial completion graph contains the single
node a, and Lo,0 contains the order assertions

(∃r.A)(a) > pA, (∃r.B)(a) > pB , (61 r.C)(a) > pC , {a}(a) > 1,

expressing exactly the restrictions of A. These assertions are implicitly available to each node that will be
created during the course of the tableau algorithm. From this set it already follows that (>2 r.C)(a) 6 1−pC ,
due to the definition of order(Uo), the fact that 61 r.C = ¬>2 r.C, and Lemma 2.2.

Starting from G0, the tableau algorithm nondeterministically applies the rules listed in Tables 2–6,
which modify the completion graph according to the semantics of concepts and axioms. For the following
exposition, let G = (∆,∆o,N ,L,Lo, 6=· ) be an arbitrary completion graph produced in this way from G0.

The names of the tableau rules were chosen as close as possible to the notation in [23, 30]. However,
there are some notable differences in their behavior, as well as new rules. For instance, since labels of
nodes may refer to neighboring nodes, we need the dedicated rule ( ) to ensure that labels of neighbors
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Table 4: The tableau rules for existential and value restrictions, which are dual to each other.

(∃) If 1. (∃r.C)(x) occurs in L(x), x is not blocked, and

2. there is no safe neighbor y ∈ N (x) such that L(x) entails (∃r.C)(x) 6 min{r(x, y), C(y)},
then 1. introduce a new node y, add (x, y) to N , and

2. ensure that L(x) entails (∃r.C)(x) 6 min{r(x, y), C(y)}.

(∃1) If (∃r.C)(x) occurs in L(x),
then ensure that L(x) entails (∃r.C)(x) > (∃Ar.C)(x).

(∃2) If (∃Aq.C)(x) and r(x, y) occur in L(x) and q r,p−−→ q′ ∈ A,
then ensure that L(x) entails (∃Aq.C)(x) > min{p, r(x, y), (∃Aq′ .C)(y)}.

(∃ε2) If (∃Aq.C)(x) occurs in L(x) and q ε,p−−→ q′ ∈ A,
then ensure that L(x) entails (∃Aq.C)(x) > min{p, (∃Aq′ .C)(x)}.

(∃3) If (∃Aq.C)(x) occurs in L(x) and q is final,
then ensure that L(x) entails (∃Aq.C)(x) > C(x).

(∀) If 1. (∀r.C)(x) occurs in L(x), x is not blocked, and

2. there is no safe neighbor y ∈ N (x) such that L(x) entails (∀r.C)(x) > r(x, y)⇒ C(y),
then 1. introduce a new node y, add (x, y) to N , and

2. ensure that L(x) entails (∀r.C)(x) > r(x, y)⇒ C(y).

(∀1) If (∀r.C)(x) occurs in L(x),
then ensure that L(x) entails (∀r.C)(x) 6 (∀Ar.C)(x).

(∀2) If (∀Aq.C)(x) and r(x, y) occur in L(x) and q r,p−−→ q′ ∈ A,
then ensure that L(x) entails (∀Aq.C)(x) 6 min{p, r(x, y)} ⇒ (∀Aq′ .C)(y).

(∀ε2) If (∀Aq.C)(x) occurs in L(x) and q ε,p−−→ q′ ∈ A,
then ensure that L(x) entails (∀Aq.C)(x) 6 p⇒ (∀Aq′ .C)(x).

(∀3) If (∀Aq.C)(x) occurs in L(x) and q is final,
then ensure that L(x) entails (∀Aq.C)(x) 6 C(x).
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Table 5: The tableau rules for number restrictions

(>) If 1. (>n r.C)(x) occurs in L(x), x is not blocked, and

2. there do not exist n safe neighbors y1, . . . , yn ∈ N (x) with yi 6=· yj , 1 6 i < j 6 n, such
that L(x) entails (>n r.C)(x) 6 min{r(x, yi), C(yi)}, 1 6 i 6 n,

then 1. introduce n new nodes y1, . . . , yn with (x, y1), . . . , (x, yn) ∈ N and yi 6=· yj , 1 6 i < j 6 n,
and

2. for each i, 1 6 i 6 n, ensure that L(x) entails (>n r.C)(x) 6 min{r(x, yi), C(yi)}.

(¬>) If there exist at least n neighbors y ∈ N (x) such that L(x) entails
(>n r.C)(x) < min{r(x, y), C(y)},

then choose two such neighbors y, z with y .
= z, and do the following:

• if y is a nominal node, then merge z into y;

• else if z is a nominal node or an ancestor of y, then merge y into z;

• else merge z into y.
(ch) If 1. (>n r.C)(x) and r(x, y) occur in L(x) and

2.L(x) entails neither (>n r.C)(x) < min{r(x, y), C(y)} nor
(>n r.C)(x) > min{r(x, y), C(y)},

then ensure that L(x) entails either (>n r.C)(x) < min{r(x, y), C(y)} or
(>n r.C)(x) > min{r(x, y), C(y)}.

Table 6: The special tableau rules for nominals

(NN) If 1. (>n r.C)(x) occurs in L(x), x is a nominal node,

2. there is a blockable node y with (y, x) ∈ N such that L(x) entails
(>n r.C)(x) < min{r(x, y), C(y)}, and

3. there do not exist ` 6 n− 1 nominal nodes z1, . . . , z` such that L(x) entails
(>(`+ 1) r.C)(x) = (>n r.C)(x) and (>(`+ 1) r.C)(x) < min{r(x, zi), C(zi)}, 1 6 i 6 `,
and zi 6=· zj , 1 6 i < j 6 `,

then 1. guess a number m between 1 and n−1, and add (>(m+ 1) r.C)(x) = (>n r.C)(x) to L(x),

2. introduce m new nodes y1, . . . , ym with (x, z1), . . . , (x, zm) ∈ N and zi 6=· zj ,
1 6 i < j 6 m,

3. introduce m new individual names a1, . . . , am, and for each i, 1 6 i 6 m, ensure that
L(x) entails (>(m+ 1) r.C)(x) < min{r(x, zi), C(zi)} and {ai}(zi) > 1.

(¬>o) If 1. (>n r.C)(x) occurs in L(x), x is a nominal node,

2. there is a blockable node y ∈ N (x) such that L(x) entails
(>n r.C)(x) < min{r(x, y), C(y)}, and

3. there are nominal nodes z1, . . . , zn−1 ∈ N (x) with zi 6=· zj , 1 6 i < j 6 n− 1, such that
L(x) entails (>n r.C)(x) < min{r(x, zi), C(zi)}, 1 6 i 6 n− 1,

then 1. choose a zi, 1 6 i 6 n− 1, such that y .
= zi and

2.merge y into zi.
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are synchronized. This rule is sound due to the monotonicity of inferences between order assertions: if new
information is added, it cannot invalidate previous entailments.

When we extend the neighborhood of x by adding a new node y with (x, y) ∈ N , the label L(x) still
contains order assertions over the (now extended) order structure U(x). The same holds when we introduce
new nominal nodes using the rule (NN), and in this case also Uo and Lo are updated according to their
definitions.

Example 6.5. Consider the completion graph from Example 6.4. Since (∃r.A)(a) occurs in L(a) and there
are no r-successors, the rule (∃) is applicable. We create a new node x and add the two atomic order
assertions (∃r.A)(a) 6 r(a, x) and (∃r.A)(a) 6 A(x) to L(a), which are equivalent to the order assertion
required by the rule. Note that these assertions are not part of Lo since they refer to the blockable node x.

However, we also need to apply rules ensuring that (∃r.A)(a) is an upper bound for min{r(a, x), A(x)},
and hence x is a proper witness for the existential restriction. Recall that Ar has exactly two states
and one transition ir

r,1−−→ fr. Hence, we first use (∃1) to introduce (∃r.A)(a) > (∃Air
r .A)(a), and then

apply (∃2) to (∃Air
r .A)(a) and r(a, x). Here we have several choices as to the relative order of (∃Air

r .A)(a),
r(a, x), and (∃Afr

r .A)(x). The precise details of this process will be described later. If we decide to add
(∃Air

r .A)(a) > r(a, x), then we are finished since this entails (∃r.A)(a) > r(a, x) > min{r(a, x), A(x)}. The
other alternative is to assert (∃Air

r .A)(a) > (∃Afr
r .A)(a), in which case we also have to apply (∃3) to get

(∃r.A)(a) > (∃Air
r .A)(a) > (∃Afr

r .A)(a) > A(x) > min{r(a, x), A(x)}.
This mirrors the intuition described in Section 3, where we chose the first option. In that case,

note that L(a) entails (∃r.A)(a) > r(a, x), which also concerns the node x. Since a ∈ N (x), we have
(∃r.A)(a), r(a, x) ∈ U(x), and hence the rule ( ) requires that L(x) also contains this assertion since it is
relevant to x.

In contrast to the classical tableau algorithm, we need the rule (cho), which is similar to the “choose”
rule (ch) for number restrictions: Since the value of {a}(x) is not a priori restricted to 0 or 1, we need to
make each node choose one of these two possible values. As in the classical case, the rule (o) then ensures
that two nodes that choose the value 1 for the same nominal are merged. Also unlike the classical algorithm,
the rules (¬>), (NN), and (¬>o) (called (6), (NN), and (6o) in [23, 30]) are applied to at-least restrictions
instead of at-most restrictions; this is due to the dual nature of the semantics of number restrictions explained
earlier.

Our completion graph contains a clash if one of the following conditions holds:8

• For some node x ∈ ∆, the set L(x) is unsatisfiable (cf. Lemma 2.2).

• For some (>n r.C) ∈ sub(O), there are nodes x, y1, . . . , yn ∈ ∆, such that yi 6=· yj , 1 6 i < j 6 n, and
L(x) entails (>n r.C)(x) < min{r(x, yi), C(yi)}, 1 6 i 6 n.

• For some a ∈ NI, there are nodes x, y ∈ ∆ such that x 6=· y, L(x) entails {a}(x) > 1, and L(y) entails
{a}(y) > 1.

A completion graph is complete if it contains a clash or none of the tableau rules are applicable in such a way
that the completion graph is changed. If the tableau rules can be applied to G0 such that a complete and
clash-free completion graph is obtained, then the algorithm has successfully proven the consistency of O. If
we obtain a clash, then either we have made the wrong choices in the rule applications, or O is inconsistent.

We now explain in detail all notions used in the tableau rules, most of which are suitably lifted variants
of the definitions in [23, 30].

Ensuring entailments. Many rules need to ensure that a label L(x) entails an order assertion φ. We describe
this process here in detail (see also the definition of complex order concepts in Section 5):

1. If φ is already entailed by L(x), then do nothing.

8Recall that each label L(x) implicitly contains the shared assertions from Lo.
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2. If φ is a simple order assertion, i.e. it does not use ⇒ or min, then add it to L(x) (or Lo).

3. If φ is of the form α ./ β, where β is a complex expression, and L(x) already entails β = δ for some
order expression δ that contains less occurrences of ⇒ and min than β, then ensure that L(x) entails
α ./ δ.

4. If φ is of the form α = β, then ensure that L(x) entails α 6 β and α > β.

5. If φ is of the form α /min{β, γ} with / ∈ {<,6}, then ensure that L(x) entails both α / β and α / γ.

6. If φ is of the form α .min{β, γ} with . ∈ {>,>}, then ensure that L(x) entails either α . β or α . γ.

7. If φ is of the form α / β ⇒ γ, then ensure that L(x) entails either α / γ, or both β 6 γ and α / 1.

8. If φ is of the form α . β ⇒ γ, then ensure that L(x) entails either β 6 γ and α . 1, or β > γ and α . γ
(for . = >, only the second option is feasible since all labels need to stay satisfiable).

Case 3 in particular deals with order assertions such as α 6 min{β, γ} for which it is already known that
β 6 γ: in this case, L(x) entails β = min{β, γ}, and hence it suffices to assert that α 6 β. This process
ensures that only the minimal amount of information that is necessary to entail an order assertion is added
to L(x). However, due to the semantics of the Gödel operators, it often includes nondeterministic choices.

Remark 6.6. In comparison with tableau algorithms for finitely valued FDLs [31, 32], one could wonder
why our tableau rules do not just propagate lower and upper bounds of complex concepts to the subconcepts,
but usually assert both directions. For illustration purposes, suppose that we use the following two rules
instead of (u):

(u<) If L(x) entails (C uD)(x) < α for some α ∈ U(x),
then ensure that L(x) entails (C uD)(x) > min{C(x), D(x)}.

(u>) If L(x) entails (C uD)(x) > α for some α ∈ U(x),
then ensure that L(x) entails (C uD)(x) 6 min{C(x), D(x)}

This means that an order relation between (C u D)(x) and min{C(x), D(x)} is only asserted if there is
an actual need to do so, because there is some restriction on (C u D)(x) that affects the values of the
subconcepts C and D at x. This corresponds to the behavior of the rules with similar names in [31, 32].

