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ABSTRACT
In recent work, we have shown how to compute compliant ano-

nymizations of quantified ABoxes w.r.t. EL policies. In this setting,

quantified ABoxes can be used to publish information about in-

dividuals, some of which are anonymized. The policy is given by

concepts of the Description Logic (DL) EL, and compliance means

that one cannot derive from the ABox that some non-anonymized

individual is an instance of a policy concept. If one assumes that a

possible attacker could have additional knowledge about some of

the involved non-anonymized individuals, then compliance with

a policy is not sufficient. One wants to ensure that the quantified

ABox is safe in the sense that none of the secret instance infor-

mation is revealed, even if the attacker has additional compliant

knowledge. In the present paper, we show that safety can be decided

in polynomial time, and that the unique optimal safe anonymization

of a non-safe quantified ABox can be computed in exponential time,

provided that the policy consists of a single EL concept.
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• Computing methodologies → Description logics;Ontology
engineering; • Security and privacy → Data anonymization
and sanitization;
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1 INTRODUCTION
When making information about persons available online, one

needs to ensure that certain privacy constraints described by a

privacy policy are taken into account. The policy may be formulated

by the data provider, the individuals whose data are to be published,

or be due to some legal requirements. There is a large body of

work on this topic in different areas of computer science [12], but

here we restrict our attention to a setting where data about real-

world individuals are to be published, but certain information about

these individuals needs to be kept secret. This differs from the

setting of statistical databases (e.g., for medical research), where

only anonymized and possibly aggregated data are published, but

there is still the danger that information on real-world individuals

can be extracted with a certain probability. Approaches for warding

off this danger are, for example, 𝑘-anonymity [16] and differential

privacy [11], but this is not what the current paper is about.

In the setting where the original data rather than statistical infor-

mation about it are to be published, we further restrict our attention

to work related to ontologies and RDF. There are two approaches

for achieving privacy that have been investigated in that context.

First, instead of making the data public, one can provide only re-

stricted access through queries, whose answers are monitored by

a “censor”, which may decide not to give an answer or even lie if

needed to satisfy the constraints [7–9]. Second, one can publish

the data in an appropriately anonymized form, while keeping as

much information about individuals as is allowed by the policy

available [2, 4, 6, 10, 13, 14].

Here we follow the second approach. Theworks in this area differ

from each other in several aspects. The papers [2, 4, 6] and this one

allow for arbitrary modifications of the original data set, as long as

the new data is logically implied by the original one. In contrast, the

work from [10, 13, 14] restricts modifications to the application of

certain anonymization operations. Another distinguishing criterion

is which formalisms are employed for representing the data and the

policy. While in the work described in [10, 13, 14] RDF graphs are

used to represent the data and conjunctive queries to describe the

policy, the papers [2, 4, 6] consider the setting where DL ABoxes

represent the data and concepts of the DL EL describe the policy.

More precisely, a restricted form of ABoxes, called instance store,

is considered in [2, 6], whereas in [4] and in the present paper

so-called quantified ABoxes are employed. Basically, quantified

ABoxes extend traditional DL ABoxes by allowing for anonymized

individuals, which from a logical point of view are represented

https://doi.org/10.1145/3412841.3441961
https://doi.org/10.1145/3412841.3441961
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as existentially quantified variables. Finally, one can distinguish

approaches according to whether and which kind of attacker’s

knowledge is assumed to exist. Of the mentioned papers, only [4]

does not allow for attacker’s knowledge, i.e., restricts the attention

purely to achieving compliance with the policy. Here, we employ

the same formal setup as [4] but addresses safety. The only work

where the formalisms for representing the attacker’s knowledge

and formalizing the data differ is [6].

Before diving into the technical details of our approach, let

us illustrate the problem it solves by a simple example. Assume

that Ben goes to a new school in fall, but does not want the peo-

ple in the school to know that both of his parents are comedi-

ans. This privacy constraint can be formalized by the EL concept

𝑃 B ∃mother. (Comedian ⊓ ∃ spouse.Comedian). Ben needs to pro-

vide contact details of one parent, and decides to give his father’s

name since his mother never answers her mobile. This results in

the quantified ABox

∃{𝑥}. {mother(BEN, 𝑥),Comedian(𝑥), spouse(𝑥, JERRY),
Comedian(JERRY)},

where Ben’s mother is represented by a variable since he did not

disclose her name. Since this ABox is not compliant with Ben’s

policy 𝑃 , he decides to hide the information that his father is a

comedian. This yields the quantified ABox

∃{𝑥}. {mother(BEN, 𝑥),Comedian(𝑥), spouse(𝑥, JERRY)}, (1)

which is compliant with 𝑃 . However, this ABox is not safe for 𝑃

since an attacker that knowsComedian(JERRY) (which on its own is
compliant with 𝑃 , and can easily be found out since Jerry is famous)

can combine this knowledge with the given quantified ABox to

derive that Ben is an instance of 𝑃 . Had Ben instead removed the

information that his (anonymized) mother is a comedian, and kept

the information that Jerry is one, then the quantified ABox

∃{𝑥}. {mother(BEN, 𝑥), spouse(𝑥, JERRY),Comedian(JERRY)}
(2)

obtained this way would again have been compliant with, but not

safe for 𝑃 . In fact, while an attacker could not obtain information

about the anonymized individual 𝑥 , and thus could not have learned

Comedian(𝑥), other sources might have provided the information

that Ben’s mother is a comedian that is married to Jerry. The quanti-

fied ABox ∃{𝑦}. {mother(BEN, 𝑦),Comedian(𝑦), spouse(𝑦, JERRY)}
representing this information is compliant, and adding it to the

above ABox reveals that Ben is an instance of 𝑃 . Thus, Ben needs to

remove Comedian(JERRY) as well, which finally results in a quan-

tified ABox that is safe for 𝑃 :

∃{𝑥}. {mother(BEN, 𝑥), spouse(𝑥, JERRY)}. (3)

We show in this paper that, whether or not a given quantified

ABox is safe for such a singleton policy, can be decided in poly-

nomial time. In addition we describe how to compute an optimal

safe generalization of a non-safe ABox in exponential time, where

optimal means that the least amount of information is lost. In our

example, the finally obtained safe ABox is actually not optimal. Due

to space constraints, detailed proofs of all our results are provided

in the corresponding technical report [3].

