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Abstract. Description logics (DLs) are well-known knowledge represen-
tation formalisms focused on the representation of terminological knowl-
edge. A probabilistic extension of a light-weight DL was recently pro-
posed for dealing with certain knowledge occurring in uncertain con-
texts. In this paper, we continue that line of research by introducing the
Bayesian extension BALC of the DL ALC. We present a tableau-based
procedure for deciding consistency, and adapt it to solve other probabilis-
tic, contextual, and general inferences in this logic. We also show that
all these problems remain ExpTime-complete, the same as reasoning in
the underlying classical ALC.

1 Introduction

Description logics (DLs) [1] are a family of logic-based knowledge representation
formalisms designed to describe the terminological knowledge of an application
domain. Due to their clear syntax, formal semantics, and the existence of effi-
cient reasoners alongside their expressivity, they have been successfully applied
to model several domains, especially from the biomedical sciences. However, in
their classical form, these logics are not capable of dealing with uncertainty,
which is an unavoidable staple in real-world knowledge. To overcome this limi-
tation, several probabilistic extensions of DLs have been suggested in the litera-
ture. The landscape of probabilistic extensions of DLs is too large to be covered
in detail in this work. These logics differentiate themselves according to their
underlying logical formalism, their interpretation of probabilities, and the kind
of uncertainty that they are able to express. For a relevant, although slightly
outdated survey, where all these differences are showcased, see [16].

A recently proposed probabilistic DL is the Bayesian extension BEL of the
light-weight EL. This logic focuses on modelling certain knowledge that holds
only in some contexts, together with uncertainty about the current context. One
advantage of the formalism underlying BEL is that it separates the contextual
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knowledge, which is de facto a classical ontology, from the likelihood of observ-
ing this context. As a simple example of the importance of contextual knowl-
edge, consider the knowledge of construction techniques and materials that vary
through time. In the context of a modern house, asbestos and modern pipes are
not observable, while some classes of houses built during the 1970s do contain
both. However, in all contexts we know that asbestos and lead in drinking water
have grave health effects. Still, when confronted with a random house, one might
not know to which of these contexts it belongs, and by extension whether it is
safe to live in. But construction data may be used to derive the probabilities of
these contexts.

To allow for complex probabilistic relationships between the contexts, their
joint probability distribution is encoded via a Bayesian network (BN) [18]. This
logic is closely related to the probabilistic extension of DL-Lite proposed in [12],
but uses a less restrictive semantics (for a discussion on the differences between
these logics, see [11]). Another similar proposal is Probabilistic Datalog± [13],
with the difference that uncertainty is represented via a Markov Logic Network,
instead of a BN. Since the introduction of BEL, the main notions behind it
have been generalised to arbitrary ontology languages [8]. However, it has also
been shown that efficient and complexity-optimal reasoning methods can only be
achieved by studying the properties of each underlying ontology language [11].

In this paper, we continue with that line of research and study the Bayesian
extension of the propositionally closed DL ALC. As our main result, we present
an algorithm, based on a glass-box modification of the classical tableaux method
for reasoning in ALC, that outputs a description of all the contexts encoding
inconsistent knowledge. Using this algorithm, we describe an effective method
for deciding consistency of a BALC knowledge base. We also provide a tight
ExpTime complexity bound for this problem.

This is followed by a study of several crisp and probabilistic variants of the
standard DL decision problems; namely, concept satisfiability, subsumption, and
instance checking. Interestingly, our work shows that all our problems can be re-
duced to some basic computations over a context describing inconsistency, and
hence are ExpTime-complete as well. These complexity bounds are not com-
pletely surprising, given the high complexity of the classical ALC. However, our
tableaux-based algorithm has the potential to behave better in practical scenar-
ios. This work details and deepens results that have previously been presented
in [5, 6]

2 Preliminaries

We start by briefly introducing Bayesian networks and the description logic (DL)
ALC, which form the basis for BALC.

Bayesian networks (BNs) are graphical models capable of representing the joint
probability distribution (JPD) of several discrete random variables in a compact
manner [18]. Given a random variable X, val(X) denotes the set of values that
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Fig. 1. A Bayesian network with three Boolean variables.

X can take. For x ∈ val(X), X = x is the valuation of X taking the value x.
This notation is extended to sets of variables in the obvious way. Given a set
of random variables V, a world ω is a set of valuations containing exactly one
valuation for every random variable X ∈ V. A V -literal is an ordered pair of
the form (Xi, x), where Xi ∈ V and x ∈ val(Xi). V -literals generalise Boolean
literals denoted as x or ¬x for the random variableX. For simplicity, in this paper
we will often use the notation X for (X,T ) and ¬X for (X,F ). A V -context is
any set of V -literals. It is consistent if it contains at most one literal for each
random variable. We will often call V -contexts primitive contexts.