However, this would mean that the rule (u<) has to be applied also if there is a lower bound on
min{C(x), D(x)}, i.e. an α ∈ U(x) such that α < min{C(x), D(x)}. Otherwise, this lower bound would not
be transferred to (C u D)(x) and any β ∈ U(x) with β > (C u D)(x); but the presence of a lower bound
for β = (∀r.C)(x) may be necessary to apply the rule (∀1), in the same way as for (u>) above. Hence, we
would actually need the following rules:

(u<)’ If L(x) entails (C uD)(x) < α or min{C(x), D(x)} > α for some α ∈ U(x),
then ensure that L(x) entails (C uD)(x) > min{C(x), D(x)}.

(u>)’ If L(x) entails (C uD)(x) > α or min{C(x), D(x)} < α for some α ∈ U(x),
then ensure that L(x) entails (C uD)(x) 6 min{C(x), D(x)}

In the above example, if min{C(x), D(x)} has a lower bound, this would be transferred via (u<)’ to
(C uD)(x), and hence (u>)’ also has to be applied. This means that any rule application of either (u<)’
or (u>)’ would automatically apply both. Rather than having two rule applications, we write them com-
pactly as (u). Similar arguments apply to other constructors, such as →, ∀r.C, and >n r.C. However,
the rules (¬>), (NN), and (¬>o) have conditions that implicitly state the existence of an upper bound.
Similarly, the rule (cho) first checks if there are upper or lower bounds on the value of {a}(x).
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Blocking and safe neighbors. We adapt the notion of blocking from [30] to sets of order assertions. A node
x is directly blocked if it has ancestors x′, y, and y′ such that

• (x′, x), (y′, y) ∈ N ;

• x, y, and all nodes on the path from y to x are blockable;

• for all order assertions φ over U(∆) involving only the nodes x and x′, we have that L(x) entails φ iff
L(y) entails σ(φ), where σ replaces x by y and x′ by y′.

In this case, we say that y blocks x. A node is blocked if it is directly blocked or it is blockable and its
predecessor is blocked. In the latter case, we say that it is indirectly blocked.

The rules (∀), (>), and (NN) are called generating, and the rules (¬>), (o) and (¬>o) are called shrinking.
Note that generating rules are not applicable to any blocked nodes, but all the other rules may be applied
to all nodes. The reason for this is that, due to inverse roles, by applying these rules to blocked nodes, the
order assertions at unblocked nodes may change, possibly leading to a clash or the breaking of a blocking
relation.

A neighbor y of a node x is safe if (i) x is blockable, or (ii) x is a nominal node and y is not blocked.
It is important to make this distinction since only safe neighbors really count for the satisfaction of the
witnessing conditions for value and number restrictions. The reason for this is that the blocked predecessor
of nominal nodes do not produce individuals in the tableau that will be constructed from the completion
graph.

Merging and pruning. It is sometimes necessary to merge nodes in order to satisfy the semantics of nominals
or number restrictions. When merging the node y into x, we replace all occurrences of y in L(y) by x and add
these assertions to L(x). Additionally, we modify the neighborhood of x such that it inherits all neighbors
of y, and then remove y (and all blockable subtrees from this node) from the completion graph. We will
also say that x is a direct heir of y. Formally, to merge y into x, we perform the following steps:

1. For all nodes z ∈ ∆ with (z, y) ∈ N , we replace (z, y) by (z, x) in N .

2. For all nominal nodes z ∈ ∆ with (y, z) ∈ N , we replace (y, z) by (x, z) in N .

3. We collect all blockable nodes z ∈ ∆ with (y, z) ∈ N into the set Z; these nodes will be removed from
the completion graph together with y.

4. For all order assertions φ ∈ L(y) that do not involve nodes from Z, we add σ(φ) to L(x), where σ is
a substitution that replaces y by x.9

5. For all nodes z ∈ ∆ with y 6=· z, we add x 6=· z.

6. We prune y from the completion graph,

where the operation of pruning y is defined recursively as follows:

1. For all nodes z ∈ ∆ with (y, z) ∈ N , we remove (y, z) from N and, if z is blockable, prune z from the
completion graph.

2. We remove y from ∆ and remove all order assertions involving y from all labels.

The tree-like structure of the blockable parts of a completion graph ensures that pruning removes only
subtrees, but no ancestors of y.

9If x is a nominal node, then σ(φ) may be an order assertion over Uo. In this case, it is added to Lo, and hence becomes
shared knowledge.
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Example 6.7. We continue with Example 6.5. As described in Section 3, the rule (ch) will force x to choose
whether (>2 r.C)(a) < min{r(a, x), C(x)} holds, and similarly for the node y introduced as a witness for
(∃r.B)(a). If we choose “<” for both nodes, then (¬>) has to be applied to merge x and y. Since neither x
nor y have N -successors, we simply rename x to y and join the sets L(x) and L(y). Note that (>) enforces
the existence of at least one other node z for which (>2 r.C)(a) 6 min{r(a, z), C(z)} holds, which we ignored
in Section 3.

The rules (NN) and (¬>o) are not relevant for our running example; they come into play when a nominal
node has a blockable N -predecessor (see [30] for details).

Strategy of rule applications. The level of a nominal node is defined as follows: Every nominal node x where
L(x) entails {a}(x) > 1 for some a ∈ ind(O) (e.g. one of the initial nominal nodes) is of level 0; and a
nominal node is of level i > 0 if it is not of some lower level j < i and has a neighbor that is of level i− 1.
Note that merging can only decrease the levels of nodes, but not increase them.

We use a similar strategy of rule applications as in [30], i.e. the priority order between rules is as follows:

1. ( )

2. (cho) and (o)

3. (NN) and (¬>o) (first applied to nominal nodes with lower levels)

4. all other rules.

Now that we have introduced all relevant definitions, we can prove termination and correctness of the
algorithm.

Theorem 6.8. Every sequence of applications of the tableau rules to G0 terminates. Moroever, if the tableau
rules can be applied to G0 in such a way that a complete and clash-free completion graph is obtained, then
O has a countable tableau. Finally, if O has a tableau, then the tableau rules can be applied to G0 in such a
way that a complete and clash-free completion graph is obtained.

Proof sketch. Termination can be shown using similar arguments to the ones in [30]. The key observation is
that the tableau algorithm can generate at most 2(o+ 2m+ 4k+ 2)2 order assertions, where m := |sub(O)|,
k := |rol(O)|, and o := |val(O)|. This means that blocking limits the length of chains of (blockable) role
successors to λ := 22(o+2m+4k+2)2 +1. Furthermore, the rules (NN) and (¬>o) ensure that there are at most
O(`(mn)λ) nominal nodes, where ` := |ind(O)|.

From any complete and clash-free completion graph, we obtain a countable tableau by unraveling the
neighbor relation between the nodes along the blocking relation. That is, we iteratively replace each blocked
node x with a copy of an ancestor that blocks it, together with all blockable successors of that ancestor.
While it is easy to verify the tableau conditions, some work has to be put into proving that the resulting
set of order assertions is still satisfiable. By Lemma 2.2, unsatisfiability must be caused by a <-cycle in the
induced graph, and we can show that such a cycle cannot exist due to the tableau rules.

Finally, we can use any tableau for O to guide the application of the tableau rules in such a way that no
clash is obtained. Due to termination, at some point this must result in a complete and clash-free completion
graph.

The bound on the number of nodes is triply exponential in the size of O, and hence this proves a
3-NExpTime upper bound on the complexity of consistency in G-SROIQ, which is the same bound that
is obtained from the classical tableau algorithm for SROIQ [23]. This is in contrast to 2-NExpTime-
completeness of classical SROIQ, which is shown in [26] using a reduction to the two-variable fragment of
first-order logic with counting quantifiers. The 2-NExpTime-hardness can be transferred to our setting via
the reduction in [7].

30



7. Related Work

Research on FDLs started with the papers [31, 33, 34], which extended classical ALC with the traditional
fuzzy semantics introduced by Zadeh [9], based on the minimum function to interpret conjunction, but
using an implication function different from the residuum. It was shown early on, however, that this choice
for interpreting the DL constructors leads to essentially finitely valued reasoning: One can restrict the
considerations to the values occurring in the ontologies plus their involutive negations [11, 31]. In [22],
Mathematical Fuzzy Logic was introduced to FDLs, and with it the infinitely valued t-norms and residua
forming the Gödel, Łukasiewicz, and Product semantics, as well as finitely valued variants of the former
two. Unfortunately, expressive FDLs under infinite Łukasiewicz or Product semantics turned out to be
undecidable [7, 35, 36]. Reasoning procedures developed for the remaining FDLs can be classified into two
mainstream branches: crispification approaches that reduce finitely valued ontologies to classical ontologies,
and tableau algorithms for infinitely valued FDLs where the TBox is restricted to be unfoldable (intuitively,
forbidding cyclic relationships between concepts such as A v ∃r.A).

The former approach was pioneered in [11] for ALC under Zadeh semantics, and extended to lattice-
based Zadeh semantics [37], SROIQ under finitely valued Łukasiewicz [28] and Gödel semantics [38], ALCH
with combinations of finite Gödel and Łukasiewicz semantics [39, 40], and SROIQ with arbitrary finite
t-norms [12]. Some of these reductions haven been implemented in the DeLorean system [41]. Although
most of them incur an exponential blowup in the size of the ontology, it was recently shown in [13] that
this blowup can be avoided through a pre-processing step. In that paper, it was also pointed out that
the reduction for number restrictions proposed in [12, 28] for finitely valued Łukasiewicz semantics was
incorrect; so far, the only known correct reduction encodes number restrictions using non-standard role
disjunctions [13]. Our own reduction for infinitely valued Gödel FDLs is based on similar ideas as these
crispifications, but incurs different exponential blowups (see Section 5).

At the same time, tableau algorithms have been developed for FDLs with unfoldable TBoxes by combining
classical tableau algorithms with mixed integer optimization problems. As in the classical case, they usually
do not allow to derive tight complexity bounds. Tableau algorithms were demonstrated for ALC under
Łukasiewicz [42] and Product semantics [43], and SI [44] and ALC [45, 46] with arbitrary t-norms. A
tableau algorithm for Zadeh, Gödel, and Łukasiewicz semantics has been implemented in the fuzzyDL
reasoner, which uses an external library to solve the optimization problems [47]. The tableau algorithm
presented in [48] for ALC under Łukasiewicz semantics can also deal with order assertions, and even linear
inequalities over assertions, but does not consider TBoxes. Similar order assertions have been used to decide
propositional Gödel logic, albeit without involutive negation [24].

The traditional Zadeh semantics takes up a special position in FDL research, as it underlies the only
existing tableau algorithms that can deal with full GCIs and the expressivity of SHOIQ, without needing
to solve mixed integer optimization problems [32, 49–51]. This is due to the fact that reasoning can be
restricted to finitely many values, as described earlier. In contrast, our algorithms deal with truly infinitely
valued FDLs via the abstraction of order assertions. In addition, it is straightforward to extend them to the
Zadeh semantics, obtaining an algorithm for a combined logic as in the crispification of [12].

8. Conclusions

In this paper, we have presented two algorithms for reasoning in (fragments of) fuzzy SROIQ under
Gödel semantics. To the best of our knowledge, these are the first crispification and tableau methods for
FDLs that can deal with infinitely valued semantics and general concept inclusions. The two procedures
are based on an insight that was first observed in the context of an automata-based method [10]: that it
is possible to abstract from the precise degrees associated to concepts and roles, and consider only their
relative order when deciding consistency of an ontology. However, the new methods presented in this
paper are better suited for implementing an efficient reasoner than the automata construction from [10].
Through the reduction to classical description logics, it is possible to use available highly-optimized reasoners
(e.g. [52, 53]), but at the cost of incurring in an exponential blowup whenever the input (fuzzy) ontology uses
both nominals and number restrictions. In addition, it includes an explicit representation of the exponentially
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large automata Ar constructed to recognize relevant role chains. This means that further work needs to
be done before the reduction approach can be used for efficient reasoning in expressive FDLs under Gödel
semantics.

In contrast, the tableau approach considers only those parts of the automata that are needed to extend the
completion graph, and hence they can be constructed on-the-fly. This algorithm exhibits a larger amount of
nondeterminism than its classical counterpart [23, 30], but this is inherent in the Gödel semantics and cannot
be avoided. For a practical implementation, it is crucial to use a fast algorithm for deciding entailments of
order assertions, as well as incorporate optimizations developed for classical tableau algorithms [54], where
possible. Further ad hoc optimizations and data structures will also need to be developed to obtain an
efficient implementation of this approach.

While the practical applicability of these approaches still needs to be confirmed, we believe that they
represent a large step in the direction of efficient reasoning in expressive fuzzy DLs. Indeed, with the help
of order structures, we obtain methods that closely resemble those currently in use for classical DLs. This
similarity is an asset that allows developers to focus only on the new features, while exploiting the progress
made in classical DLs over the last decade.
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Appendix A. Proofs

Lemma 2.2. A set Φ of order assertions over an order structure S is satisfiable iff GΦ has no <-cycle.

Proof. Assume that GΦ has a <-cycle involving an element δ ∈ S, and consider an arbitrary model 4∗ of Φ.
By the definitions of EΦ and order(S), for every edge (α, /, β) ∈ EΦ, we have α /∗ β. Since both α 6 β < γ
and α < β < γ imply α < γ, this means that δ <∗ δ, which is a contradiction.