2 PRELIMINARIES
As mentioned earlier, a specific instance of the safety problem is

determined by the available query language, which is used to formu-

late the safety policy, and the formalism for representing the data to

be published. Following [4], we employ EL concepts as queries and

represent the data as quantified ABoxes. The latter differ from the

ABoxes usually employed in DL [1] in that (i) concept assertions

are restricted to concept names, and (ii) existentially quantified

variables can be used to represent anonymous individuals. While

(ii) increases the expressive power of the formalism, (i) is not a real

restriction since concept assertions involving complex concepts

can be simulated based on the expressiveness provided by (ii).

More formally, we fix a signature Σ, which is the disjoint union

of a set ΣO of object names, a set ΣC of concept names, and a set ΣR
of role names. A quantified ABox ∃𝑋 .A consists of a finite subset

𝑋 of ΣO and a matrix A, which is a finite set containing concept
assertions 𝐴(𝑢) and role assertions 𝑟 (𝑢, 𝑣) where 𝑢, 𝑣 ∈ ΣO, 𝐴 ∈ ΣC,
and 𝑟 ∈ ΣR. The elements of 𝑋 are called variables. An individual
name in ∃𝑋 .A is an object name that occurs in A and is not a

variable. We denote the set of these individual names as ΣI (∃𝑋 .A),
or simply as ΣI if the quantified ABox is clear from the context.

1
A

traditional ABox is a quantified ABox where the quantifier prefix

is empty. Instead of ∃∅.A we simply write A. The matrix A of a

quantified ABox ∃𝑋 .A is such a traditional ABox.

The semantics of quantified ABoxes is defined using interpreta-
tions, which are of the form I = (ΔI , ·I ), where ΔI

(the domain)
is a non-empty set and ·I (the interpretation function) maps each

object name𝑢 from ΣO to an element𝑢I of ΔI
, each concept name

𝐴 from ΣC to a subset 𝐴I
of ΔI

, and each role name 𝑟 from ΣR to

a binary relation 𝑟I over ΔI
. The interpretation I is a model of

∃𝑋 .A if there is an interpretation J with the same the domain

as I such that the interpretation functions ·J and ·I coincide on

Σ \ 𝑋 , 𝑢J ∈ 𝐴J
holds for each 𝐴(𝑢) ∈ A, and (𝑢J , 𝑣J ) ∈ 𝑟 J

holds for each 𝑟 (𝑢, 𝑣) ∈ A. The quantified ABox ∃𝑋 .A entails the
quantified ABox ∃𝑌 .B (∃𝑋 .A |= ∃𝑌 .B) if each model of ∃𝑋 .A
is a model of ∃𝑌 .B.

Following [4], when considering two quantified ABoxes ∃𝑋 .A
and ∃𝑌 .B, we henceforth assume without loss of generality that

they are renamed apart in the sense that 𝑋 is disjoint with 𝑌 ∪
ΣI (∃𝑌 .B) and 𝑌 is disjoint with 𝑋 ∪ ΣI (∃𝑋 .A).

As pointed out in [4], quantified ABoxes and conjunctive queries

are essentially the same. In particular, ABox entailment coincides

with query containment. It follows that the entailment problem for

quantified ABoxes is NP-complete and that ∃𝑋 .A entails ∃𝑌 .B
iff there is a homomorphism from ∃𝑌 .B to ∃𝑋 .A. Such a ho-
momorphism is a mapping ℎ : ΣI (∃𝑌 .B) ∪ 𝑌 → ΣI (∃𝑋 .A) ∪ 𝑋

such that ℎ(𝑎) = 𝑎 for each 𝑎 ∈ ΣI (∃𝑌 .B), and 𝐴(𝑢) ∈ B implies

𝐴(ℎ(𝑢)) ∈ A, and 𝑟 (𝑢, 𝑣) ∈ B implies 𝑟 (ℎ(𝑢), ℎ(𝑣)) ∈ A.

The set of EL concept descriptions over Σ is defined by induction:

any concept name𝐴 ∈ ΣC as well as⊤ (top concept) belongs to this

set, and if 𝑟 ∈ ΣR is a role name and 𝐶, 𝐷 are known to belong to

the set, then 𝐶 ⊓ 𝐷 (conjunction) and ∃𝑟 .𝐶 (existential restriction)

belong to it as well. Given an interpretation I, we extend ·I to EL
concept descriptions:

1
We use 𝑎,𝑏, 𝑐 for individual names,𝑢, 𝑣, 𝑤 for object names, and 𝑥, 𝑦, 𝑧 for variables.
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• (∃𝑟 .𝐶)I B { 𝛿 | (𝛿,𝛾) ∈ 𝑟I and 𝛾 ∈ 𝐶I
for some 𝛾 ∈ ΔI };

• (𝐶 ⊓ 𝐷)I B 𝐶I ∩ 𝐷I
.

Given EL concept descriptions𝐶 and 𝐷 , we say that𝐶 is subsumed
by 𝐷 (𝐶 ⊑∅ 𝐷) if 𝐶I ⊆ 𝐷I

holds for each interpretation I; 𝐶 is

equivalent to 𝐷 (𝐶 ≡∅ 𝐷) if 𝐶 ⊑∅ 𝐷 and 𝐷 ⊑∅ 𝐶 , and 𝐶 is strictly
subsumed by 𝐷 (𝐶 ⊏∅ 𝐷) if 𝐶 ⊑∅ 𝐷 and 𝐶 .∅ 𝐷 . If furthermore

∃𝑋 .A is a quantified ABox and 𝑢 is an object name, then we say

that 𝑢 is an instance of 𝐶 w.r.t. ∃𝑋 .A (∃𝑋 .A |= 𝐶 (𝑢)) if 𝑢I ∈ 𝐶I

is satisfied for each model I of ∃𝑋 .A. The subsumption and the

instance problem are known to be solvable in polynomial time [4, 5].