A Bayesian network is a pair B = (G,Θ) where G = (V,E) is a directed
acyclic graph (DAG) and Θ is a set of conditional probability distributions for
every variable X ∈ V given its parents π(X) on the DAG G; more precisely,
Θ = {P (X = x|π(X) = x′) | X ∈ V }. B encodes the JPD of V through the
chain rule P (X = x) =

∏
Xi∈V P (Xi = xi | π(Xi) = xj).

Figure 1 depicts a BN with three random variables denoting the likelihood
of different characteristics of a construction: X stands for a post-1986 building,
Y for a renovated building, and Z for the presence of lead pipes. In this case,
P (X,Y, Z) = 0.7 ·0.1 ·0 = 0; i.e., a renovated post-1986 house has no lead pipes.

The description logic ALC is the smallest propositionally closed DL [1,20]. It is
based on concepts which correspond to unary predicates of first-order logic, and
roles corresponding to binary predicates. Formally, given the mutually disjoint
sets NI , NC , and NR of individual, concept, and role names, respectively, ALC
concepts are built by the grammar rule C ::= A | ¬C | CuC | CtC | ∃r.C | ∀r.C,
where A ∈ NC and r ∈ NR. ALC axioms are either general concept inclusions
(GCIs) of the form C v D, concept assertions C(a), or role assertions r(a, b)
where a, b ∈ NI , r ∈ NR, and C,D are concepts. An ontology is a finite set
of axioms. We sometimes partition an ontology into the TBox T composed
exclusively of GCIs, and the ABox A containing all concept and role assertions.

The semantics of ALC is defined by interpretations, which are pairs of the
form I = (∆I , ·I) where ∆I is a non-empty set called the domain and ·I is the
interpretation function that maps every a ∈ NI to an element aI ∈ ∆I , every
A ∈ NC to a set AI ⊆ ∆I and every r ∈ NR to a binary relation rI ⊆ ∆I×∆I .
The interpretation function is extended to arbitrary concepts by defining for any
two concepts C,D:



– (¬C)I := ∆I \ CI ,
– (C uD)I := CI ∩DI ,
– (C tD)I := CI ∪DI ,
– (∃r.C)I := {δ ∈ ∆I | ∃η ∈ CI .(δ, η) ∈ rI}, and
– (∀r.C)I := {δ ∈ ∆I | ∀η ∈ ∆I .(δ, η) ∈ rI ⇒ η ∈ CI}.

This interpretation satisfies the GCI C v D iff CI ⊆ DI , the concept assertion
C(a) iff aI ∈ CI and the role assertion r(a, b) iff (aI , bI) ∈ rI . I is a model
of the ontology O iff it satisfies all axioms in O. An important abbreviation in
ALC is the bottom concept ⊥ := Au¬A, where A is any concept name. For any
interpretation I, ⊥I = ∅.

As a simple example, one can express the notion that water pipes do not
contain lead through the GCI Pipe v ∀contains.¬Lead.

3 BALC

BALC is a probabilistic extension of ALC, in which axioms are considered to
hold only in a given (possibly uncertain) context expressed through annotations.

Definition 1 (KB). Let V be a finite set of discrete random variables. A
V -restricted axiom (V -axiom) is an expression of the form ακ, where α is an
ALC axiom and κ is a V -context. A V -ontology is a finite set of V -axioms. A
BALC knowledge base (KB) over V is a pair K = (O,B) where B is a BN over
V , and O is a V -ontology.

To define the semantics of BALC, we extend the notion of an interpretation
to also take contexts into account, and interpret the probabilities based on a
multiple-world approach. Formally, a V -interpretation is a tuple V = (∆V , ·V , vV)
where (∆V , ·V) is an ALC interpretation and vV : V → ∪X∈V val(X) is a valua-
tion function such that vV(X) ∈ val(X).

Given a valuation function vV , a Bayesian world ω, and a context κ we denote
vV = ω when vV assigns to each random variable the same value as it has in ω;
vV |= κ when vV(X) = x for all (X,x) ∈ κ; and ω |= κ when there is ω = vV

such that vV |= κ.

Definition 2 (Model). The V -interpretation V is a model of the V -axiom ακ,
(V |= ακ), iff (i) vV 6|= κ, or (ii) (∆V , ·V) satisfies α. It is a model of the ontology
O iff it is a model of all axioms in O.