Conversely, assume that GΦ has no <-cycle. We eliminate all other cycles by considering the equivalence
relation ∼ on S that is defined by α ∼ β iff α and β are involved in a cycle in GΦ. Note that such a cycle can
only involve 6-edges and we also consider cycles of length 0. Furthermore, since EΦ is symmetric w.r.t. inv,
we have α ∼ β iff inv(α) ∼ inv(β). We now construct the quotient graph G∼ := (S/∼, E∼), where

E∼ := {([α]∼, [β]∼) | (α, /, β) ∈ EΦ, α 6∼ β}.

It is easy to verify that GΦ is acyclic, and hence there exists a strict total order <∼ on S/∼ such that
[α]∼ <∼ [β]∼ whenever (α, /, β) ∈ EΦ and α 6∼ β. Since EΦ is symmetric w.r.t. inv, we can assume w.l.o.g.
that <∼ also has this property, i.e. that [α]∼ <∼ [β]∼ iff [inv(β)]∼ <∼ [inv(α)]∼. Thus, the relation

4∗ := {(α, β) | α ∼ β or [α]∼ <∼ [β]∼}

is a total preorder on S.
For any edge (α,<, β) ∈ EΦ, we have α 6∼ β and [α]∼ <∼ [β]∼, and thus α ≺∗ β. Similarly, if

(α,6, β) ∈ EΦ, then either α ∼ β or [α]∼ <∼ [β]∼, and hence α 4∗ β. By the definition of EΦ, this shows
that 4∗ is an element of order(S) and satisfies all order assertions in Φ.
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Lemma 4.4. A G-interpretation I satisfies Rh iff for every r ∈ rol(O), every w ∈ rol(O)+, and all d, e ∈ ∆I ,
it holds that

wI(d, e)⇒ rI(d, e) > (‖Ar‖, w).

Proof. If I violates any w v r > p ∈ R, then there are d, e ∈ ∆I such that wI(d, e) ⇒ rI(d, e) < p. Since
(‖Ar‖, w) > p by construction of Ar, we get wI(d, e)⇒ rI(d, e) < (‖Ar‖, w).

For the converse direction, assume that I satisfies R, and let r ∈ rol(O), w ∈ rol(O)+, and d, e ∈ ∆I .
We prove the claim through well-founded induction on ≺. It suffices to show the claim for all role names r
since Ar− is a mirrored copy of Ar.

If (‖Ar‖, w) = 0 or wI(d, e) = 0, then the claim is trivially satisfied. If both values are > 0, then by the
construction of Ar there must be

• a word w′ = r1 . . . rn ∈ rol(O)+ such that ri ≺ r or ri = r holds for all 1 6 i 6 n, and

• words w1, . . . , wn ∈ rol(O)∗ such that w = w1 . . . wn and

(‖Ar‖, w) = min
{

(‖A1
r‖, w′), (‖Ar1‖, w1), . . . , (‖Arn‖, wn)

}
> 0, (A.1)

where, if ri = r, then wi = r, and thus (‖Ari‖, wi) = 1. Since we have (‖Ari‖, wi) > 0, 1 6 i 6 n, we
know by the construction of Ari that all wi are non-empty.

Since w = w1 . . . wn, we have

wI(d, e) = sup
d1,...,dn−1∈∆I

n
min
i=1

wIi (di−1, di),

where we set d0 := d and dn := e. For any such choice of d1, . . . , dn−1 ∈ ∆I , it holds that, if ri ≺ r, then
wIi (di−1, di)⇒ rIi (di−1, di) > (‖Ari‖, wi), by the induction hypothesis. But this also holds for ri = r since
then wi = r. Hence, we obtain

(w′)I(d, e) = sup
d1,...,dn−1∈∆I

n
min
i=1

rIi (di−1, di)

> sup
d1,...,dn−1∈∆I

n
min
i=1

min{wIi (di−1, di), (‖Ari‖, wi)}

= min{wI(d, e), (‖Ar1‖, w1), . . . , (‖Arn‖, wn)}. (A.2)

We proceed by a case distinction on the transitivity and symmetry properties of r in R.
1. Assume that no role inclusions of the form rr v r > p or r− v r > p occur in R. Since (‖A1

r‖, w′) > 0,
by construction of A1

r = A0
r we know that w′ is of the form w′ = u1 . . . umtv1 . . . vk where

• uir v r > pi ∈ R for all 1 6 i 6 m,
• either t v r > p ∈ R or t = r (and then we set p := 1),
• rvj v r > p′j ∈ R for all 1 6 j 6 k, and
• (‖A1

r‖, w′) = min{p1, . . . , pm, p, p
′
1, . . . , p

′
k}.

Hence, we get

rI(d, e) > min{p′k, (rvk)I(d, e)}
= min

{
p′k, sup

e′k∈∆I
min{rI(d, e′k), vIk (e′k, e)}

}
. . .

> min
{
p1, . . . , pm, p, p

′
1, . . . , p

′
k,

sup
e1,...,em,e′1,...,e

′
k∈∆I

min{uI1 (d, e1), . . . , tI(em, e
′
1), . . . , vIk (e′k, e)}

}
= min{(‖A1

r‖, w′), (w′)I(d, e)}

The claim now follows from this inequation together with (A.1) and (A.2).
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2. Consider the case that rr v r > pt ∈ R, but there is no role inclusion r− v r > p ∈ R. Then w′ must
be of the form

w′ =
(
u

(1)
1 , . . . , u(1)

m1
t(1)v

(1)
1 , . . . , v

(1)
k1

)
. . .
(
u

(`)
1 , . . . , u(`)

m`
t(`)v

(`)
1 , . . . , v

(`)
k`

)
with ` > 1 and

• u(o)
i r v r > p(o)

i ∈ R for all 1 6 o 6 ` and 1 6 i 6 mo,

• for each 1 6 o 6 `, either t(o) v r > p(o) ∈ R or t(o) = r (and then we set p(o) := 1),

• rv(o)
j v r > (p′j)

(o) ∈ R for all 1 6 o 6 ` and 1 6 j 6 ko, and

• (‖A1
r‖, w′) = min{pt, p0} if ` > 1, and (‖A1

r‖, w′) = p0 if ` = 1, where

p0 := min{p(o)
i , p(o), (p′j)

(o) | 1 6 o 6 `, 1 6 i 6 mo, 1 6 j 6 ko}.

The claim can be obtained by the same arguments as in Case 1. Note that the axiom rr v r > pt is
only needed if ` > 1.

3. If r− v r > ps ∈ R, but there is no role inclusion rr v r > p ∈ R, then w′ is of the form
w′ = u1 . . . umtv1 . . . vk, where

• uir v r > pi ∈ R or ru−i v r > pi ∈ R for all 1 6 i 6 m,

• t v r > p ∈ R, t− v r > p ∈ R, t = r, or t = r− (in the latter two cases we set p := 1),

• rvj v r > p′j ∈ R or v−j r v r > p′j ∈ R for all 1 6 j 6 k, and

• (‖A1
r‖, w′) = min{ps, p0} if one of the “inverse” cases applies, and (‖A1

r‖, w′) = p0 otherwise,
where p0 := min{p1, . . . , pm, p, p

′
1, . . . , p

′
k}.

The claim can be obtained as in Case 1.

4. If both rr v r > pt and r− v r > ps are present in R, then w′ is a non-empty sequence of words of
the form described in Case 3, and the claim can be shown as before.

Lemma 5.5. In G-SRIQ, G-SROQ, or G-SROI, O has a G-model iff red(O) has a classical model.

For readability, we prove the two directions of this claim in two separate lemmas.

Lemma A.1. If red(O) has a classical model, then O has a G-model.

Proof. Since red(O) contains only the role name r and no inverses, and hence is in ALCOQ, we can assume
that it has a quasi-forest model I with the following properties [16]:

• ∆I ⊆ ind(O)× N∗;

• for each a ∈ ind(O), the set {u ∈ N∗ | (a, u) ∈ ∆I} is prefix-closed;

• for each a ∈ ind(O), we have aI = (a, ε);

• for all a ∈ ind(O), u ∈ N∗, and i ∈ N with (a, ui) ∈ ∆I , we have ((a, u), (a, ui)) ∈ rI ; and

• whenever ((a, u), (b, u′)) ∈ rI , then

a) a = b and u′ = ui for some i ∈ N or

b) u′ = ε.
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We assume here that all named individuals in ind(O) are interpreted by distinct elements in I. In general,
we would have to consider sets of names from ind(O) as the roots of I. Since this is relevant only for number
restrictions and (in)equality assertions, we ignore this in the following and only mention it at the appropriate
places.

For any u = n1 . . . nk ∈ N∗ with k > 1, we denote by u↑ := n1 . . . nk−1 its predecessor. We denote by
4A the binary relation on UA defined by α 4A β iff cI ∈ α 6 β

I for an arbitrary c ∈ ind(O). This is a total
preorder due to the axioms in red(U). We similarly define α 4au β iff (a, u) ∈ α 6 β

I , for all α, β ∈ U . Since
I satisfies red(A) and all domain elements are connected via r, we have 4A ⊆ 4au for all (a, u) ∈ ∆I . We
further denote by ≡A (≡au) the equivalence relation induced by 4A (4au).

As a first step in the construction of a G-model ofO, we now construct a function v : UA∪(U×∆I)→ [0, 1]
such that

(P1) for all p ∈ val(O), we have v(p) = p,

(P2) for all α, β ∈ UA, we have v(α) 6 v(β) iff α 4A β,

(P3) for all α ∈ UA, we have v(inv(α)) = 1− v(α),

(P4) for every C ∈ sub(O) and all a ∈ ind(O), we have v(C(a)) = v(C, a, ε),

(P5) for all (a, u) ∈ ∆I ,

a) for all p ∈ val(O), we have v(p, a, u) = p,

b) for all α, β ∈ U , we have v(α, a, u) 6 v(β, a, u) iff α 4au β,

c) for all α ∈ U , we have v(inv(α), a, u) = 1− v(α, a, u), and

d) if u 6= ε, then for all C ∈ sub(O) we have v(C, a, u↑) = v(〈C〉↑, a, u).

We start defining v on UA. Let UA/≡A be the set of all equivalence classes of ≡A. Then 4A yields a total
order 6A on UA/≡A . If 0 = p0 < p1 < · · · < pk−1 < pk = 1 are the elements of val(O), then since I satisfies
red(U), we have

[0]A <A [p1]A <A · · · <A [pk−1]A <A [1]A

w.r.t. this order. For [α]A ∈ UA/≡A, we set inv([α]A) := [inv(α)]A, which is well-defined due to the axioms
in red(U). On all α ∈ [p]A for p ∈ val(O), we now define v(α) := p, which ensures that (P1) holds. For the
equivalence classes that do not contain a value from val(O), note that by red(U), every such class must be
strictly between [pi]A and [pi+1]A for some pi, pi+1 ∈ val(O). We denote the ni equivalence classes between
[pi]A and [pi+1]A as follows:

[pi]A <A E
i
1 <A · · · <A Eini <A [pi+1]A.

For every α ∈ Eij , 1 6 j 6 ni, we set v(α) := pi + j
ni+1 (pi+1 − pi), which ensures that (P2) is also satisfied.

Furthermore, 1− pi+1 and 1− pi are also adjacent in val(O) and we have

[1− pi+1]A <A inv(Eini) <A · · · <A inv(Ei1) <A [1− pi]A

by the axioms in red(U). Hence, it follows from the definition of v(α) that (P3) holds.
We now construct the values of v(α, a, ε) using a similar technique. However, we now start by setting

v(α, a, ε) := v(α) for all α ∈ [β]aε with β ∈ UA. To see that this is well-defined, consider the case that
[β]aε = [β′]aε for two different elements β, β′ ∈ UA. Since 4aε contains the preorder 4A, we know that
[β]A = [β′]A, and hence v(β) = v(β′) by (P2). We can now arrange all other values between those already
fixed as shown above, thereby satisfying the first three conditions of (P5). Since aI = (a, ε) and I satisfies
red(A), this construction also ensures that (P4) is satisfied.

We now proceed to define v(α, a, u) by induction on the structure of the tree {u | (a, u) ∈ ∆I}. Assume
that v(α, a, u↑) has already been defined for all α ∈ U , and satisfies (P5)a)–c). By assumption, we have
((a, u↑), (a, u)) ∈ rI , and by red(AN) we know that (a, u) ∈ ANI . We again use the same construction as
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before, but this time fixing all values v(α, a, u) := v(α, a, u↑) for all α ∈ UA and v(α, a, u) := v(C, u↑) for all
C ∈ sub(O) and all α ∈ [〈C〉↑]u. This is well-defined by the same arguments as above and the fact that I
satisfies red(↑). We then fix the remaining values as before. This construction ensures that all the points in
(P5) are satisfied.