An EL atom is either a concept name 𝐴 or an existential restric-

tion ∃𝑟 .𝐶 . Clearly, any EL concept description𝐶 is a conjunction of

atoms. We call this the top-level conjunction of𝐶 and denote the set

of atoms occurring it as Conj(𝐶). The set of atoms occurring as sub-

concepts of𝐶 is defined as Atoms(𝐶) B Conj(𝐶) ∪⋃{ Atoms(𝐷) |
∃𝑟 .𝐷 ∈ Conj(𝐶) }. We will also employ the reduced forms 𝐶𝑟

of EL concept descriptions 𝐶 [15], which are defined as follows:

𝐴𝑟 B 𝐴 for 𝐴 ∈ ΣC; (∃𝑟 .𝐶)𝑟 B ∃𝑟 .𝐶𝑟
; and (𝐶 ⊓ 𝐷)𝑟 B 𝐶𝑟

if

𝐶 ⊑∅ 𝐷 , (𝐶 ⊓ 𝐷)𝑟 B 𝐷𝑟
if 𝐷 ⊏∅ 𝐶 , and (𝐶 ⊓ 𝐷)𝑟 B 𝐶𝑟 ⊓ 𝐷𝑟

if

𝐶 and 𝐷 are incomparable w.r.t. subsumption. As shown in [15],

𝐶 ≡∅ 𝐶𝑟
and 𝐶 ≡∅ 𝐷 implies that 𝐶𝑟

and 𝐷𝑟
are equal up to

associativity and commutativity of conjunction.

Finally, let us come back to the claim that concept assertions

𝐶 (𝑎) involving complex concept descriptions 𝐶 can be expressed

by quantified ABoxes. To that purpose, we view EL concept de-

scriptions as trees and use paths in these trees as variables. More

formally, a path in an EL concept description 𝐶 is a sequence

𝑝 = 𝐷0

𝑟1−−→ 𝐷1

𝑟2−−→ . . .
𝑟𝑛−−→ 𝐷𝑛 such that 𝐷0 = 𝐶 and ∃𝑟𝑖 .𝐷𝑖 ∈

Conj(𝐷𝑖−1) for each index 𝑖 ∈ {1, . . . , 𝑛}. We call target(𝑝) B 𝐷𝑛

the target of 𝑝 . Note that 𝑛 = 0 is possible, i.e.,𝐶 is always a path in

𝐶 , called the root. The set of all paths in 𝐶 is denoted by Paths(𝐶).
By viewing the elements of Paths(𝐶) \ {𝐶} as new object names,

the ABox translation of 𝐶 (𝑎) can be defined as the quantified ABox

∃ (Paths(𝐶) \ {𝐶}) .A𝐶 (𝑎) where, for all paths 𝑝, 𝑞 ∈ Paths(𝐶),
𝐴(𝑝) is in A𝐶 (𝑎) if 𝐴 ∈ Conj(target(𝑝)) and where 𝑟 (𝑝, 𝑞) is in
A𝐶 (𝑎) if 𝑞 extends 𝑝 with one 𝑟 -edge, i.e., if 𝑞 = 𝑝

𝑟−→ 𝐷 for some

∃𝑟 .𝐷 ∈ Conj(target(𝑝)), and where we finally replace each oc-

currence of 𝐶 in position of an object name in A𝐶 (𝑎) with the

individual name 𝑎. Note that this quantified ABox contains 𝑎 as

the only individual name, whereas all paths in Paths(𝐶) \ {𝐶} are
variables. It is clearly equivalent to the assertion 𝐶 (𝑎).

3 A CHARACTERIZATION OF SAFETY
We define the notions of compliance and safety, and then give a

characterization of safety for the case of singleton policies. This

characterization provides us with a polynomial time decision pro-

cedure for safety in this restricted setting. The exact complexity of

deciding safety in the general case is still open, though it is easy to

show an NP upper bound using ideas from [13, 14].

A policy P is a finite set of EL concept descriptions. A quantified

ABox ∃𝑋 .A is compliant with P if it does not contain an individual

name that belongs to a concept in P, i.e., there does not exist a

policy concept 𝑃 ∈ P and an individual name 𝑎 ∈ ΣI (∃𝑋 .A) such
that ∃𝑋 .A |= 𝑃 (𝑎). Testing for compliance thus boils down to

solving the instance problem, and can consequently be realized in

polynomial time.

Safety is a stronger notion, which requires compliance to be

preserved under addition of any compliant data. More formally,

∃𝑋 .A is safe for the policy P if, for each quantified ABox ∃𝑌 .B
that is compliant with P and renamed apart from ∃𝑋 .A, the union

∃𝑋 .A ∪ ∃𝑌 .B B ∃ (𝑋 ∪ 𝑌 ) . (A ∪ B) is compliant with P. Since

the empty ABox is always compliant and renamed apart, safety for

P implies compliance with P, but the opposite implication need

not hold, as illustrated by our example in the introduction.

The goal of this section is to find necessary and sufficient condi-

tions for safety in the case where the policy is a singleton set, i.e.,

P = {𝑃} for an EL concept description 𝑃 , where we assume w.l.o.g.

that 𝑃 is reduced. We also assume that 𝑃 is not ⊤ and that the given

quantified ABox ∃𝑋 .A contains at least one individual name since

otherwise safety is trivial to decide.

In [2], safety was investigated for data represented by EL in-

stance stores, i.e., by traditional ABoxes with complex concept

assertions, but without role assertions. The results proved in [2]

can be used to derive the following characterization of safety for

general policies: a given instance store is safe for the policy P
iff it is compliant with Conj(P) B ⋃{ Conj(𝑃) | 𝑃 ∈ P }. This
characterization reduces safety in polynomial time to compliance.