Notice that BALC is a generalisation of ALC. The axiom α∅ holds in all contexts,
and hence every ALC ontology is also a V -ontology from BALC. In particular,
this means that reasoning in BALC should be at least as hard as doing so in
ALC. For brevity, for the rest of this paper we will abbreviate axioms of the form
α∅ simply as α. When it is clear from the context, we will omit the V prefix and
refer only to e.g., contexts, GCIs, or ontologies.

V -interpretations focus on only a single world, but KBs have information
about the uncertainty of being in one world or another. Probabilistic interpreta-
tions combine multiple V -interpretations and the probability distribution from
the BN to give information about the uncertainty of some consequences.



Definition 3 (Probabilistic model). A probabilistic interpretation is a pair
of the form P = (J ,PJ ), where J is a finite set of V -interpretations and PJ
is a probability distribution over J such that PJ (V) > 0 for all V ∈ J . The
probabilistic interpretation P is a model of the axiom ακ (P |= ακ) iff every
V ∈ J is a model of ακ. P is a model of the ontology O iff every V ∈ J is a
model of O.

The distribution PJ is consistent with the BN B if for every possible world
ω of the variables in V it holds that∑

V∈J ,vV=ω

PJ (V) = PB(ω),

where PB is the joint probability distribution defined by the BN B. The probabilis-
tic interpretation P is a model of the KB K = (O,B) iff it is a (probabilistic)
model of O, and is consistent with B.

Consider for example the KB K = (O,B) where B is the BN from Figure 1,
and O contains the axioms

Pipe v ∀contains.¬LeadX Pipe v ∀contains.¬LeadY

Pipe v ∃contains.LeadZ Water u ∃hasAlkalinity.Low v ¬DrinkableZ .

The axioms in the first row express that pipes in post-1986 (context X) and in
renovated buildings (context Y ) do not contain lead. The axioms in the second
row refer exclusively to the context of lead pipes (Z). In this case, our knowledge
is that pipes do contain lead, and that water with low alkalinity is not drinkable,
as it absorbs the lead from the pipes it travels on. Notice that the first two axioms
contradict the third one. This is not a problem because they are required to hold
in different contexts. Indeed, notice that any context that makes Z, and either
X or Y true has probability 0, and hence can be ignored in the construction of
a model.

A complex context φ is a finite non-empty set of primitive contexts. Note
that primitive contexts can be seen as complex ones; e.g., the primitive context
κ corresponds to the complex context {κ}. Given a valuation function vV and a
complex context φ = {α1, . . . , αn} we say that vV satisfies φ (written as vV |= φ)
iff vV satisfies at least one αi ∈ φ; in particular, if vV |= κ then vV |= {κ}. Thus,
in the following we assume that all contexts are in complex form unless explicitly
stated otherwise. Finally we say that φ entails ψ (φ |= ψ) iff for all vV such that
vV |= φ it follows that vV |= ψ. Or alternatively φ |= ψ iff for all Bayesian worlds
ω such that ω |= φ it follows that ω |= ψ.

Given complex contexts φ = {α1, . . . , αn} and ψ = {β1, . . . , βm} we define
the operations

φ ∨ ψ := φ ∪ ψ, and

φ ∧ ψ :=
⋃

α∈φ,β∈ψ

{α ∪ β} = {α ∪ β | α ∈ φ, β ∈ ψ}.



These operations generalise propositional disjunction (∨) and propositional con-
junction (∧), where disjunction has the property that either one of the two
contexts holds and conjunction requires that both hold. It is easy to see that for
all worlds ω and complex contexts φ, ψ it holds that (i) ω |= φ ∨ ψ iff ω |= φ or
ω |= ψ, and (ii) ω |= φ∧ψ iff ω |= φ and ω |= ψ. Two important special complex
contexts are top (>) and bottom (⊥), which are satisfied by all or no world,
respectively. If there are n consistent primitive contexts and κ is an inconsistent
context, these are defined as > := {α1, . . . , αn} and ⊥:= κ.

In the next section, we study the problem of consistency of a BALC KB, and
its relation to other reasoning problems.

4 Consistency

The most basic decision problem one can consider is consistency. That is, de-
ciding whether a given BALC KB K has a probabilistic model or not. To deal
with this problem, it is convenient to consider the classical ALC ontologies that
should hold at each specific world. Formally, given the BALC KB K = (O,B)
and the world ω, the restriction of O to ω is

Oω := {α | ακ ∈ O, ω |= κ}.