Based on v, we now define the G-interpretation If over the domain ∆If := ∆I , where aIf := aI = (a, ε)
for all a ∈ ind(O)10 and AIf(d) := v(A, d) for all A ∈ NC ∩ sub(O) and d ∈ ∆If . The values for all other
concept names are irrelevant and can be fixed arbitrarily. For all r ∈ NR ∩ rol(O), we first define a “simple”
interpretation I0

f as follows.

rI
0
f ((a, u), (b, u′)) :=



v(r, a, u′) if a = b and u = u′↑,

v(r−, a, u) if a = b and u′ = u↑,

v(∃r.Self, a, u) if (a, u) = (b, u′) and r is simple,
v(r(a, b)) if u = u′ = ε and a 6= b,

v(r(a, ∗), b, u′) if u = ε, u′ 6= ε, and ((b, u′), (a, ε)) ∈ rI ,

v(r(∗, b), a, u) if u′ = ε, u 6= ε, and ((a, u), (b, ε)) ∈ rI ,

0 otherwise

In the absence of inverse roles, we set the second and fifth lines to 0; and if (local) reflexivity is not allowed,
then the third line is 0; finally, if there are no nominals in our source logic, then the fifth and sixth lines
are 0. Due to red(A) and red(∃r.Self), the same expressions as for role names can be used to evaluate inverse
roles. In the case that r is simple, this already suffices. Otherwise, we use the automaton Ar to complete I0

f
by additional links as follows: we set

rIf(d, e) := sup
w∈rol(O)+

min{(‖Ar‖, w), wI
0
f (d, e)} (A.3)

for all d, e ∈ ∆If . Note that this expression is also valid for simple roles r: by Proposition 4.5, we have
(‖Ar‖, r) = 1, (‖Ar‖, s) = p whenever s vp r, and (‖Ar‖, w) = 0 for all other words w, and moreover
red(R) yields

min{(‖Ar‖, r), rI
0
f (d, e)} = rI

0
f (d, e) > min{p, sI

0
f (d, e)} = min{(‖Ar‖, s), sI

0
f (d, e)}.

The expression (A.3) can also be used to evaluate inverse roles due to the semantics of role chains and
Proposition 4.3.

We now show by induction on the structure of C that

CIf(d) = v(C, d) for all C ∈ sub(O) and d ∈ ∆I , (A.4)

where we exclude the auxiliary concepts of the form ∀A.C and ∃A.C.
For nominals {a}, we have {a}If(d) = 1 if d = (a, ε), and {a}If(d) = 0 otherwise. By red({a}) and (P5)a)–

b), in the former case we have v({a}, d) = 1, while in the latter case it holds that v({a}, d) = 0. For local
reflexivity concepts ∃r.Self, we have (∃r.Self)If(d) = rIf(d, d) = rI

0
f (d, d) = v(∃r.Self, d) since r is simple.

For ¬C, we have
(¬C)If(d) = 1− CIf(d) = 1− v(C, d) = v(¬C, d)

by the induction hypothesis and (P5)c). The claim for >, q, u, and→ can also be shown using the induction
hypothesis, the semantics of these constructors, and the properties (P5)a)–b) of v.

For value restrictions ∀r.C, consider first the case that d = (a, u) with u 6= ε, and hence d ∈ ANI . By
the second axiom in red(∀r.C), one of the following must hold:

10If we are dealing with equivalence classes of individuals as the roots of I, then aIf is interpreted using the equivalence class
containing a.
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• There is an anonymous r-successor of d that satisfies 〈∀r.C〉↑ > r ⇒ C , which must be of the form
(a, ui) for i ∈ N due to our assumption on the structure of I. We get

v(∀r.C, d) > v(r, a, ui)⇒ v(C, a, ui) > rIf(d, (a, ui))⇒ CIf(a, ui).

• We have d ∈ (∀r.C) > r− ⇒ 〈C〉↑ , and thus (P5)b) and d) and the induction hypothesis yield

v(∀r.C, d) > v(r−, a, u)⇒ v(〈C〉↑, a, u)

= rI
0
f ((a, u), (a, u↑))⇒ CIf(a, u↑)

> rIf(d, (a, u↑))⇒ CIf(a, u↑).

Hence, (a, u↑) can take the role of the witness for ∀r.C at d if we can show that the latter implication
is > v(∀r.C, d) for all successors.

• The role r is simple and we have

v(∀r.C, d) > v(∃r.Self, a, u)⇒ v(C, a, u) > rIf(d, d)⇒ CIf(d)

by similar arguments as above. In this case, we can choose d itself as the witness.

• There is a b ∈ ind(O) such that (d, (b, ε)) ∈ rI , and again we have

v(∀r.C, d) > v(r(∗, b), a, u)⇒ v(C(b), a, u) > rIf(d, (b, ε))⇒ CIf(b, ε)

due to (P5)b) and d), red(A), and the induction hypothesis.

The assertions in red(∀r.C) similarly ensure the existence of witnesses for ∀r.C at all named domain elements.
For the remainder of the claim, consider any e ∈ ∆If . Due to the first axiom in red(∀r.C), we have

rIf(d, e)⇒ CIf(e) =
(

sup
w∈rol(O)+

min{(‖Ar‖, w), wI
0
f (d, e)}

)
⇒ CIf(e)

= inf
w∈rol(O)+

min{(‖Ar‖, w), wI
0
f (d, e)} ⇒ CIf(e)

(∗)
> v(∀Ar.C, d)

> v(∀r.C, d).

as required, if we can show (∗), i.e. it remains to show that

min{(‖Ar‖, w), wI
0
f (d0, dn)} ⇒ CIf(dn) > v(∀Ar.C, d0)

holds for all d0, dn ∈ ∆If and w = r1 . . . rn ∈ rol(O)+. Since (‖Ar‖, w) and wI
0
f (d0, dn) are defined as

suprema, it suffices to consider any run r = (wi, qi)06i6m with (w0, q0) = (w, ir), (wm, qm) = (ε, fr), and
transitions qi−1

xi,pi−−−→ qi in Ar, and any sequence d1, . . . , dm ∈ ∆If . To synchronize these two sequences, we
define the mapping γ : {0, . . . ,m} → {0, . . . , n}, where γ(0) := 0, and

γ(i) :=

{
γ(i− 1) if xi = ε,

γ(i− 1) + 1 if xi 6= ε.

Since x1 . . . xm = w = r1 . . . rn, we know that γ is surjective and γ(m) = n. We now show by induction on i
that we have

v(∀Ar.C, d0) 6 min
{ i

min
j=1

pj ,
γ(i)

min
j=1

r
I0f
j (dj−1, dj)

}
⇒ v(Aqi

r , dγ(i)) (A.5)
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For all i, 0 6 i 6 m. By the axiom > v (∀Aqm
r .C) 6 C in red(∀Aqm

r .C) and the induction hypothesis, the
claim for m implies (∗).

For i = 0, (A.5) trivially holds. Assume now that it holds for i − 1. To show the claim for i, by
Proposition 2.1 it suffices to show that

v(∀Aqi−1
r .C, dγ(i−1)) 6 pi ⇒ v(∀Aqi

r .C, dγ(i)) (A.6)

whenever xi = ε (and hence γ(i) = γ(i− 1)), and

v(∀Aqi−1
r .C, dγ(i−1)) 6 min{pi, r

I0f
γ(i)(dγ(i−1), dγ(i))} ⇒ v(∀Aqi

r .C, dγ(i)) (A.7)

for all xi 6= ε (for which we have γ(i) = γ(i− 1) + 1).
For the former case, the axioms in redε,pi,qi(∀Aqm

r .C) and (P5) directly yield the claim (A.6). If xi /∈ ε,
we make a case distinction on dγ(i). If r

I0f
γ(i)(dγ(i−1), dγ(i)) = 0, then the claim is trivially satisfied; otherwise,

we must have one of the following cases:

• If dγ(i) = (a, u) and dγ(i−1) = (a, u↑), then we have (dγ(i−1), dγ(i)) ∈ rI and dγ(i) ∈ ANI . Hence, the
first axiom in redrγ(i),pi,qi(∀A

qi−1
r .C) and (P5) yield

v(∀Aqi−1
r .C, dγ(i−1)) = v(〈∀Aqi−1

r .C〉↑, dγ(i))

6 min{p, v(rγ(i), dγ(i))} ⇒ v(∀Aqi
r .C, dγ(i))

= min{p, rI
0
f
γ(i)(dγ(i−1), dγ(i))} ⇒ v(∀Aqi

r .C, dγ(i)),

as claimed in (A.7).

• If dγ(i−1) = (a, u) and dγ(i) = (a, u↑), then dγ(i−1) ∈ ANI and inverse roles are allowed. Hence, the
second axiom in redrγ(i),pi,qi(∀A

qi−1
r .C) and (P5) yield

v(∀Aqi−1
r .C, dγ(i−1)) 6 min{p, v(r−γ(i), dγ(i−1))} ⇒ v(〈∀Aqi

r .C〉↑, dγ(i−1))

= min{p, rI
0
f
γ(i)(dγ(i−1), dγ(i))} ⇒ v(∀Aqi

r .C, dγ(i)).

• If dγ(i−1) = dγ(i), then rγ(i) is simple and local reflexivity is allowed, which means that we similarly
get

v(∀Aqi−1
r .C, dγ(i−1)) 6 min{p, v(∃rγ(i).Self, dγ(i))} ⇒ v(∀Aqi

r .C, dγ(i))

= min{p, rI
0
f
γ(i)(dγ(i−1), dγ(i))} ⇒ v(∀Aqi

r .C, dγ(i))

by the third axiom in redrγ(i),pi,qi(∀A
qi−1
r .C).

• If dγ(i−1) = (a, ε) and dγ(i) = (b, ε), then ((a, ε), (b, ε)) ∈ rI , and thus

v(∀Aqi−1
r .C, dγ(i−1)) 6 min{p, v(rγ(i)(∗, b), dγ(i−1))} ⇒ v((∀Aqi

r .C)(b), dγ(i−1))

= min{p, rI
0
f
γ(i)(dγ(i−1), dγ(i))} ⇒ v(∀Aqi

r .C, dγ(i))

by the corresponding axiom in redrγ(i),pi,qi(∀A
qi−1
r .C).

• If dγ(i−1) = (a, ε), dγ(i) ∈ ANI , and (dγ(i), dγ(i−1)) ∈ rI , then nominals and inverse roles are allowed
and

v(∀Aqi−1
r .C, dγ(i−1)) = v((∀Aqi−1

r )(a), dγ(i))

6 min{p, v(r−γ(i)(∗, a), dγ(i))} ⇒ v(∀Aqi
r .C, dγ(i))

= min{p, rI
0
f
γ(i)(dγ(i−1), dγ(i))} ⇒ v(∀Aqi

r .C, dγ(i)).
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• Finally, the case that dγ(i−1) ∈ ANI , dγ(i) = (b, ε), and (dγ(i−1), dγ(i)) ∈ rI can be handled as in the
previous two cases.

This concludes the proof of (A.7), and hence that of (A.5) and of (∗), which shows that (A.4) holds for all
value restrictions. The proof for existential restrictions can be done using dual arguments.

For at-least restrictions >n r.C, note first that r must be simple, and hence we have rIf(d, e) = rI
0
f (d, e)

for all d, e ∈ ∆If . We first consider the case that d ∈ ANI , i.e. it is of the form (a, u) with u 6= ε. By
the first axiom in red(>n r.C), there are zi, zs ∈ {0, 1}, m ∈ {0, . . . , n − zi − zs} and S ⊆ ind(O) with
|S| = n−m− zi − zs such that redzi,zs,m,S,6(>n r.C) is satisfied by d.

• If zi = 1, then inverse roles are allowed and d ∈ (>n r.C) 6 min{r−, 〈C〉↑}
I
. Further, we obtain

v(>n r.C, d) 6 min{v(r−, d), v(〈C〉↑, d)} = min{rIf(d, (a, u↑)), CIf(a, u↑)}

by the induction hypothesis.

• If zs = 1, then local reflexivity is allowed and we have

v(>n r.C, d) 6 min{v(∃r.Self, d), v(C, d)} = min{rIf(d, d), CI
0
f (d)}.

• Consider now any b ∈ ind(O). We know that nominals are allowed and (d, (b, ε)) ∈ rI , and thus

v(>n r.C, d) 6 min{v(r(∗, b), d), v(C(b), d)} = min{rIf(d, (b, ε)), CIf(b, ε)}.

Furthermore, all elements of S must be interpreted by different elements in I, and hence also in If,
even if we consider sets of individual names in the roots of I.

• Additionally, there are m different elements e1, . . . , em ∈ ∆I such that (d, ej) ∈ rI and ej ∈ ANI for
each ej , and hence they must be of the form (a, uij). We obtain, for every j, 1 6 j 6 m,

v(>n r.C, d) = v(〈>n r.C〉↑, ej) 6 min{v(r, ej), v(C, ej)} = min{rIf(d, ej), CIf(ej)}.