In our setting, compliance with the top-level conjuncts of the

policy concept is still a necessary condition for safety, but it is

no longer sufficient. In fact, it is easy to see that each quantified

ABox that is safe for {𝑃} must also be compliant with Conj(𝑃).
Assume that 𝐶 is a top-level conjunct of the policy concept 𝑃 such

that ∃𝑋 .A entails 𝐶 (𝑎). We write 𝑃 \𝐶 for the concept obtained

from 𝑃 by deleting 𝐶 from the top-level conjunction. Now assume

that ∃𝑌 .B is the ABox translation of (𝑃 \𝐶) (𝑎). Since the policy
concept 𝑃 is assumed to be reduced, we infer that (𝑃 \ 𝐶) ̸⊑∅ 𝐶 ,

which implies that∃𝑌 .B is compliant with {𝑃}. However, the union
of ∃𝑋 .A and ∃𝑌 .B clearly entails 𝑃 (𝑎).

Example 3.1. To illustrate the above observation, we consider

the policy concept 𝑃 B 𝐴 ⊓ 𝐵 ⊓ ∃𝑟 .𝐴. The ABox ∃∅. {𝐴(𝑎)} is
compliant with {𝑃}, but it entails 𝐴(𝑎) for the top-level conjunct 𝐴
of 𝑃 . This ABox is not safe for {𝑃} since, on the one hand, the ABox

∃{𝑥}. {𝐵(𝑎), 𝑟 (𝑎, 𝑥), 𝐴(𝑥)} complies with {𝑃}, but, on the other

hand, its union with ∃∅. {𝐴(𝑎)} entails that 𝑎 is an instance of 𝑃 .

Note that the second ABox ∃{𝑥}. {𝐵(𝑎), 𝑟 (𝑎, 𝑥), 𝐴(𝑥)} is (equiva-
lent to) the ABox translation of (𝑃 \𝐴) (𝑎) = (𝐵 ⊓ ∃𝑟 .𝐴) (𝑎).

Due to the presence of role assertions, safety enforces an even

stronger condition. Not only the atoms appearing in the top-level

conjunction of 𝑃 need to be considered, but all atoms occurring

somewhere in 𝑃 , i.e., all elements of Atoms(𝑃). Such an atom is

either a concept name or an existential restriction.

First, consider a concept name𝐴 that occurs in the policy concept

𝑃 , i.e., 𝐴 ∈ Atoms(𝑃). The case where 𝐴 is a top-level conjunct

has already been investigated above. So assume that 𝐴 is not in

the top-level conjunction of 𝑃 , i.e., there is a path 𝑝 in 𝑃 with at

least one edge such that 𝐴 is in Conj(target(𝑝)), and assume that

∃𝑋 .A entails𝐴(𝑎). Construct the ABox ∃𝑌 .B by taking the ABox

translation of 𝑃 (𝑏), for a fresh individual name 𝑏, but removing the

concept assertion 𝐴(𝑝) and then replacing 𝑝 with 𝑎. The remaining

information on 𝑎 in ∃𝑌 .B, which is the concept target(𝑝) \ 𝐴,
cannot be subsumed by the policy concept description 𝑃 (since the
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𝑏

𝑎 �A𝑝

𝑝
𝑟−→ 𝐶

𝑟

Figure 1: Constructing a counterexample against safety
when the ABox does not comply with an atom ∃𝑟 .𝐶 occur-
ring in the policy concept description.

role depth
2
of target(𝑝) is strictly smaller than the role depth of

𝑃 ). Furthermore, 𝑏 cannot be an instance of 𝑃 (since 𝑃 is reduced

and we have removed one occurrence of𝐴). It follows that ∃𝑌 .B is

compliant with {𝑃}, but its union with ∃𝑋 .A is not since it reveals

the sensitive information that 𝑏 is an instance of 𝑃 .

Example 3.2. Consider the policy concept 𝑃 B 𝐵 ⊓ ∃𝑟 .𝐴, for
which the concept name𝐴 is an element of Atoms(𝑃). In particular,

𝐴 is a top-level conjunct of the target of the path 𝑃
𝑟−→ 𝐴. The

ABox ∃∅. {𝐴(𝑎)} entails 𝐴(𝑎) and it is not safe for {𝑃}. To see the

latter, note that the ABox ∃∅. {𝐵(𝑏), 𝑟 (𝑏, 𝑎)} is compliant with {𝑃},
and that its union with ∃∅. {𝐴(𝑎)} entails 𝑃 (𝑏). The second ABox

∃∅. {𝐵(𝑏), 𝑟 (𝑏, 𝑎)} was exactly obtained by applying the general

construction sketched above to this specific example.

For an existential restriction ∃𝑟 .𝐶 instead of the concept name

𝐴, we proceed in a similar way, except that during the construction

of ∃𝑌 .B we do not remove 𝐴(𝑝), but instead remove the assertion

𝑟 (𝑝, 𝑝 𝑟−→ 𝐶) as well as all assertions involving a path with prefix

𝑝
𝑟−→ 𝐶 . This corresponds to removing from the ABox translation

the part corresponding to the subconcept 𝐶 . This construction is

depicted in Figure 1, where the gray area depicts the parts remaining

in the counterexample ABox ∃𝑌 .B, while the blue area is removed.

Example 3.3. Take 𝑃 B 𝐵 ⊓ ∃𝑠 .∃𝑟 .⊤ as the policy concept.

Atoms(𝑃) contains the existential restriction ∃𝑟 .⊤. More specifi-

cally, ∃𝑟 .⊤ is in Conj(target(𝑃 𝑠−→ ∃𝑟 .⊤)). The quantified ABox

∃{𝑥}. {𝑟 (𝑎, 𝑥)} entails ∃𝑟 .⊤(𝑎). The construction sketched above

yields the ABox ∃∅. {𝐵(𝑏), 𝑠 (𝑏, 𝑎)}. This ABox clearly complies

with {𝑃}, but its union with ∃{𝑥}. {𝑟 (𝑎, 𝑥)} entails 𝑃 (𝑏). Conse-
quently, ∃{𝑥}. {𝑟 (𝑎, 𝑥)} is not safe for {𝑃}.

Summing up, we have seen that safety for {𝑃} implies compliance

with the extended policy Atoms(𝑃), which contains each atom 𝐶

that is a top-level conjunct of target(𝑝) for some path 𝑝 in the

policy concept 𝑃 . Distinguishing between the two types of atoms

and using the characterization of the instance problem given by

Lemma 6 in [4], this fact can be stated as follows.