Recall that a probabilistic model P = (J ,PJ ) of K is a class of classical in-
terpretations associated to worlds (∆V , ·V , ω), such that (∆V , ·V) is a classical
model of Oω. Moreover, all the interpretations associated with the world ω must
add to the probability PB(ω) specified by B. Using this insight, we obtain the
following result.

Theorem 4. The BALC KB K = (O,B) is consistent iff for every world ω with
PB(ω) > 0 Oω is consistent.

Based on this result, we can derive a process for deciding consistency that pro-
vides a tight complexity bound for this problem.

Corollary 5. BALC KB consistency is ExpTime-complete.

Proof. There are exponentially many worlds ω. For each of them, we have to
check (classical) consistency of Oω (in exponential time) and that PB(ω) > 0,
which is linear in the size of B. ut

The algorithm described in the proof of this corollary is optimal in terms of
worst-case complexity, but it also runs in exponential time in the best case. In-
deed, it enumerates all the (exponentially many) Bayesian worlds. In practice, it
is infeasible to use an algorithm that requires exponential time on every instance.
For that reason, we present a new algorithm based on the tableau method origi-
nally developed for ALC. To describe this algorithm, we need to introduce some
additional notation.

We denote the context that describes all worlds ω such thatOω is inconsistent
as φ⊥K. That is ω |= φ⊥K iff Oω is inconsistent. Moreover, φB is a context such



u-rule if (C1 u C2)(x)φ ∈ A, and either C1(x)φ or C2(x)φ is A-insertable

then A′ := (A⊕ C1(x)φ)⊕ C2(x)φ

t-rule if (C1 t C2)(x)φ ∈ A, and both C1(x)φ and C2(x)φ are A-insertable

then A′ := A⊕ C1(x)φ, A′′ := A⊕ C2(x)φ

∃-rule if (∃R.C)(x)φ ∈ A, there is no z such that neither R(x, z)φ nor C(z)φ is
A-insertable, and x is not blocked

then A′ := (A⊕R(x, y)φ)⊕ C(y)φ, where y is a new individual name

∀-rule if {(∀R.C)(x)φ, R(x, y)ψ} ⊆ A, and C(y)φ∧ψ is A-insertable

then A′ := A⊕ C(y)φ∧ψ

v-rule if (C v D)φ ∈ O, x appears in A, and (¬C tD)(x)φ is A-insertable

then A′ := A⊕ (¬C tD)(x)φ

Fig. 2. Expansion rules for constructing φ⊥
K

that ω |= φB iff P (ω) = 0. Theorem 4 states that K is inconsistent whenever
there is a world that models both φ⊥K and φB. This is formalized in the following
result.

Theorem 6. The KB K is inconsistent iff φ⊥K ∧ ¬φB is satisfiable.

To decide consistency, it then suffices to find a method for deriving the contexts
φ⊥K and φB. For the former, we present a variant of the glass-box approach for
so-called axiom pinpointing [4, 15, 17], originally based on the ideas from [2].
This approach modifies the standard tableaux algorithm for ALC to keep track
of the contexts in which the derived elements in the tableau hold. In a nutshell,
whenever a rule application requires the use of an axiom from the ontology,
this fact is registered as part of a propositional formula. In our case, we need a
context, rather than a propositional formula, to take care of the multiple values
that the random variables take.

The algorithm starts with the ABox A from O. Recall that all the axioms
in A are labeled with a context. The algorithm then creates a set of ABoxes
A following the rules from Figure 2. As a pre-requisite for the execution of the
algorithm, we assume that all concepts appearing in the ontology are in nega-
tion normal form (NNF); that is, only concept names can appear in the scope
of a negation operator. This assumption is w.l.o.g. because every concept can be
transformed into NNF in linear time by applying the De Morgan laws, the du-
ality of the quantifiers, and eliminating double negations. Each rule application
chooses an ABox A ∈ A and replaces it by one or two new ABoxes that expand
A. We explain the details of these rule applications next.

An assertion αφ is A-insertable to A iff for all ψ such that αψ ∈ A, φ 6|= ψ.
In the expansion rules ⊕ is used as shorthand for A⊕αφ := (A\{αψ})∪{αφ∨ψ}
if αψ ∈ A and A∪ {αφ} otherwise. The individual x is an ancestor of y if there
is a chain of role assertions connecting x to y; x blocks y iff x is an ancestor of
y and for every C(y)ψ ∈ A, there is a φ such that C(x)φ ∈ A and ψ |= φ; y is
blocked if there is a node that block it.