Note that all r-successors of d considered above, i.e. (a, u↑), d, (b, ε), and ej , 1 6 j 6 m, must be different;
in particular, we do not consider nominals and inverse roles at the same time (since obviously O contains
at-least restrictions), and thus even if u↑ = ε, we do not have a ∈ S. Hence, these elements can serve as
the witnesses for >n r.C at d (assuming that its value is exactly v(>n r.C, d), which is shown below). For
named domain elements, the witnesses are created by the first kind of assertions in red(>n r.C), where only
two cases need to be considered (named and unnamed successors); note that all unnamed r-successors of
(a, ε) must be of the form (a, i) due to our assumptions on the structure of I.

Assume now again that d = (a, u) ∈ ANI and that the elements found above are not witnesses for
(>n r.C)If(d) = v(>n r.C, d). Then there must be n different elements e1, . . . , en ∈ ∆If such that

v(>n r.C, d) < min{rIf(d, ej), CIf(ej)}

for all j, 1 6 j 6 n. We show that we can find suitable zi, zs, m, and S such that redzi,zs,m,S,<(>n r.C) is
satisfied by d, which contradicts our assumption that I is a model of red(O).

• If inverse roles are allowed and there is an index j, 1 6 j 6 n, such that ej = (a, u↑), then we set
zi := 1. By the induction hypothesis and our assumption above, we have

v(>n r.C, d) < min{rIf(d, ej), CIf(ej)} = min{v(r−, d), v(C, ej)} = min{v(r−, d), v(〈C〉↑, d)}.

• If local reflexivity is allowed and there is an index j, 1 6 j 6 n, such that ej = d, then we set zs := 1,
and get

v(>n r.C, d) < min{v(∃r.Self, d), v(C, d)}.
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• If nominals are allowed, then we collect from the remaining elements those ej that are equal to (b, ε)
for some b ∈ ind(O). Let S be the set all of all those individual names. Since they are interpreted by
different elements in If, they are also distinct in I, even if we consider sets of individual names in the
roots of I. Furthermore, for any b ∈ S, since rIf(d, (b, ε)) > v(>n r.C) > 0, we have (d, (b, ε)) ∈ rI

and

v(>n r.C, d) < min{v(r(∗, b), d), v(C(b), d)}.

• There are exactly m := n− |S| − zi − zs remaining elements ej . If nominals are not allowed, then no
ej can be of the form (b, ε) for b ∈ ind(O) since rIf(d, ej) > 0 and d is anonymous. If inverse roles
are not allowed, then ej 6= (a, u↑) due to the same reason. Similarly, if local reflexivity is not allowed,
it cannot be the case that ej = d. Thus, we know for each of the remaining ej that ej = (a, uij) for
some ij ∈ N and

v(〈>n r.C〉↑, ej) = v(>n r.C, d) < min{v(r, ej), v(C, ej)}.

Hence, the final part of redzi,zs,m,S,<(>n r.C), the restriction >m r.
(
AN u 〈>n r.C〉↑ < min{r, C}

)
, is

satisfied.

For named elements d = (a, ε), we can use a similar argument to contradict the second kind of assertions
in red(>n r.C). Note that there can be no anonymous element ej satisfying rIf(d, ej) > 0 that is not of the
form ej = (a, ij) for some ij ∈ N, since otherwise we know from the definition of rIf that both inverse roles
and nominals must be allowed, which cannot be the case since obviously number restrictions are allowed.

This concludes the proof of (A.4). It remains to show that If is a model of O. For every α ./ β ∈ A, we
have v(α) ./ v(β) by red(A) and (P2). In the case that α = q ∈ val(O), we know that v(α) = q by (P5)a);
and if α = C(a), then v(α) = v(C, a, ε) = CIf(a, ε) = CIf(aIf) by (P4) and (A.4).11 Since the same holds
for β, we conclude that αIf ./ βIf .

All (in)equality assertions a ≈ b (a 6≈ b) in A are satisfied due to red(A) and the construction of If.
Consider a GCI C v D > p ∈ T and d ∈ ∆I . By red(T ) and (P5)b), we have v(p, d) 6 v(C, d)⇒ v(D, d).

Thus, (A.4) and (P5)a) yield CIf(d)⇒ DIf(d) > p.
For any dis(r, s) > p ∈ R, r and s are simple, and thus we can restrict our analysis to rI

0
f and sI

0
f .

We have min{v(r(a, b), c, u), v(s(a, b), c, u)} 6 1 − p for all (c, u) ∈ ∆If and a, b ∈ ind(O) ∪ {∗}. Hence,
min{rIf(aIf , bIf), sIf(aIf , bIf)} 6 1 − p, where ∗If := (c, u). This takes care of all role connections involv-
ing named domain elements. Furthermore, we obtain min{v(r, c, u), v(s, c, u)} 6 1 − p in case u 6= ε,
and thus min{rIf((c, u↑), (c, u)), sIf((c, u↑), (c, u))} 6 1 − p. Similarly, if inverse roles are allowed, then
min{v(r−, c, u), v(s−, c, u)} 6 1− p, i.e. min{rIf((c, u), (c, u↑)), s

If((c, u), (c, u↑))} 6 1− p. Finally, we know
that min{v(∃r.Self, c, u), v(∃s.Self, c, u)} 6 1− p, and thus min{rIf((c, u), (c, u)), sIf((c, u), (c, u))} 6 1− p.

For the complex role inclusions in R, by Lemma 4.4 it suffices to show wIf(d, e)⇒ rIf(d, e) > (‖Ar‖, w)
for all r ∈ rol(O), w ∈ rol(O)+, and d, e ∈ ∆If . We can assume that wIf(d, e) > 0 and (‖Ar‖, w) > 0 since
otherwise this inequation is trivially satisfied. Let now w = r1 . . . rn, n > 1. Then we have

wIf(d, e) = sup
d1,...,dn−1∈∆If

n
min
i=1

r
If
i (di−1, di)

= sup
d1,...,dn−1∈∆If

n
min
i=1

sup
wi∈rol(O)+

min{(‖Ari‖, wi), w
I0f
i (di−1, di)}

= sup
d1,...,dn−1∈∆If

sup
w1,...,wn∈rol(O)+

n
min
i=1

min{(‖Ari‖, wi), w
I0f
i (di−1, di)},

11Recall that we have eliminated all crisp role assertions from the ABox.
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where we set d0 := d and dn := e. Furthermore, for any choice of elements d1, . . . , dn−1 ∈ ∆If and words
w1, . . . , wn ∈ rol(O)+, we have

rIf(d, e) > min{(‖Ar‖, w1 . . . wn), (w1 . . . wn)I
0
f (d, e)}

> min
{

(‖Ar‖, w1 . . . wn),
n

min
i=1

w
I0f
i (di−1, di)

}
> min

{
(‖Ar‖, w),

n
min
i=1

min{(‖Ari‖, wi), w
I0f
i (di−1, di)}

}
by the construction of Ar. Hence,

(‖Ar‖, w)⇒ rIf(d, e) > sup
d1,...,dn−1∈∆If

sup
w1,...,wn∈rol(O)+

n
min
i=1

min{(‖Ari‖, wi), w
I0f
i (di−1, di)}

= wIf(d, e),

as required.

We have thus shown the first direction of Lemma 5.5. We now consider the converse.

Lemma A.2. If O has a G-model, then red(O) has a classical model.

Proof. Given a G-model I of O, we construct the classical interpretation Ic, whose domain consists of all
sequences of the form ad1 . . . dk, where

• a ∈ NI and k > 0;

• all di are elements of ∆I ;

• if number restrictions are allowed, then we have to put some restrictions on this sequence of domain
elements:

– d1 is not equal to bI for any b ∈ NI;

– if nominals are allowed, then no di is equal to bI for any b ∈ NI; and

– if inverse roles are allowed, then d2 6= aI , and there is no index i such that di = di+2.

For ease of presentation, we assume that all individual names are interpreted by distinct elements of ∆I . In
general, however, we would have to consider equivalence classes of individual names as roots for Ic, where
a, b ∈ NI are equivalent iff aI = bI . Since this is only relevant for number restrictions and (in)equality
assertions, we will ignore this for most of the proof and only mention it at the appropriate places.

We now set aIc := a for all a ∈ NI, and

rIc := {(%, %d) | %d ∈ ∆Ic} ∪
{(a, b) | a, b ∈ NI} ∪{
{(%, a) | % ∈ ∆Ic , a ∈ NI} if nominals are present,
∅ otherwise.

We denote by tail(ad1 . . . dk) the element dk if k > 0, and aI if k = 0. Similarly, we set prev(ad1 . . . dk) to
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dk−1 if k > 1, and to aI if k = 1. For any α ∈ U and % ∈ ∆Ic , we define

αI(%) :=



CI(tail(%)) if α = C ∈ sub(O);
CI(prev(%)) if α = 〈C〉↑ for C ∈ sub(O);
q if α = q ∈ val(O);
0 if α = r and % ∈ NI;
0 if α = r, % /∈ NI, tail(%) = prev(%), r is simple, and (R);
rI(prev(%), tail(%)) if α = r, % /∈ NI, and either tail(%) 6= prev(%), r is non-simple, or ¬(R);
CI(aI) if α = C(a);
rI(aI , bI) if α = r(a, b);
rI(aI , tail(%)) if α = r(a, ∗);
rI(tail(%), aI) if α = r(∗, a);
1− inv(α)I(%) if α involves a negated role ¬r,

where
(∀A.C)I(d) := inf

w∈rol(O)∗
inf
e∈∆I

min{(‖A‖, w), wI(d, e)} ⇒ CI(e),

where εI(d, e) := 1 if d = e, and εI(d, e) := 0 otherwise. Note that αI(%) is not defined for α ∈ sub↑(O) if
% ∈ NI. We fix these values αI(%) arbitrarily, in such a way that for all α, β ∈ U we have αI(%) 6 βI(%) iff
inv(β)I(%) 6 inv(α)I(%). We now define ANIc := ∆Ic \ NI and, for all concept names α 6 β with α, β ∈ U ,

α 6 β
Ic := {% | αI(%) 6 βI(%)}.

It is easy to see that we also have % ∈ α ./ β
Ic iff αI(%) ./ βI(%) for all other order expressions ./, and that

Ic satisfies red(AN) and red(U). We now show that Ic satisfies the remaining parts of red(O).
For any α ./ β ∈ A, we have αI ./ βI since I satisfies A. From this it follows that αI(c) ./ βI(c) for any

c ∈ ind(O). All (in)equalities a ≈ b (a 6≈ b) in red(A) are satisfied if we consider the generalized construction
with equivalence classes of individual names as roots for Ic. It is straightforward to verify the remaining
axioms in red(A).

For any GCI C v D > p ∈ T and every % ∈ ∆Ic , we know that

CI(%)⇒ DI(%) = CI(tail(%))⇒ DI(tail(%)) > p,

and hence % ∈ p 6 C ⇒ D
Ic .

For red(↑), consider any % ∈ α ./ β
Ic and %′ ∈ AN with (%, %′) ∈ rIc . Then %′ must be of the form %d for

some d ∈ ∆I , and we have

〈α〉I↑ (%d) = αI(tail(%)) ./ βI(tail(%)) = 〈β〉I↑ (%d),

and hence %′ ∈ 〈α〉↑ ./ 〈β〉↑
Ic .

For red(R), consider first any role inclusion r v s > p ∈ R where r and s are both simple. Then we
have rI(prev(%), tail(%))⇒ sI(prev(%), tail(%)) > p for every % ∈ ∆Ic \NI with tail(%) 6= prev(%); furthermore,
every a ∈ NI also satisfies r ⇒ s > p since 0 6 0. Similar arguments can be used if tail(%) = prev(%), for
r(a, b)⇒ s(a, b) > p and ∃r.Self ⇒ ∃s.Self > p , and for the reduction of disjoint role axioms.

It remains to consider the axioms in red(C) for C ∈ sub(O). The reductions for >, {a}, q, ∃r.Self, u,
and → obviously reflect the semantics of these constructors and are easy to verify.

We now consider the axioms in red(∀r.C). By Lemma 4.4, we have

(∀Ar.C)I(d) = inf
w∈rol(O)∗

inf
e∈∆I

min{(‖Ar‖, w), wI(d, e)} ⇒ CI(e)

> inf
e∈∆I

rI(d, e)⇒ CI(e)

= (∀r.C)I(d)
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for all d ∈ ∆I . Lemma 4.4 talks only about w ∈ rol(O)+, but it holds also for w = ε since then (‖Ar‖, w) = 0
due to the construction of Ar. Hence, the axiom > v (∀r.C) 6 (∀Ar.C) is satisfied by Ic. We consider the
axiom

AN v ∃r.
(
AN u 〈∀r.C〉↑ > r ⇒ C

)
t

(∀r.C) > r− ⇒ 〈C〉↑ t
(∀r.C) > (∃r.Self)⇒ C t⊔
a∈ind(O)

(
∃r.{a} u (∀r.C) > r(∗, a)⇒ C(a)

)
,

where the third disjunct is only present if local reflexivity is allowed and r is simple, likewise for the second dis-
junct and inverse roles, and the last disjunct is contingent on the presence of nominals. Let further % ∈ ANIc ,
i.e. % = ad1 . . . dk with k > 1. Since I is witnessed, there is an e ∈ ∆I with (∀r.C)I(dk) = rI(dk, e)⇒ CI(e).
If %e ∈ ∆Ic , then (%, %e) ∈ rI and %e ∈ ANIc

• If dk 6= e, r is non-simple, or local reflexivity is not allowed, then

〈∀r.C〉I↑ (%e) = rI(dk, e)⇒ CI(e) = rI(%e)⇒ CI(%e),

and hence %e ∈ 〈∀r.C〉↑ > r ⇒ C
Ic .