2
The role depth of an EL concept description is the maximal nesting of existential

restrictions in this description.

Lemma 3.4. If ∃𝑋 .A is safe for {𝑃}, then ∃𝑋 .A is compliant
with Atoms(𝑃), i.e., the following two conditions are satisfied:

(1) For each individual name 𝑎 and for each concept name 𝐴 ∈
Atoms(𝑃), the concept assertion 𝐴(𝑎) is not in A.

(2) For each individual name 𝑎, for each role assertion 𝑟 (𝑎,𝑢) in
A, and for each existential restriction ∃𝑟 .𝐶 in Atoms(𝑃), the
matrix A does not entail 𝐶 (𝑢).

It turns out, however, that compliance with Atoms(𝑃) is still
not sufficient to ensure safety for {𝑃}. A counterexample is the

following, which illustrates that it is not necessary to find a whole

element of Atoms(𝑃) in the ABox to lose safety.

Example 3.5. Consider ∃𝑋 .A B ∃{𝑥}. {𝑟 (𝑎, 𝑥), 𝐴(𝑥), 𝑠 (𝑥, 𝑏)}
and the policy concept 𝑃 B 𝐴⊓∃𝑟 . (𝐴⊓∃𝑠 .𝐴). Note that ∃𝑋 .A is

compliant with Atoms(𝑃) = {∃𝑟 . (𝐴 ⊓ ∃𝑠 .𝐴), ∃𝑠 .𝐴, 𝐴}. However,
∃𝑋 .A is not safe for {𝑃}: for the ABox ∃𝑌 .B B ∃∅. {𝐴(𝑎), 𝐴(𝑏)},
which is compliant with {𝑃}, the union ∃𝑋 .A ∪ ∃𝑌 .B entails

𝑃 (𝑎). The reason is that, while we do not find the whole atom

∃𝑟 . (𝐴 ⊓ ∃𝑠 .𝐴) in ∃𝑋 .A, we find the part ∃𝑟 . (𝐴 ⊓ ∃𝑠 .⊤). The
concept name𝐴 missing in the existential restriction ∃𝑠 .⊤ is added

by the assertion 𝐴(𝑏) in the attacker ABox ∃𝑌 .B.

To formalize what it means to “find part of an atom” in a quanti-

fied ABox, we will use the notion of a partial homomorphism. To

motivate this notion, we first reformulate the second condition in

Lemma 3.4 using the following homomorphism characterization of

the instance problem, which is an easy consequence of Lemma 6

in [4]. For a quantified ABox ∃𝑋 .A, the matrix A entails 𝐶 (𝑢) iff
there is a homomorphism from𝐶 to ∃𝑋 .A at𝑢, which is a mapping

ℎ : Paths(𝐶) → ΣI ∪ 𝑋 satisfying the following conditions:

(1) ℎ(𝐶) = 𝑢

(2) For each 𝑝 ∈ Paths(𝐶), the following two conditions hold:

(a) 𝐴( 𝑗 (𝑝)) ∈ A for each concept name𝐴 ∈ Conj(target(𝑝)),
(b) 𝑟 ( 𝑗 (𝑝), 𝑗 (𝑝 𝑟−→ 𝐷)) ∈ A for each existential restriction

∃𝑟 .𝐷 ∈ Conj(target(𝑝)).
The second condition in Lemma 3.4 can now be reformulated as

(2) For each individual name 𝑎, for each role assertion 𝑟 (𝑎,𝑢)
in A, and for each existential restriction ∃𝑟 .𝐶 in Atoms(𝑃),
there is no homomorphism from 𝐶 to ∃𝑋 .A at 𝑢.

The idea is now to replace “homomorphism” in this condition

with “partial homomorphism.” Intuitively, a partial homomorphism

is almost a homomorphism from the concept 𝐶 to the quantified

ABox ∃𝑋 .A at 𝑢, which can, however, omit mapping some parts

of 𝐶 into the ABox in case the ABox has an individual at the “cut-

off points.” In order to give a more formal definition of partial

homomorphisms, we first need to introduce some auxiliary notions.

The set Paths(𝐶) of all paths in an EL concept description 𝐶 is

partially ordered by the prefix relation ≤. The smallest path is 𝐶

(the root) and the maximal paths are those 𝑝 ∈ Paths(𝐶) where
Conj(target(𝑝)) does not contain any existential restriction, which

we call leaves. Each subset 𝔛 ⊆ Paths(𝐶) induces an ideal ↓𝔛 B
{ 𝑝 | 𝑝 ≤ 𝑞 for some 𝑞 ∈ 𝔛 }. Furthermore, an antichain is a subset

𝔄 ⊆ Paths(𝐶) such that no two paths in 𝔄 are comparable w.r.t.

≤. An antichain is maximal if there is no strict superset that is

an antichain as well. A maximal antichain 𝔄 corresponds to a cut

through the syntax tree of𝐶 . Figure 2 gives an abstract visualization
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Figure 2: An ideal induced by a maximal antichain in a tree

of a maximal antichain and the ideal induced by it: the antichain

consists of the blue nodes and its induced ideal consists of all non-

white nodes. The white nodes are pruned away by the cut.

Definition 3.6. Let 𝐶 be an EL concept description and ∃𝑋 .A
be a quantified ABox in which 𝑢 is an object. A partial homomor-
phism from𝐶 to ∃𝑋 .A at 𝑢 is a pair ( 𝑗,𝔅) consisting of a maximal

antichain 𝔅 of (Paths(𝐶), ≤), called the border, and a mapping

𝑗 : ↓𝔅 → ΣI ∪ 𝑋 such that the following conditions are satisfied.

(1) 𝑗 (𝐶) = 𝑢

(2) If 𝑝 ∈ ↓𝔅 \ 𝔅 (i.e., 𝑝 is strictly below the border), then

𝑗 (𝑝) ∈ 𝑋 .