The algorithm applies the expansion rules until A is saturated ; i.e., until no
rule is applicable to any A ∈ A. A contains a clash if {A(x)φ,¬A(x)ψ} ⊆ A for



some individual x and concept name A. We define the context

φA :=
∨

A(x)φ,¬A(x)ψ∈A

φ ∧ ψ,

which intuitively describes all the clashes that appear in A. When A is saturated,
we return the context φ⊥K =

∧
A∈A φA expressing the need of having clashes in

every ABox A for inconsistency to follow. It is important to notice that the
definition of a clash does not impose any constraints on the contexts φ and ψ
labelling the assertions A(x) and ¬A(x), respectively. Indeed, A(x) and ¬A(x)
could hold in contradictory contexts. In that case, the conjunction appearing in
φA would not be affected; i.e., this clash will not provide any new information
about inconsistency.

Informally, the formula φ⊥K corresponds to the clash formula (or pinpointing
formula) for explaining inconsistency of an ALC ontology [4,15]. The main differ-
ences are that the variables appearing in a context are not necessarily Boolean,
but multi-valued, and that the axioms in O are not labelled with unique vari-
ables, but rather with contexts already. Notice that the expansion rules in Fig-
ure 2 generalise the expansion rules for ALC, but may require new rule ap-
plications to guarantee that all possible derivations of a clash are detected. As
observed in [3,4], one has to be careful with termination of the modified method.
However, since all the assertions used are unary and binary, the sufficient termi-
nation conditions from [4,19] are satisfied. Hence we obtain the following result.

Theorem 7. The modified tableau algorithm terminates, and the context φ⊥K is
such that for every world ω, ω |= φ⊥K iff Kω is inconsistent.

We now turn our attention to the computation of the formula φB. Recall that
in a BN, the joint probability distribution is the product of the conditional
probabilities of each variable given its parents. Hence a world ω can only have
probability 0 if it evaluates some variable in X ∈ V and its parents π(X) to
values x and x, respectively, such that P (X = x | π(X) = x) = 0. Thus, to
compute φB it suffices to find out the cells in the conditional probability tables
in Θ with value 0.

Theorem 8. Let B = (V,Θ) be a BN, and define

φB :=
∨

P (X=x|π(X)=x)=0

(X,x) ∧
∧

Y ∈π(X)

(Y, y)

 .

Then for every world ω, ω |= φB iff PB(ω) = 0.

Notice that, in general, the context φB can be computed faster than simply enu-
merating all possible worlds. In particular, if the conditional probability tables
in Θ contain no 0-valued cell, then φB = ⊥; i.e., it is satisfied by no world.

Although consistency is a very important problem to be studied, we are in-
terested also in other reasoning tasks. In particular, we should also take into



account the contexts and the probabilities provided by the BN beyond the ques-
tion of whether they are positive or not. In the next section we study variants of
satisfiability and subsumption problems, before turning our attention to instance
checking.

5 Satisfiability and Subsumption

In this section, we focus on two problems that depend only on the TBox part
of an ontology, and hence assume for the sake of simplicity that the ABox is
empty. Thus, we will write a BALC KB as a pair (T ,B) where T is a TBox
and B is a BN. We are in general interested in understanding the properties and
relationships of concepts.

Given two concepts C,D and a BALC KB K, we say that C is satisfiable
w.r.t. K iff there exists a probabilistic model P = (J ,PJ ) of K s.t. CV 6= ∅ for
all V ∈ J . C is subsumed by D w.r.t. K iff for all models P = (J ,PJ ) of K and
all V ∈ J CV ⊆ DV . It is possible to adapt the well known reductions from the
classical case to show that these two problems are ExpTime-complete.

Theorem 9. Satisfiability and subsumption w.r.t. BALC KBs are ExpTime-
complete.

Proof. Let K = (T ,B) and C,D be concepts. It is easy to see that C is subsumed
by D w.r.t. K iff K′ = (T ∪ {(C u ¬D)(a)∅},B) is inconsistent, where a is an
arbitrary individual name. Similarly, C is satisfiable iff K′′ = (T ∪ {C(a)∅},B)
is consistent. ut

In the following, we study variants of these problems. For a more concise presen-
tation, we will present only the cases for subsumption. Analogous results hold
for satisfiability based on the fact that for every ALC interpretation I, it holds
that CI = ∅ iff CI ⊆ ⊥I . First we consider additional information about con-
texts; afterwards we compute the probability of an entailment, and then the
combination of both.

Definition 10 (contextual subsumption). Let K = (T ,B) be a BALC KB,
C,D concepts, and κ a context. C is subsumed in context κ w.r.t. K, denoted
as K |= (C v D)κ if every probabilistic model of K is also a model of (C v D)κ.

This is the natural extension of entailment to consider also the contexts. In our
setting, however, contexts provide a means to express and reason with probabil-
ities.