• Otherwise, we have dk = e, r is simple, and local reflexivity is allowed, and hence rI(%e) = 0. However,
we have

(∀r.C)I(%) = rI(dk, dk)⇒ CI(dk) = (∃r.Self)I(%)⇒ CI(%)

instead, and hence % satisfies the third disjunct.

Otherwise, i.e. in the case that %e /∈ ∆Ic , there are two more cases to consider:

• Nominals are allowed and e = bI for some b ∈ NI. Then we have (%, b) ∈ rIc and

(∀r.C)I(%) = rI(dk, b
I)⇒ CI(bI) = (r(∗, b))I(%)⇒ (C(b))I(%).

• Inverse roles are allowed and either (i) k > 1 and dk−1 = bI or (ii) k = 1 and a = b. In both cases, we
have prev(%) = bI , and hence

(∀r.C)I(%) = rI(km, prev(%))⇒ CI(prev(%)) = (r−)I(%)⇒ 〈C〉I↑ (%).

Consider now the axiom

∃r.
((

AN u 〈∀r.C〉↑ > r ⇒ C
)
t
(
¬AN u (∀r.C)(a) > r(a, ∗)⇒ C

))
(a)

for some a ∈ ind(O). Since I is witnessed, there is an e ∈ ∆I such that (∀r.C)I(aI) = rI(aI , e)⇒ CI(e).

• If e = bI for some b ∈ NI, then we have (a, b) ∈ rIc and b /∈ ANIc . Furthermore,

(∀r.C)(a)I(b) = (∀r.C)I(aI) = rI(aI , bI)⇒ CI(bI),

which is equal to (r(a, ∗))I(b)⇒ CI(b), and hence we have b ∈ (∀r.C)(a) > r(a, ∗)⇒ C
Ic .

• If e 6= bI for all b ∈ NI, then we have ae ∈ ∆Ic , and thus (a, ae) ∈ rIc . Moreover, ae ∈ ANIc and
〈∀r.C〉I↑ (ae) = (∀r.C)I(aI) = rI(aI , e)⇒ CI(e), which is equal to rI(ae)⇒ CI(ae).
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For red(∀Aq.C), we first consider the axiom > v (∀Aq.C) 6 C for a final state q of A. We have

(∀Aq.C)I(d) 6 min{(‖Aq‖, ε), εI(d, d)} ⇒ CI(d) = CI(d)

for all d ∈ ∆I , and hence Ic satisfies this axiom. For any transition q ε,p−−→ q′ in Aq, we have to satisfy the
axiom > v (∀Aq.C) 6 p⇒ (∀Aq′ .C) . By Proposition 4.2, we get

(∀Aq.C)I(d) = inf
w∈rol(O)∗

inf
e∈∆I

min{(‖Aq‖, w), wI(d, e)} ⇒ CI(e)

6 inf
w∈rol(O)∗

inf
e∈∆I

min{p, (‖Aq′‖, w), wI(d, e)} ⇒ CI(e)

= p⇒
(

inf
w∈rol(O)∗

inf
e∈∆I

min{(‖Aq′‖, w), wI(d, e)} ⇒ CI(e)
)

= p⇒ (∀Aq′ .C)I(d).

Consider now the axiom AN v (∀Aq.C) 6 min{p, s−} ⇒ 〈∀Aq′ .C〉↑ for a transition q s,p−−→ q′ in A, and any
% ∈ ANIc , which must be of the form ad1 . . . dk with k > 1. We have

(∀Aq.C)I(%) 6 inf
w∈rol(O)∗

inf
e∈∆I

min{(‖Aq‖, sw), (sw)I(dk, e)} ⇒ CI(e)

6 inf
w∈rol(O)∗

inf
e∈∆I

min
{
p, (‖Aq′‖, w), sup

e′∈∆I
min{sI(dk, e

′), wI(e′, e)}
}
⇒ CI(e)

6 inf
w∈rol(O)∗

inf
e∈∆I

min{p, (‖Aq′‖, w), sI(dk, prev(%)), wI(prev(%), e)} ⇒ CI(e)

6 min{p, (s−)I(%)} ⇒ inf
w∈rol(O)∗

inf
e∈∆I

min{(‖Aq′‖, w), wI(prev(%), e)} ⇒ CI(e)

= min{p, (s−)I(%)} ⇒ 〈∀Aq′ .C〉I↑ (%).

by Propositions 2.1 and 4.2.
For > v (∀Aq.C) 6 min{p,∃s.Self} ⇒ (∀Aq′ .C) and any d ∈ ∆I , we know that s must be simple and get

(∀Aq.C)I(d) 6 inf
w∈rol(O)∗

inf
e∈∆I

min{p, (‖Aq′‖, w), sI(d, d), wI(d, e)} ⇒ CI(e)

= min{p, (∃s.Self)I(d)} ⇒ (∀Aq′ .C)I(d)

by similar arguments.
For > v ∀r.

(
AN → 〈∀Aq.C〉↑ 6 min{p, s} ⇒ (∀Aq′ .C)

)
, consider any %, %′ ∈ ∆Ic with (%, %′) ∈ rIc and

%′ ∈ ANIc . Thus, we must have %′ = %d for some d ∈ ∆I , and we know that prev(%d) = tail(%). We obtain

〈∀Aq.C〉I↑ (%d) 6 inf
w∈rol(O)∗

inf
e∈∆I

min{p, (‖Aq′‖, w), sI(tail(%), d), wI(d, e)} ⇒ CI(e)

6 min{p, sI(%d)} ⇒ (∀Aq′ .C)I(%d).

Consider now the axiom ∃r.{a} v (∀Aq.C) 6 min{p, s(∗, a)} ⇒ (∀Aq′ .C)(a) for any a ∈ ind(O), and % ∈ ∆Ic

with (%, a) ∈ rIc . We get

(∀Aq.C)I(%) 6 inf
w∈rol(O)∗

inf
e∈∆I

min{p, (‖Aq′‖, w), sI(tail(%), aI), wI(aI , e)} ⇒ CI(e)

= min{p, (s(∗, a))I(%)} ⇒ ((∀Aq′ .C)(a))I(%).

Finally, for ∃r.{a} v (∀Aq.C)(a) 6 min{p, s−(∗, a)} ⇒ (∀Aq′ .C) and any a ∈ ind(O) and % ∈ ∆Ic with
(%, a) ∈ rIc , we obtain

((∀Aq.C)(a))I(%) 6 inf
w∈rol(O)∗

inf
e∈∆I

min{p, (‖Aq′‖, w), sI(aI , tail(%)), wI(tail(%), e)} ⇒ CI(e)

= min{p, (s−(∗, a))I(%)} ⇒ (∀Aq′ .C)I(%).
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This concludes the analysis of the reduction of value restrictions. Again, the case of existential restrictions
can be handled by dual arguments.

If number restrictions are present, we also have to satisfy red(>n r.C). Consider the first axiom and any
ad1 . . . dk ∈ ∆Ic with k > 1. Since I is witnessed, there must be n different elements e1, . . . , en ∈ ∆I such
that

(>n r.C)I(dk) =
n

min
j=1

min{rI(dk, ej), C
I(ej)}.

If local reflexivity is allowed and we have ej = dk for one of these elements, we set zs := 1. If inverse roles
are allowed and we have (i) k > 1 and ej = dk−1 or (ii) k = 1 and ej = aI , we set zi := 1. Note that the
previous two elements identified for zs and zi must be different since otherwise we would have dk = dk−1 or
d1 = aI . If nominals are allowed, we define S to be the set of all individual names b ∈ ind(O) for which bI is
among the remaining elements from e1, . . . , en; otherwise we set S := ∅. We thus have m := n− zi− zs−|S|
remaining elements ej , and have uniquely identified one of the disjuncts of the axiom. We now show that
for each of these elements ej the corresponding conjunct in this disjunct is satisfied, thus showing that the
whole axiom is satisfied.

• If zs = 1, let ej be the element equal to dk. We have

(>n r.C)I(%) 6 min{rI(dk, dk), CI(dk)} = min{(∃r.Self)I(%), CI(%)},

and thus the conjunct (>n r.C) 6 min{∃r.Self, C} is satisfied by %.

• If zi = 1, let ej be the element equal to dk−1 or aI . Then prev(%) = ej and

(>n r.C)I(%) 6 min{rI(dk, ej), C
I(ej)} = min{(r−)I(%), 〈C〉I↑ (%)},

validating the conjunct (>n r.C) 6 min{r−, 〈C〉↑} .

• Consider any a ∈ S. Then nominals are present, and thus (%, a) ∈ rI and

(>n r.C)I(%) 6 min{rI(dk, a
I), CI(aI)} = min{(r(∗, a))I(%), (C(a))I(%)},

which corresponds to (>n r.C) 6 min{r(∗, a), C(a)} .

• For any ej not corresponding to any of the previous cases, we know by the construction of ∆Ic that
%ej ∈ ∆Ic , and hence (%, %ej) ∈ rIc , tail(%ej) = ej 6= dk = prev(%ej), and

〈>n r.C〉I↑ (%ej) 6 min{rI(dk, ej), C
I(ej)} = min{rI(%ej), C

I(%ej)}.

Since there are m different such elements ej , the corresponding elements %ej are also different, and
>m r.

(
AN u 〈>n r.C〉↑ 6 min{r, C}

)
is satisfied by %.

For the second axiom in red(>n r.C), assume to the contrary that there is a % = ad1 . . . dk ∈ ∆Ic , and
numbers zi (if there are inverse roles), zs (if local reflexivity is allowed), 0 6 m 6 n − zi − zs, and a set
S ⊆ ind(O) of cardinality n−m− zi− zs (which is 0 unless there are nominals) such that the corresponding
conjunction is satisfied by % in Ic.

• If zi = 1, then % ∈ ANIc , i.e. we have k > 1, and

(>n r.C)I(tail(%)) = (>n r.C)I(%) < min{(r−)I(%), 〈C〉I↑ (%)} = min{rI(tail(%), prev(%)), CI(prev(%))}.

Note that (r−)I(%) cannot be 0, and hence must be equal to rI(tail(%), prev(%)).

• If zs = 1, then

(>n r.C)I(tail(%)) < min{(∃r.Self)I(%), CI(%)} = min{rI(tail(%), tail(%)), CI(tail(%))}.
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• For each a ∈ S, we have

(>n r.C)I(tail(%)) < min{(r(∗, a))I(%), (C(a))I(%)} = min{rI(tail(%), aI), CI(aI)}.

Furthermore, even if we consider equivalence classes of individual names as roots for Ic, all a ∈ S are
interpreted by different domain elements.

• Additionally, there are m different r-successors %1, . . . , %m that all satisfy AN, i.e. are of the form
%e1, . . . , %em for different elements e1, . . . , em ∈ ∆I , and, for all 1 6 j 6 m,

(>n r.C)I(tail(%)) = 〈>n r.C〉I↑ (%ej) < min{rI(%ej), C
I(%ej)} = min{rI(tail(%), ej), C

I(ej)}.

Again, each rI(%ej) must be strictly greater than 0, and hence if zs = 1, then each ej must be different
from tail(%).

Due to the construction of ∆Ic , the above elements of ∆I (prev(%), tail(%), aI for a ∈ S, and ej , 1 6 j 6 m)
must be different. But this contradicts the semantics of (>n r.C)I(tail(%)).

For the first kind of assertions in red(>n r.C), consider any a ∈ ind(O). Since I is witnessed, there must
be n different elements e1, . . . , en ∈ ∆I such that

(>n r.C)I(aI) =
n

min
j=1

min{rI(aI , ej), C
I(ej)}.

For each ej , 1 6 j 6 n, we make a case distinction on whether it is named or not.

• If ej = bI for some b ∈ ind(O), then we have (a, b) ∈ rIc , b ∈ (¬AN)Ic , and

((>n r.C)(a))I(b) = (>n r.C)I(aI) 6 min{rI(aI , bI), CI(bI)} = min{(r(a, ∗))I(b), CI(b)}.

• If ej 6= bI for all b ∈ ind(O), then we have aej ∈ ∆Ic , and thus (a, aej) ∈ rIc . Furthermore, we know
that tail(aej) = ej 6= aI = prev(aej), and hence

〈>n r.C〉I↑ (aej) = (>n r.C)I(aI) 6 min{rI(aI , ej), C
I(ej)} = min{rI(aej), C

I(aej)}.

Since different elements of ∆I induce different elements of ∆Ic , this shows that the required at-least restric-
tion is satisfied by a.

For the second kind of assertions in red(>n r.C), assume to the contrary that there are n different
r-successors %1, . . . , %n of a that are either anonymous and satisfy 〈>n r.C〉↑ < min{r, C} , or named and
satisfy ((>n r.C)(a)) < min{r(a, ∗), C} .