(3) If 𝑝 ∈ 𝔅 \Max≤ (Paths(𝐶)) (i.e., 𝑝 is in the border but is not

a leaf), then 𝑗 (𝑝) ∈ ΣI.
(4) If 𝑝 ∈ ↓𝔅 (i.e., 𝑝 is in the border or is below the border) and

𝑗 (𝑝) ∈ 𝑋 , then the following two conditions are satisfied:

(a) 𝐴( 𝑗 (𝑝)) ∈ A for each concept name𝐴 ∈ Conj(target(𝑝)),
(b) 𝑟 ( 𝑗 (𝑝), 𝑗 (𝑝 𝑟−→ 𝐷)) ∈ A for each existential restriction

∃𝑟 .𝐷 ∈ Conj(target(𝑝)).

Intuitively, a partial homomorphism only maps paths in 𝐶 be-

tween the root and the border to objects of the ABox ∃𝑋 .A. Cut-off

points (paths 𝑝 ∈ 𝔅 \Max≤ (Paths(𝐶))) are mapped to individuals.

Example 3.7. Consider the concept description𝐶 B 𝐴⊓∃𝑟 . (𝐵⊓
∃𝑠 . (∃𝑟 .𝐴 ⊓∃𝑟 .𝐵)) ⊓ ∃𝑠 . (𝐴 ⊓∃𝑟 .𝐴 ⊓∃𝑟 .𝐵), which is depicted on

the left-hand side of Figure 3. The three blue nodes form a maximal

antichain, where for instance the right-most blue node represents

the path 𝐶
𝑠−→ 𝐴 ⊓ ∃𝑟 .𝐴 ⊓ ∃𝑟 .𝐵 𝑟−→ 𝐵. Denote this antichain by

𝔅. The induced ideal ↓𝔅 contains all non-white nodes. Consider

now the ABox ∃𝑋 .A shown on the right-hand side of Figure 3,

which contains the assertions 𝑟 (𝑎, 𝑥), 𝐴(𝑥), among others. The pair

( 𝑗,𝔅) is a partial homomorphism from𝐶 to ∃𝑋 .A at 𝑥 , where the

mapping 𝑗 is represented by the dashed lines in Figure 3.

Returning to Example 3.5, we see that the filler 𝐴 ⊓ ∃𝑠 .𝐴 of the

existential restriction ∃𝑟 . (𝐴 ⊓ ∃𝑠 .𝐴) ∈ Atoms(𝑃) can be partially

homomorphically mapped to the ABox ∃𝑋 .A at 𝑥 via the partial

homomorphism ( 𝑗,𝔅) where𝔅 = {𝐴⊓∃𝑠 .𝐴 𝑠−→ 𝐴} and 𝑗 is defined

by setting 𝑗 (𝐴 ⊓ ∃𝑠 .𝐴) B 𝑥 and 𝑗 (𝐴 ⊓ ∃𝑠 .𝐴 𝑠−→ 𝐴) B 𝑏. Moreover,

A contains the role assertion 𝑟 (𝑎, 𝑥) where 𝑎 is an individual. This

role assertion together with the partial homomorphism can be used

to construct a compliant quantified ABox ∃𝑌 .B that successfully

attacks ∃𝑋 .A. In fact, it suffices to know the remaining parts of the

policy concept 𝐴 ⊓ ∃𝑟 . (𝐴 ⊓ ∃𝑠 .𝐴) that are not homomorphically

mapped to∃𝑋 .A, which is the top-level conjunct𝐴 and the concept

name 𝐴 within the existential restriction ∃𝑠 .𝐴. These two parts are
put into B through the assertions 𝐴(𝑎) and 𝐴(𝑏). As pointed out in

𝐴
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𝑟 𝑟
𝐵

𝐵𝐴

𝑟 𝑟
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Figure 3: A partial homomorphism ( 𝑗,𝔅)

Example 3.5, the quantified ABox ∃𝑌 .B obtained this way complies

with {𝑃}, but its union with ∃𝑋 .A is no longer compliant.

We will show that the construction of an attacking quantified

ABox is possible not only in this concrete example, but in general

whenever such a situation occurs. To be more precise, assume that

there is some existential restriction ∃𝑟 .𝐶 ∈ Atoms(𝑃) (which is

a top-level conjunct of target(𝑝) for some path 𝑝 in the policy

concept 𝑃 ) and some role assertion 𝑟 (𝑎,𝑢) ∈ A for an individual

𝑎 such that there exists a partial homomorphism ( 𝑗,𝔅) from 𝐶 to

∃𝑋 .A at 𝑢. Then it is possible to construct an attacking quantified

ABox in a way similar to the one depicted in Figure 1. The only

difference is that we do not cut out the whole concept 𝐶 but only

those parts that are already present in the ABox due to the partial

homomorphism. This idea is depicted in Figure 4. Thus, we have

the following necessary condition for safety, which strengthens the

second condition in Lemma 3.4.

Lemma 3.8. If ∃𝑋 .A is safe for {𝑃}, then the following condition
is satisfied:

• For each individual name 𝑎, for each role assertion 𝑟 (𝑎,𝑢) inA,
and for each existential restriction ∃𝑟 .𝐶 in Atoms(𝑃), there is
no partial homomorphism from 𝐶 to ∃𝑋 .A at 𝑢.

Proof Sketch. Consider a partial homomorphism ( 𝑗,𝔅) from
the filler 𝐶 of some existential restriction ∃𝑟 .𝐶 ∈ Atoms(𝑃) to the

ABox ∃𝑋 .A at an 𝑟 -successor 𝑢 of some individual name 𝑎. In

particular, there is a path 𝑝 in 𝑃 such that ∃𝑟 .𝐶 ∈ Conj(target(𝑝)).
We concentrate on the case where the path 𝑝 is not the root of 𝑃

(the other case can be treated similarly).