Definition 11 (subsumption probability). Let P = (J , PJ ) be a probabilis-
tic model of the KB K, κ a context, and C,D two concepts. The probability of
(C v D)κ w.r.t. P is

PP((C v D)κ) =
∑

V∈J ,V|=(CvD)κ

PJ (V).



The probability of (C v D)κ w.r.t. K is

PK((C v D)κ) = inf
P|=K

PP((C v D)κ).

C is positively subsumed by D in κ iff PK((C v D)κ) > 0; it is p-subsumed iff
PK((C v D)κ) ≥ p; it is exactly p-subsumed iff PK((C v D)κ) = p, and it is
almost certainly subsumed iff PK((C v D)κ) = 1.

That is, the probability of a subsumption in a specific model is the sum of the
probabilities of the worlds in which C is subsumed by D in context κ; notice
that this trivially includes all worlds where κ does not hold. In the case where K
is inconsistent we define the probability of all subsumptions as 1 to ensure our
definition is consistent with general probability theory (recall that inf(∅) = ∞
in general).

Contextual subsumption is related to subsumption probability in the obvious
way. Namely, a KB K entails a contextual subsumption iff the probability of the
subsumption in K is 1.

Theorem 12. Given a KB K, concepts C and D, and a context κ, it holds that:

K |= (C v D)κ iff PK((C v D)κ) = 1.

This is convenient as it provides a method of reusing our results from Section 4
to compute subsumption probabilities.

Theorem 13. Let K = (T ,B) be a consistent KB, C,D two concepts, and κ a
context. For the KB K′ = (T ∪ {C(a)κ,¬D(a)κ},B) it holds that

PK((C v D)κ) =
∑

ω|=φ⊥
K′

PB(ω) + 1− PB(κ).

Notice that the formula φ⊥K′ requires at most exponential space on the size of
T to be encoded. For each of the exponentially many worlds, computing PB(ω)
requires polynomial time due to the chain rule. Hence, overall, the computation
of the subsumption probabilities requires exponential time. Importantly, this
bound does not depend on how φ⊥K′ was computed. This provides an exponential
upper bound for computing the probability of a subsumption.

Corollary 14. The probability of a subsumption w.r.t. a KB can be computed
in exponential time on the size of the KB.

Obviously, an exponential-time upper bound for computing the exact probability
of a subsumption relation immediately yields an ExpTime upper bound for
deciding the other problems introduced in Definition 11. All these problems are
also generalisations of the subsumption problem in ALC. More precisely, given
an ALC TBox T , we can create the BALC KB K = (T ′,B) where T ′ contains
all the axioms in T labelled with the context x and B contains only one Boolean
node x that holds with probability 1. Given two concepts C,D T |= C v D iff



C is almost certainly subsumed by D in context x. Since subsumption in ALC is
already ExpTime-hard, we get that all these problems are ExpTime-complete.

In practice, however, it may be too expensive to compute the exact probabil-
ity when we are only interested in determining lower bounds, or the possibility
of observing an entailment; for instance, when considering positive subsumption.
Notice that, according to our semantics, a contextual GCI (C v D)κ will hold
in any world ω such that ω 6|= κ. Thus, if the probability of this world is positive
(PB(ω) > 0), we can immediately guarantee that PK((C v D)κ) > 0. Thus,
positive subsumption can be decided without any ontological reasoning for any
context that is not almost certain. In all other cases, the problem can still be
reduced to inconsistency.

Theorem 15. The concept C is positively subsumed by D in context κ w.r.t.
K = (T ,B) iff K′ = (T ∪ {C(a)κ,¬D(a)κ},B) is inconsistent or PB(κ) < 1.

Assuming that the KB K is consistent, the inconsistency in the KB K′ from
this theorem can only arise from the inclusion of the two assertions which are
required to hold in context κ. If the context κ is not known before hand, it is
also possible to leverage the inconsistency decision process, which is the most
expensive part of this method. Let K∅ := (T ∪ {C(a)∅,¬D(a)∅},B). That is, we
extend K with assertions negating the subsumption relation, which should hold
in all contexts. From Theorem 7 we conclude that φ⊥K∅

encodes all the contexts

in which C v D must hold. Notice that the computation of φ⊥K∅
does not depend

on the context κ but can be used to decide positive subsumption for any context.

Corollary 16. The concept C is positively subsumed by D in context κ w.r.t.
K = (T ,B) iff κ entails φ⊥K∅

or PB(κ) < 1.