• If %j satisfies AN, then it must be of the form aej for some ej ∈ ∆I and we have

(>n r.C)I(aI) = 〈>n r.C〉I↑ (aej) < min{rI(aej), C
I(aej)} = min{rI(aI , ej), C

I(ej)}

since tail(aej) = ej 6= aI = prev(aej).

• If %j does not satisfy AN, then it is of the form b and we obtain

(>n r.C)I(aI) = ((>n r.C)(a))I(b) < min{(r(a, ∗))I(b), CI(b)} = min{rI(aI , bI), CI(bI)}.

If we consider equivalence classes of individual names as roots for Ic, all such bI are different.

This again contradicts the semantics of (>n r.C)I(aI).

Lemma 6.2. If O is consistent, then it has a tableau, and if it has a countable tableau, then O is consistent.

48



Proof. Let first I = (∆I , ·I) be a G-model of O. We construct the tableau (∆I ,A∗), where A∗ is the
set of all order assertions u ./ v such that u, v ∈ U(∆I) with uI ./ vI , where pI := p, C(d)I := CI(d),
r(d, e)I := rI(d, e), and (¬r(d, e))I := 1 − rI(d, e). By construction, A∗ is satisfiable, and hence we only
need to prove that it satisfies the conditions (T1)–(T22) of Definition 6.1. This can be verified by a trivial,
but lengthy, case analysis, very similar to the proof of Lemma A.2. For example, if (∀Aq.C)(d) occurs in A∗
and q is final, then we know that (‖Aq‖, ε) = 1, and hence

(∀Aq.C)I(d) = inf
w∈rol(O)∗

inf
e∈∆I

wI(d, e)⇒ CI(e) 6 εI(d, d)⇒ CI(d) = CI(d).

By our construction, this means that (∀Aq.C)(d) 6 C(d) is contained in A∗, and thus (T13) is satisfied.
For the second part of the lemma, let (∆,A∗) be a tableau where ∆ is countable, and hence U(∆) and A∗

are also countable. Since A∗ is satisfiable, it has a model �∗. Since this model is an element of order(U(∆)),
there must exist a mapping v : U(∆)→ [0, 1] with the following properties:

(P1) for all p ∈ val(O), we have v(p) = p;

(P2) for all α, β ∈ U(∆), we have v(α) 6 v(β) iff α �∗ β; and

(P3) for all α ∈ U(∆), we have v(inv(α)) = 1− v(α).

We now define the G-interpretation I as follows, for all a ∈ ind(O), A ∈ sub(O) ∩ NC, and x ∈ ∆:

• ∆I := ∆;

• aI := a; and

• AI(x) := v(A(x)) if A(x) occurs in A∗, and AI(x) := 0 otherwise.

The interpretation of all other individual names and concept names can be fixed arbitrarily. For the role
names r ∈ rol(O) ∩ NR, we first define a “simple” G-interpretation I0 as follows: rI0(x, y) := v(r(x, y)) if
r(x, y) occurs in A∗, and rI0(x, y) := 0 otherwise. By (P2), for every inverse role r− ∈ rol(O) for which
r−(x, y) occurs in A∗, we have

(r−)I0(x, y) = rI0(y, x) = v(r(y, x)) = v(r−(x, y)),

since we identify the latter two assertions; this is similar to the definition of rI0 . We now use the automa-
ton Ar to “complete” I0 with additional links as follows: we set

rI(x, y) := sup
w∈rol(O)+

min{(‖Ar‖, w), wI0(x, y)} (A.8)

for all x, y ∈ ∆. Note that this expression is equal to rI0(x, y) if r is simple: by Proposition 4.5, we have
(‖Ar‖, s) = p whenever s vp r, (‖Ar‖, r) = 1, and (‖Ar‖, w) = 0 for all other words w, and moreover (T21)
yields

min{(‖Ar‖, r), rI0(x, y)} = rI0(x, y) > min{p, sI0(x, y)} = min{(‖Ar‖, s), sI0(x, y)}.

The expression (A.8) can also be used to evaluate inverse roles due to the semantics of role chains, the fact
that Ar− is a mirrored copy of Ar (see Section 4), and Proposition 4.3.

To show that I is a G-model of O, we first prove the following claim by induction on the structure of C:

For all x ∈ ∆ and C ∈ sub(O) for which C(x) occurs in A∗, we have CI(x) = v(C(x)). (A.9)

For most concept constructors, this easily follows from the conditions in Definition 6.1 and the fact that �∗,
and hence v, satisfies all entailments of A∗.

For negation, assume that (¬C)(x) occurs in A∗. We get

(¬C)I(x) = 1− CI(x) = 1− v(C(x)) = v((¬C)(x))

49



by (T3), (P3), and the induction hypothesis.
For any ∃s.Self ∈ sub(O) such that (∃s.Self)(x) occurs in A∗, we have

(∃s.Self)I(x) = sI(x, x) = sI0(x, x) = v(s(x, x)) = v((∃s.Self)(x))

since s is simple and we treat s(x, x) and (∃s.Self)(x) synonymously.
Assume now that (∀r.C)(x) occurs in A∗. By (T14), there must be a y0 ∈ ∆ such that

v((∀r.C)(x)) > v(r(x, y0))⇒ v(C(y0)) = rI0(x, y0)⇒ CI(y0) > rI(x, y0)⇒ CI(y0).

Hence, y0 can act as a witness for (∀r.C)I(x) if we can show that the latter implication is > v((∀r.C)(x))
for all elements y ∈ ∆. For this purpose, we consider the remaining tableau conditions for value restrictions.
By (T10), we get

rI(x, y)⇒ CI(y) =
(

sup
w∈rol(O)+

min{(‖Ar‖, w), wI0(x, y)}
)
⇒ CI(y)

= inf
w∈rol(O)+

min{(‖Ar‖, w), wI0(x, y)} ⇒ CI(y)

(∗)
> v((∀Ar.C)(x))

> v((∀r.C)(x)).

as required, if we can show (∗), i.e. it remains to show that

min{(‖Ar‖, w), wI0(x, y)} ⇒ CI(y) > v((∀Ar.C)(x))

holds for all w = r1 . . . rn ∈ rol(O)+. If y is not connected to x, i.e. we have wI0(x, y) = 0 for all such w,
then this is trivial. The claim for all other y can be shown exactly as in the proof of Lemma A.1.

Consider now a number restriction for which (>n r.C)(x) occurs in A∗. Recall that r must be simple,
and hence we have rI = rI0 . If, for some y ∈ ∆, r(x, y) does not occur in A∗, then we know that
v((>n r.C)(x)) > 0 = min{rI(x, y), CI(y)}. By (T15), (T16), and the induction hypothesis, we know that
there are at most n−1 elements y ∈ ∆ for which min{rI(x, y), CI(y)} is strictly greater than v((>n r.C)(x)).
This means that for any n different elements y1, . . . , yn ∈ ∆, we have

v((>n r.C)(x)) >
n

min
i=1

min{rI(x, yi), C
I(yi)}.

Hence, to prove v((>n r.C)(x)) = (>n r.C)I(x), it suffices to find n witnessing elements where the latter
inequation holds with = instead of only >. Their existence follows directly from (T14).

With the help of (A.9), it is now easy to show that I satisfies all axioms of O.

Theorem 6.8. Every sequence of applications of the tableau rules to G0 terminates. Moroever, if the tableau
rules can be applied to G0 in such a way that a complete and clash-free completion graph is obtained, then
O has a countable tableau. Finally, if O has a tableau, then the tableau rules can be applied to G0 in such a
way that a complete and clash-free completion graph is obtained.

We prove the three parts of this result separately.

Lemma A.3. Every sequence of applications of the tableau rules to G0 terminates.

Proof. Let m := |sub(O)|, k := |rol(O)|, n be the maximal number occurring in number restrictions in
sub(O), ` := |ind(O)|, and o := |val(O)|. Recall that in the worst case m is exponential in the size of the role
hierarchy, and exponential in n if numbers are given in binary encoding. However, the exponential blowup
in n is irrelevant since each set L(x) can contain at most one additional at-least restriction >mr.C for each
>n r.C that occurs in O.
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Observe first that the relation N restricted to the blockable nodes is always tree-shaped. More precisely,
such trees are rooted in nominal nodes and leaves may have outgoing N -edges to nominal nodes. To see this,
assume that the application of one of the tableau rules destroys this property, i.e. creates a completion graph
with a blockable node x that has two different predecessors, i.e. (y1, x), (y2, x) ∈ N . Then the rule that
was applied must be a shrinking rule, and it must further be the case that y1 and y2 each had a blockable
successor, x and x′, respectively, and x′ was merged into x by the rule (¬>) (the other two shrinking rules
do merge two blockable nodes). But then there must be a common neighbor z of x and x′ such that L(z)
entails (>n r.C)(z) < min{r(z, x), C(x)} and (>n r.C)(z) < min{r(z, x′), C(x′)}. This means that z is a
nominal node since otherwise the structure among blockable nodes would already have been non-tree-shaped
before. Furthermore, we must have either (x, z) ∈ N or (x′, z) ∈ N since otherwise either z = y1 = y2 or
either x or x′ already had two different predecessors. This means that there must be m 6 n − 1 nominal
neighbors z1, . . . , zm with zi 6=· zj , 1 6 i < j 6 m, and L(z) entails (>(m+ 1) r.C)(z) < min{r(z, zi), C(zi)},
1 6 i 6 m; otherwise the rule (NN) would be applicable and would have been applied before (¬>). But
then immediately afterwards the rule (¬>o) would have to be applied, and would merge x and x′ into one
of the nominal nodes z1, . . . , zm, thus invalidating our assumption.

Further observe that nodes and elements from node labels can only be removed by the shrinking rules,
and new nodes can only be added by the generating rules. Moreover, each generating rule can be triggered
at most once for each concept in sub(O) occurring in the label of a node x. For the rules involving role
connections to neighboring nodes, this observation is due to the fact that, if a neighbor y of x is merged into
another node z, then z inherits all relevant order assertions from y, and either z is then a neighbor of x (if
x is a nominal node or y is a successor of x) or x is removed by pruning (if x is a blockable node and x is a
successor of y). This means that each node can have at most mn blockable successors.

The next crucial observation is that blocking, which can occur only within a path consisting only of
blockable nodes, occurs after at most λ := 22(o+2m+4k+2)2 + 1 steps. For this, it suffices to determine the
total number of possible order assertions (not involving min or ⇒, and using only 6 or >) that can be
formulated about two neighboring nodes. The underlying order structure contains o+2m+4k+2 elements,
and hence there are 2(o+ 2m+ 4k + 2)2 such order assertions. This means that each N -chain of blockable
nodes must contain a directly blocked node after at most λ steps. This implies that all blockable subtrees
of the completion graph have branching degree at most mn and depth at most λ.

The last step is to show that the number of nominal nodes is bounded by O(`(mn)λ). The proof of this
proceeds as in [30]: The rule (NN) can initially only be triggered due to a newly created nominal node x,
which must be of level 0 since the only individual names occurring in sub(O) are those in ind(O). Afterwards,
it may be applied to predecessors of x that were originally blockable but were then merged into nominal
neighbors of x. Since the length of such a chain of blockable nodes is at most λ, the rule (NN) can be applied
only to nominal nodes of level below λ. Furthermore, this rule can be applied at most m times to each node
of level i (or its heirs), each time generating at most n new nominals, and hence at most `(mn)i+1 nominal
nodes of level i + 1. Since it can only be applied up to level λ, this gives an upper bound of O(`(mn)λ)
new nominal nodes. Additionally, each nominal node may be the root of a blockable tree of size O((mn)λ).
Hence, the total number of nodes in a completion graph is finite, and thus each completion graph must
become complete after finitely many steps.

We now prove that the algorithm correctly decides consistency of O (cf. Lemma 6.2).

Lemma A.4. If the tableau rules can be applied to G0 in such a way that a complete and clash-free completion
graph is obtained, then there exists a countable tableau for O.

Proof. Assume that the tableau rules have been applied to G0, resulting in a complete and clash-free com-
pletion graph G = (∆,∆o,N ,L,Lo, 6=· ). We first modify the labeling function for all nominal nodes x, by
removing all assertions from L(x) that refer to blockable nodes, and adding all entailments about nominal
nodes that may have been lost in this process. More formally, we first add all order assertions over Uo that
are entailed by L(x) to Lo, and then define L′(x) := ∅; note that this new label still implicitly includes all
order assertions from Lo. The labels of the blockable nodes are not affected.
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This construction allows a better separation of the behavior of the nominal nodes from that of the
blockable nodes. Observe that all relevant order assertions that refer to the connection between a nominal
node x and a blockable neighbor y have already been transferred to L(y) by the rule ( ). Furthermore, G is
still clash-free after this modification; however, it may not be complete anymore for the nominal nodes. For
example, although a nominal node may have forgotten about a blockable witness for a value restriction, the
witness itself still has all relevant information. The blocking relationships between nodes are not affected
since they do not involve nominal nodes.