Our aim is to construct a counterexample against safety. We start

with the ABox translation of the assertion 𝑃 (𝑏), where 𝑏 is a fresh

individual name. The partial homomorphism ( 𝑗,𝔅) describes a part
of 𝑃 that is already present within the ABox ∃𝑋 .A. We now delete

that part from our counterexample ABox under construction. In

particular, we remove each axiom involving a path 𝑝
𝑟−→ 𝑞 for some

𝑞 ∈ 𝑗−1 (𝑋 ), i.e., we remove each concept assertion𝐴(𝑝 𝑟−→ 𝑞) where
𝐴 ∈ Conj(target(𝑞)) for some𝑞 ∈ 𝑗−1 (𝑋 ), and we remove each role

assertion 𝑟 (𝑝 𝑟−→ 𝑞, 𝑝
𝑟−→ 𝑞

𝑠−→ 𝐷) where ∃𝑠 .𝐷 ∈ Conj(target(𝑞))
for some 𝑞 ∈ 𝑗−1 (𝑋 ). Additionally, the role assertion 𝑟 (𝑝, 𝑝 𝑟−→ 𝐶)
is removed, which corresponds to 𝑟 (𝑎,𝑢) in ∃𝑋 .A. Afterwards, we
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���XXX𝑝
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. . .
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𝑟

Figure 4: Constructing a counterexample against safety for
the casewhere theABox allows for a partial homomorphism

replace 𝑝 with 𝑎. To allow for linking at the border 𝔅 as well, it is

necessary to replace each path 𝑝
𝑟−→ 𝑞𝑖 with the individual name

𝑗 (𝑞𝑖 ), where 𝑞1, . . . , 𝑞𝑛 are those paths from 𝔅 where 𝑗 (𝑞𝑖 ) ∈ ΣI.
This construction is depicted in Figure 4; the gray area indicates

which part remains in the counterexample ABox ∃𝑌 .B while the

blue area is removed. (If 𝑝 is the root of 𝑃 , the same construction is

applied to the ABox translation of the assertion 𝑃 (𝑎).)
It is now straightforward to check that the resulting ABox is

compliant with {𝑃} (using the fact that 𝑃 is reduced), but its union

with the given ABox ∃𝑋 .A is not. □

Taken together, the first condition in Lemma 3.4 and the condi-

tion stated in Lemma 3.8 are not only necessary, but also sufficient

for safety for a singleton policy.

Theorem 3.9. ∃𝑋 .A is safe for {𝑃} iff the following two condi-
tions are satisfied:

(1) For each individual name 𝑎 and for each concept name 𝐴 ∈
Atoms(𝑃), the concept assertion 𝐴(𝑎) is not in A.

(2) For each individual name 𝑎, for each role assertion 𝑟 (𝑎,𝑢) inA,
and for each existential restriction ∃𝑟 .𝐶 in Atoms(𝑃), there is
no partial homomorphism from 𝐶 to ∃𝑋 .A at 𝑢.

Proof Sketch. It remains to prove the if-direction, which we

show by contraposition. Thus, assume that the quantified ABox

∃𝑋 .A is not safe for {𝑃}, i.e., there is a {𝑃}-compliant ABox ∃𝑌 .B
such that its union with ∃𝑋 .A entails 𝑃 (𝑎) for an individual 𝑎. We

now construct a sequence of pairs (𝑝𝑛, 𝑎𝑛) where 𝑎𝑛 is an individual

and 𝑝𝑛 is a path in 𝑃 such that 𝑎𝑛 is an instance of target(𝑝𝑛) w.r.t.
∃𝑋 .A∪∃𝑌 .B, but not w.r.t.∃𝑌 .B, and the role depth of target(𝑝𝑛)
strictly decreases along the sequence. The last condition implies

that the sequence must be finite. The sequence starts with 𝑝0 B 𝑃

(i.e., the root of 𝑃 ) and 𝑎0 B 𝑎.

Given the latest defined pair (𝑝𝑛, 𝑎𝑛), we show that the se-

quence can be extended unless the first or the second condition

in the formulation of the theorem is violated. Since 𝑎𝑛 is an in-

stance of target(𝑝𝑛) w.r.t. ∃𝑋 .A ∪ ∃𝑌 .B, but not w.r.t. ∃𝑌 .B,

there are two possibilities. Either we can find a concept name 𝐴

in Conj(target(𝑝𝑛)) such that A contains 𝐴(𝑎𝑛), in which case

the proof is finished. Otherwise, we can find an existential restric-

tion ∃𝑟 .𝐷 in Conj(target(𝑝𝑛)) for which there is a role assertion

𝑟 (𝑎𝑛, 𝑢) in A ∪ B such that 𝐷 (𝑢) is entailed by A ∪ B. Note that

∃𝑟 .𝐷 is in Atoms(𝑃). If the role assertion is in B, then we can

find some path 𝑞 in 𝐷 and an individual 𝑎′ that is an instance of

target(𝑞) w.r.t. ∃𝑋 .A ∪ ∃𝑌 .B, but not w.r.t. ∃𝑌 .B, which allows

us to extend the sequence with (𝑝𝑛 𝑟−→ 𝑞, 𝑎′). In the remaining case,

where the role assertion belongs to A, there exists a homomor-

phism ℎ from 𝐷 to ∃𝑋 .A ∪∃𝑌 .B at 𝑢. We can construct from this

homomorphism a partial homomorphism from 𝐷 to ∃𝑋 .A at 𝑢,

and the proof is finished. □

Before using this characterization of safety to show that safety for

singleton policies can be decided in polynomial time, let us apply it

to the quantified ABoxes considered in the introduction. The quan-

tified ABox in (2) clearly violates the first condition of the theorem

since it contains the assertion Comedian(JERRY). The quantified
ABox in (1) violates the second condition of the theorem since there

is a partial homomorphism from Comedian⊓∃ spouse.Comedian to

the ABox at 𝑥 . This can, for example, be seen by using the condition

for the existence of a partial homomorphism given in Lemma 3.10

below. The existence of such a partial homomorphism crucially

depends on the presence of the assertion Comedian(𝑥). Since this
assertion is missing in the quantified ABox in (3), this ABox satisfies

both conditions of the theorem, and thus is safe.

Computational Complexity of Deciding Safety
First, we present a recursive characterization of existence of a partial

homomorphism, and then show that this yields a polynomial time

decision procedure for the existence problem.