Considering the probabilities of contextual subsumption relations may lead
to unexpected results arising from the contextual semantics. Indeed, it always
holds (see Theorem 15) that PK((C v D)κ) ≥ 1 − PB(κ). In other words, the
probability of a subsumption in a very unlikely context will always be very
high, regardless of the KB and concepts used. In some cases, it may be more
meaningful to consider a conditional probability under the assumption that the
context κ holds.

Definition 17 (conditional subsumption). Let P = (J , PJ ) be a probabilis-
tic model of the KB K, κ, λ two contexts with PB(λ) > 0, and C,D two concepts.
The conditional probability of (C v D)κ given λ w.r.t. P is

PP((C v D)κ | λ) =

∑
V∈J ,vV |=λ,V|=(CvD)κ PJ (V)

PB(λ)
.

The conditional probability of (C v D)κ given λ w.r.t. K is

PK((C v D)κ | λ) = inf
P|=K

PP((C v D)κ | λ).



This definition follows the same principles of conditioning in probability theory,
but extended to the open world interpretation provided by our model-based se-
mantics. Notice that, in addition to the scaling factor PB(λ) in the denominator,
the nominator is also differentiated from Definition 11 by considering only the
worlds that satisfy the context λ already.

Consider the numerator in the definition of conditional probabilities. Notice
that it is pretty similar to Definition 11, except that the sum restricts to only
the worlds that satisfy the context λ. Thus, the numerator can be obtained from
the contextual probability in the context κ∧λ excluding the worlds that violate
λ. More formally, we have that∑
V∈J ,vV |=λ,V|=(CvD)κ

PJ (V) =
∑

vV |=λ,vV 6|=κ

PJ (V) +
∑

vV |=λ∧κ,V|=CvD

PJ (V)

= PB(λ)− PB(λ ∧ κ) + PP((C v D)λ∧κ)− 1 + PB(λ ∧ κ)

= PP((C v D)λ∧κ) + PB(λ)− 1.

Thus we get the following result.

Theorem 18. PK((C v D)κ | λ) = PP((CvD)λ∧κ)+PB(λ)−1
PB(λ) .

In particular, this means that also conditional probabilities can be computed
through contextual probabilities, with a small overhead of computing the prob-
ability (on the BN B) of the conditioning context λ.

As in the contextual case, if one is only interested in knowing that the sub-
sumption is possible (that is, that it has a positive probability), then one can
exploit the complex context describing the inconsistent contexts which, as men-
tioned before, can be precompiled to obtain the contexts in which a subsumption
relation must be satisfied. However, in this case, entailment between contexts is
not sufficient; one must still compute the probability of the contextual subsump-
tion.

Corollary 19. Let K = (T ,B) be a consistent KB, C,D concepts, and κ, λ
contexts s.t. PB(λ) > 0. PK((C v D)κ | λ) > 0 iff PP((C v D)λ∧κ) > 1−PB(λ).

In other words, P ((C v D)κ | λ) > 0 iff C is p-subsumed by D in κ ∧ λ with
p = 1− PB(λ).

Analogously to Definitions 10, 11, and 17, it is possible to define the notions
of consistency of a concept C to hold in only some contexts, and based on it, the
(potentially conditional) probability of such a contextual consistency problem.
As mentioned already, it is well known that for every ALC interpretation I it
holds that CI = ∅ iff CI ⊆ ⊥I . Hence, all these problems can be solved through
a direct reduction to their related subsumption problem.

We now turn our attention to the problem of instance checking. In this prob-
lem, the ABox also plays a role. Hence, we consider once again ontologies O that
can have in addition to GCIs, concept and role assertions.



6 Instance Checking

We consider a probabilistic extension to the classical instance checking problem.
In BALC we call this problem probabilistic instance checking and we define both
a decision problem and probability calculation for it next.

Given a KB K and a context κ, the individual name a is an instance of
the concept C in κ w.r.t. K, written K |= C(a)κ, iff for all probabilistic models
P = (J , PJ ) of K and for all V ∈ J it holds that V |= C(a)κ. That is, if every
interpretation in P satisfies the assertion C(a)κ. Note that as before, instance
checking in ALC is a special case of this definition, that can be obtained by
considering a BN with only one variable that is true with probability 1. Notice
that, contrary to the case of satisfiability studied at the end of the last section,
it is not possible to reduce instance checking to subsumption since an instance
may be caused by ABox assertions. However, it may be reduced to consistency.

Theorem 20. Given a ∈ NI , a concept C, a context κ, and a KB K = (O,B),
K |= C(a)κ iff the KB K′ = (O ∪ {(¬C(a))κ},B) is inconsistent.