We now construct a countable tableau (∆′,A∗) of O by following the structure of N and, at each directly
blocked node x, unraveling the structure by replacing x with a copy of an ancestor that blocks it. At the
same time, we will construct a function f : ∆′ → ∆ that specifies which node was used to construct each
element of ∆′.

We initially set

• ∆′ := {x ∈ ∆ | x is not blocked},

• A∗ :=
⋃
x∈∆′ L′(x), and

• f(x) := x for all x ∈ ∆′,

and assume first that A∗ is unsatisfiable. According to Lemma 2.2, this can be the case only because of a
sequence of elements α1 E1 · · · En−1 αn, where Ei ∈ {<,6}, each order assertion αi Ei αi+1, 1 6 i 6 n−1,
is entailed by some L′(xi) with xi ∈ ∆′, we have α1 = αn, and at least one of the Ei is a strict inequality (<).
Let this be a sequence that has minimal length among all sequences with this property. We show the following
properties:

(a) We have n > 2. Otherwise, α1 <1 α1 would be entailed by L′(x1), which contradicts the clash-freeness
of G.

(b) We have xi 6= xi+1 for all i, 1 6 i 6 n − 2, and xn−1 6= x1. Otherwise, by (a) we would have a
situation like α1 E1 α2 E2 α3 (modulo cyclic index shifts), where both order assertions are entailed
by the same L′(x). But then also α1 E α3 would be entailed by L′(x), where E is < if < ∈ {E1,E2},
and otherwise it is 6. But this shows the existence of a shorter sequence with the same properties as
before, in contradiction to our minimality assumption.

(c) None of the αi that belongs to Uo. Otherwise, by (a) we would have a situation like α1 E1 α2 E2 α3,
where α1 ∈ Uo. But then we would have α1, α2 ∈ U(x2); in particular, if x2 is a nominal node, then
we would have α1, α2 ∈ Uo due to our modification of the labels. But then the rule ( ) implies that
α1 E1 α2 would also entailed by L′(x2), which contradicts (b).

Since the (modified) labels of nominal nodes are restricted to Lo, (c) implies that the xi are all blockable
nodes. Furthermore, since αi ∈ U(xi−1) ∩ U(xi), 2 6 i 6 n − 1, and α1 = αn ∈ U(x1) ∩ U(xn−1), each
pair (xi−1, xi), 2 6 i 6 n− 1, and (x1, xn−1) must be neighbors. The tree structure of N on the blockable
nodes and (b) imply that there is a situation like α1 E1 α2 E2 α3 E3 α4 such that x1 = x3. Hence, we have
α2, α3 ∈ U(x1), which shows by ( ) that α1 E α4 is already entailed by L′(x1), where E is obtained as in
the proof of (b). But this again contradicts the minimality of n.

This shows that the initial tableau constructed above is satisfiable. We now iteratively expand it by
unraveling N at the blocked nodes. Let x′ ∈ ∆′ be such that f(x′) has a directly blocked successor x in G
that is not yet represented in our tableau, i.e. there is no x′′ ∈ ∆′ such that f(x′′) = x and x′′ is connected
to x′ by some role assertions. Let further x@ be the name that is used in A∗ to refer to this still missing
successor of x′, y ∈ ∆ be a node that blocks x in G, and y′ be the predecessor of y in N . Recall that
y′, y, f(x′), x, and all nodes in between are blockable. Consider now the subtree ∆y ⊆ ∆ consisting of
all blockable descendants of y that are not blocked. To distinguish these nodes from those already present
in ∆′, for each blockable node z occurring in L′(v) for some v ∈ ∆y, let z@ be a unique new node name that
does not yet occur in ∆′. We now do the following:
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• add {z@ | z ∈ ∆y} to ∆′;

• replace all occurrences x@ in A∗ by y@ and add
⋃
z∈∆y

L′(z)@ to A∗, where L′(z)@ is obtained
from L′(z) by replacing all occurrences of f(x′) by x′, and of any other blockable nodes z by z@; and

• set f(z@) := z for all z ∈ ∆y.

The resulting set A∗ is such that it looks as if x has never been blocked, but rather that the tableau rules
have been applied to it and its successors without restrictions. Assume now that A∗ has become unsatisfiable
by this construction, and hence there is a sequence α1 E1 · · · En−1 αn as above, where n is minimal. Since
the original A∗, and hence also

⋃
z∈∆y

L′(z)@, are satisfiable, it must be the case that this sequence involves
nodes from the previous ∆′ as well some of the form z@ for z ∈ ∆y. We can show the properties (a)–
(c) as before. Moreover, the tree-shape of the connections between blockable nodes is maintained by our
construction. To derive a contradiction in the same way as above, it suffices to note that due to the blocking
condition all order assertions shared by f(x′) and x′ are also shared by x′ and y@ (after renaming x@ to y@

and f(x′) to x′), and hence L′(y)@ and the set corresponding to L′(f(x′)) in A∗ behave as if the rule ( )
has been applied exhaustively.

If we continue this process infinitely, taking care that every directly blocked node is unraveled eventually,
we obtain the final tableau (∆′,A∗). The set A∗ is satisfiable due to the compactness theorem of first-order
logic. It remains to verify the tableau conditions. It is easy to verify that the local conditions (T1)–(T3),
(T5), (T7), (T8), (T10), (T12), (T13), (T17), and (T20) are satisfied due to the corresponding tableau rules.
We consider the remaining ones:

(T9) If x ∈ ∆′ is such that (∀r.C)(x) occurs in A∗, then f(x) is not blocked in G. Hence, by the rule (∀)
there must be a safe neighbor y ∈ N (x) such that L(x) entails (∀r.C)(f(x)) > r(f(x), y)⇒ C(y).
Consider first the case that x is blockable. If y is not blocked, then we have directly introduced (a
copy y′ of) y into ∆′, together with (the copy x of) f(x), and the (renamed) entailment still holds
in A∗. If y is a successor of x, then it may be the case that y is directly blocked in G. But then we
have introduced a node y′ into ∆′ that can serve as a replacement for this missing successor, i.e. A∗
entails (∀r.C)(x) > r(x, y′)⇒ C(y′) due to the blocking condition.
If x is a nominal node, then we know that y is not blocked since it is a safe neighbor of x. Nevertheless,
it may be that we have removed from L(x) some assertions that were necessary to derive the above
entailment; this can only be the case if y is blockable. However, by the rule ( ), this entailment has
been transferred to L(y), and is still present in L′(y), which is why it is still entailed by A∗.

(T11) If (∀A.C)(x) and r(x, y) occur in A∗, then the required entailment is provided by the rule (∀2).
Again, the modification of L to L′ for the nominal nodes is rendered irrelevant by the rule ( ).

(T14) This case can be handled by similar arguments as for (T9). Additionally, the n safe neighbors created
by the rule (>) are still distinct in ∆′ since they can never be merged.

(T15) Assume that (>n r.C)(x) occurs in A∗ and there are different y1, . . . , yn ∈ ∆′ such that A∗ entails
(>n r.C)(x) < min{r(x, yi), C(yi)}. By our construction, we know that (>n r.C)(f(x)) occurs in
L(f(x)) and there exist n neighbors y′1, . . . , y′n of f(x) (which are possibly blocked) for which similar
assertions are entailed by L(f(x)). Since G is clash-free, there must be two of these neighbors that
are not in the relation 6=· , and hence the rule (¬>) is applicable to G. This contradicts our assumption
that G is complete.

(T18) For each a ∈ ind(O), the existence of exactly one nominal node for a is due to the definition of the
initial completion graph G0, clash-freeness of G, the rule (o), and our construction of the tableau.

(T19) We consider the example of an assertion r(a, b) > C(c) in A. In G0, there exist nodes a, b, c that are
all neighbors, and each label entails r(a, b) > C(c). Due to merging, in G there exist heirs xa, xb, xc
of these original nodes, which inherit the neighbor relationships as well as the required entailment.
Hence, A∗ also entails r(xa, xb) > C(xc). The proofs for the other kinds of assertions are similar.
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Finally, (T4), (T6), (T16), (T21), and (T22) can be shown using similar arguments.

The other direction is easier to show.

Lemma A.5. If there is a tableau for O, then the tableau rules can be applied to G0 in such a way that a
complete and clash-free completion graph is obtained.

Proof. We use the tableau (∆′,A∗) for O to guide the application of the completion rules to G0. We will
maintain a function f : ∆→ ∆′ that matches the nodes of our completion graph to the nodes of the tableau,
such that the following conditions are satisfied:

(i) If α ./ β occurs in L(x) and α, β do not involve number restrictions or nominals that do not occur
in O, then A∗ entails f(α) ./ f(β), where f(α) is obtained from α by replacing all nodes according
to f .

(ii) If x 6=· y, then f(x) 6= f(y).

(iii) If >mr.C ∈ sub(O) does not occur in O and (>mr.C)(x) occurs in L(x), then there are exactly m−1
elements y ∈ ∆′ such that A∗ entails

(>n r.C)(f(x)) < min{r(f(x), y), C(y)}.

For each (>mr.C)(x) occurring in L(x) for which >mr.C does not occur in O, we know that L(x) entails
(>mr.C)(x) = (>n r.C)(x) for some >n r.C that does occur in O. Hence, (i) and the satisfiability of A∗
imply that all node labels of our completion graph will be satisfiable. Furthermore, clashes due to number
restrictions are ruled out by (i)–(iii) and (T15). Finally, nominals behave correctly due to (i), (ii), and (T18).
Hence, our final completion graph will be clash-free.

For the initial completion graph, we set f(a) := xa for all ind(O), where xa is the nominal node that
exists by (T18). Due to (T18) and (T19), this mapping satisfies all our conditions. We now show by
induction on the sequence of rule applications how the tableau rules can be applied in order to maintain the
conditions (i)–(iii). For most of the tableau rules, it is trivial to show that they can be applied in such a way
that the conditions remain satisfied. For the rules that have to make nondeterministic choices because of the
semantics of ⇒ and min (i.e. the rules (u), (→), (vT ), (vR), (dis), (∀2), (∀ε2), (∃2), (∃ε2), (ch), and (cho)),
we know by the corresponding conditions of Definition 6.1 and our semantics that we can always choose
one of the alternatives such that (i) is not violated. It is also clear that the rule ( ) does not affect this
condition.

Consider now the rule (>); the arguments for (∃) and (∀) are similar. Assume that we have to apply this
rule because (>n r.C)(x) occurs in L(x), and hence by (i) the element (>n r.C)(f(x)) occurs in A∗. Due
to (T14), there are at least n elements y1, . . . , yn ∈ ∆′ such that A∗ entails (>n r.C)(x) 6 min{r(x, y), C(y)},
and hence we can introduce n new neighbors y′1, . . . , y′n according to (>) and set f(y′i) := yi, 1 6 i 6 n, in
order to keep the conditions (i)–(iii) satisfied.

For the shrinking rule (¬>o), consider any (>n r.C)(x), y, and z1, . . . , zn−1 as in the preconditions of
this rule. Then by (iii) or (i) and (T15), we know that ∆′ contains at most n − 1 nodes z for which A∗
entails (>n r.C)(f(x)) < min{r(f(x), z), C(z)}. Furthermore, by (i), the nodes f(y), f(z1), . . . , f(zn−1) all
satisfy this condition. By (ii), this implies that there is an index i, 1 6 i 6 n − 1, such that f(y) = f(zi),
and hence y .

= zi. This shows that the rule (¬>o) can be applied in such a way that all conditions remain
satisfied. The same can be shown for (¬>) using similar arguments.

For (o), assume that there exist an a ∈ NI and two nodes x, y whose labels entail {a}(x) > 1 and
{a}(y) > 1, respectively. This can only be the case for a ∈ ind(O) since the rule (NN) always introduces
new individual names. Hence, (i) and (T18) imply that π(x) = π(y), and thus we can again merge these
two nodes.

Finally, consider the rule (NN). If all its preconditions are satisfied by (>n r.C)(x) and y, then we know
that it has not been applied to this number restriction at x (or any node that was merged into x) before.
Hence, >n r.C must occur in O, and thus (i) and (T15) imply that there are exactly m 6 n − 1 elements
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z′1, . . . , z
′
m ∈ ∆′ for which L(x) entails (>n r.C)(x) < min{r(f(x), z′i), C(z′i)}, 1 6 i 6 m. This shows that we

can apply the rule and create m new nominal nodes z1, . . . , zm ∈ ∆, for which we set f(zi) := z′i, 1 6 i 6 m,
without violating the conditions.

Using Lemma A.3, this shows that after finitely many steps we will have produced a complete and
clash-free completion graph.

55


	Introduction
	Preliminaries
	Gödel Fuzzy Logic and Order Structures
	G-SROIQ
	Regular Role Hierarchies
	Concepts
	Witnessed Interpretations
	Ontologies
	Sublogics of G-SROIQ


	A First Example
	Reduction to Classical DLs
	The Tableau Algorithm

	Weighted Automata Recognizing Complex Role Inclusions
	A Reduction to Classical SROIQ
	The Reduction
	Correctness and Complexity

	A Tableau Algorithm
	Tableaux
	Tableau Rules

	Related Work
	Conclusions
	Proofs