In particular, this means that instance checking is at most as hard as deciding
consistency. As mentioned already, it is also at least as hard as instance checking
in the classical ALC. Hence we get the following result.

Lemma 21. Instance checking in a BALC KB is ExpTime-complete.

Let us now consider the probabilistic entailments related to instance checking.

Definition 22 (instance probability). The probability of an instance in a
probabilistic model P = (J , PJ ) of the KB K is

PP(C(x)κ) =
∑

V∈J ,V|=C(x)κ

PJ (V).

The instance probability w.r.t. a KB K is

PK(C(x)κ) = inf
P|=K

PP(C(x)κ).

The conditional probability of an instance in a particular probabilistic model
P = (J , PJ ) is

PP(C(x)κ | λ) =

∑
V∈J ,vV |=λ,V|=C(x)κ PJ (V)

PB(λ)
,

The probability of the conditional instance in K is:

PK(C(x)κ | λ) = inf
P|=K

PP(C(x)κ | λ)

The probability of all instance checks for an inconsistent KB is always 1 to keep
our definitions consistent with probability theory.



As we did for subsumption, we can exploit the reasoning techniques for de-
ciding inconsistency of a BALC KB to find out the contextual and conditional
probabilities of an instance. Moreover, the method can be further optimised in
the cases where we are only interested in probabilistic bounds. In particular, we
can adapt Theorem 18 to this case.

Theorem 23. PK(C(x)κ | λ) = PK(C(x)κ∧λ)+PB(λ)−1
P (λ) .

7 Conclusions

We have presented a new probabilistic extension of the DL ALC based on the
ideas of Bayesian ontology languages, in which certain knowledge is dependent on
the uncertain context where it holds. Our work extends the results on BEL [9,10]
to a propositionally closed ontology language. The main notions follow the basic
ideas of Bayesian ontology languages [11]; however, by focusing on a specific
logic, we are able to produce a tableaux-based decision algorithm for KB consis-
tency, in contrast to the generic black-box algorithms proposed in the literature.
Our algorithm extends the classical tableau algorithm for ALC with techniques
originally developed for axiom pinpointing. The main differences are the use of
multi-valued variables in the definition of the contexts, and the possibility of
having complex contexts (not only unique variables) labeling individual axioms.
In general, we have shown that adding context-based uncertainty to an ontology
does not increase the complexity of reasoning in this logic: all (probabilistic)
reasoning problems can still be solved in exponential time.

Theorems 6–8 yield an effective decision method BALC KB consistency,
through the computation and handling of two complex contexts. Notice that
φB can be computed in linear time on the size of B, and satisfiability of the
context φ⊥K ∧φB can be checked in non-deterministic polynomial time in the size
of this context. However, the tableau algorithm for computing φ⊥K is not optimal
w.r.t. worst-case complexity. In fact, in the worst case it requires double expo-
nential time, although the formula itself is only of exponential size. The benefit
of this method, as in the classical case, is that it provides a better behaviour
in the average case. To further improve the efficiency of our approach, one can
think of adapting the methods from [21] to construct a compact representation
of the context—akin to a binary decision diagram (BDD) [7,14] for multi-valued
variables—allowing for efficient weighted model counting. A task for future work
is to exploit these data structures for practical development of our methods.

Recall that the most expensive part of our approach is the computation of
the context φ⊥K. By slightly modifying the KB, we have shown that one computa-
tion of this context suffices to solve different problems of interest; in particular,
contextual and conditional entailments—being subsumption, satisfiability, or in-
stance checking—can be solved using φ⊥K′ , for an adequately constructed K′,
regardless of the contexts under consideration.

An important next step will be to implement the methods described here,
and compare the efficiency of our system to other probabilistic DL reasoners



based on similar semantics. In particular, we would like to compare against the
tools from [21]. Even though this latter system is also based on an extension of
the tableaux algorithm for DLs, and use multiple-world semantics closely related
to ours, a direct comparison would be unfair. Indeed, [21] makes use of stronger
independence assumptions than ours. However, a well-designed experiment can
shed light on the advantages and disadvantages of each method.

Another interesting problem for future work is to extend the query language
beyond instance queries. To maintain some efficiency, this may require some
additional restrictions on the language or the probabilistic structure. A more
detailed study of this issue is needed.
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9. Ceylan, İ.İ., Peñaloza, R.: The Bayesian description logic BEL. In: Demri, S., Ka-
pur, D., Weidenbach, C. (eds.) Proceedings of the 7th International Joint Confer-
ence on Automated Reasoning (IJCAR 2014). Lecture Notes in Computer Science,
vol. 8562, pp. 480–494. Springer (2014)
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