Lemma 3.10. There is a partial homomorphism from 𝐶 to ∃𝑋 .A
at 𝑢 iff one of the following two statements is satisfied:

(1) 𝑢 is an individual name.
(2) 𝑢 is a variable and the following two statements are true:
(a) For each concept name𝐴 ∈ Conj(𝐶), the matrixA contains

the concept assertion 𝐴(𝑢).
(b) For each existential restriction ∃𝑟 .𝐷 ∈ Conj(𝐶), the matrix

A contains a role assertion 𝑟 (𝑢, 𝑣) such that there is a partial
homomorphism from 𝐷 to ∃𝑋 .A at 𝑣 .

Proposition 3.11. It can be decided in polynomial time whether
there exists a partial homomorphism from 𝐶 to ∃𝑋 .A at 𝑢.

Proof. We show the claim by induction on the role depth of 𝐶 .

It takes linear time to check whether 𝑢 is an individual. If so, we

can immediately return an affirmative answer. Otherwise, if 𝑢 is

a variable, we need to check whether the matrix A contains the

concept assertion 𝐴(𝑢) for each concept name 𝐴 in the top-level

conjunction of𝐶 , which can clearly be done in polynomial time. For

the base case, where𝐶 only contains concept names, we are already

done, and just answer affirmatively if all the aforementioned tests

succeed, and answer negatively otherwise.

For the step case, Lemma 3.10 tells us that we further need to

check if, for each existential restriction ∃𝑟 .𝐷 in Conj(𝐶), there is
a role assertion 𝑟 (𝑢, 𝑣) in the matrix A such that there is a partial

homomorphism from 𝐷 to ∃𝑋 .A at 𝑣 . Of course, there are at most

polynomially many 𝑟 -successors 𝑣 of 𝑢 and, for each of them, the
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induction hypothesis implies that we can decide existence of a

partial homomorphism from 𝐷 to ∃𝑋 .A at 𝑣 in polynomial time.

Thus, all required tests can be conducted in polynomial time. □

The following result is now an immediate consequence of this

proposition and Theorem 3.9.

Corollary 3.12. It can be decided in polynomial time if a quan-
tified ABox is safe for a singleton policy.

How to Deal with Non-Singleton Policies
To start with, let us ask whether general policies are indeed more

expressive than singleton policies. The following example answers

this question in the affirmative, by showing that not every policy

is safety-equivalent to a singleton policy. Here safety-equivalent
means that the same ABoxes are safe for the two policies.

Example 3.13. Consider the policy P B {𝐴, ∃𝑟 . (𝐴 ⊓ 𝐵)}, and
assume that there is a singleton policy {𝑃} such that P is safety-

equivalent to {𝑃}.
It is easy to see that the quantified ABox ∃∅. {𝑟 (𝑎, 𝑏), 𝐵(𝑏)} is

P-safe. Thus, it must be {𝑃}-safe as well. According to Theorem 3.9,

this implies that Atoms(𝑃) cannot contain an existential restriction

of the form ∃𝑟 .𝐶 .
We claim that this implies that the quantifiedABox∃{𝑥}. {𝑟 (𝑎, 𝑥),

𝐴(𝑥), 𝐵(𝑥)} is safe for {𝑃}. This yields a contradiction to our as-

sumption that P is safety-equivalent to {𝑃} since this quantified
ABox is not even compliant with P.

To prove the claim, we use again Theorem 3.9. Since the quanti-

fied ABox does not contain a concept assertion for an individual

name, the first condition of the theorem is satified. The second

condition is satisfied as well since Atoms(𝑃) does not contain an

existential restriction for the role 𝑟 .

Our characterization of safety for the case of singleton poli-

cies cannot be extended in a straightforward way to general poli-

cies P. The main problem appears to be that the constructions of

counterexample ABoxes employed above need not yield compli-

ant ABoxes. The next example shows that non-compliance with

Atoms(P) B ⋃{ Atoms(𝑃) | 𝑃 ∈ P } does not necessarily lead to

a violation of safety.

Example 3.14. Consider the policy P B {𝐵 ⊓∃𝑟 . (𝐴1 ⊓𝐴2), 𝐴1}.
The ABox ∃∅. {𝐴2 (𝑎)} is easily seen to be safe for P, although it is

not compliant with Atoms(P) since 𝐴2 ∈ Atoms(P). If we had the
singleton policy {𝐵 ⊓ ∃𝑟 . (𝐴1 ⊓𝐴2)}, then our construction would

yield the ABox ∃∅. {𝐵(𝑏), 𝑟 (𝑏, 𝑎), 𝐴1 (𝑎)} as counterexample to

safety. However, since 𝐴1 ∈ P, this ABox is not compliant with P.

A possible approach for preventing this problem is to restrict

attention to the subset SafetyAtoms(P) of Atoms(P) consisting of
all atoms𝐶 that are a top-level conjunct of target(𝑝) for some path

𝑝 in a policy concept 𝑃 ∈ P, but for which target(𝑝) ̸⊑∅ 𝑄 for each

𝑄 ∈ P \ {𝑃}. If we replace Atoms(P) with SafetyAtoms(P), then
Lemma 3.4 also holds for non-singleton policies.

Even with this modification, Lemma 3.8 needs no longer hold.

To see this, consider Figure 4. The small gray triangles in this

figure remain in the constructed ABox, with an individual name

at the root. Thus, the corresponding subconcepts target(𝑝 𝑟−→ 𝑞 𝑗 )
should not be subsumed by any policy concept since otherwise

the constructed ABox cannot be compliant. The following example

shows that, even if we impose this restriction in the definition of a

partial homomorphism, Lemma 3.8 still does not hold.

Example 3.15. Consider the policy P B {∃𝑟 . (∃𝑟 .𝐴⊓∃𝑟 .𝐵), 𝐴⊓
𝐵} and the ABox ∃𝑋 .A B ∃{𝑥}. {𝑟 (𝑎, 𝑥), 𝑟 (𝑥, 𝑏)}, which can eas-

ily be seen to be safe. There is a partial homomorphism from ∃𝑟 .𝐴⊓
∃𝑟 .𝐵 to the ABox at 𝑥 , namely ( 𝑗, {∃𝑟 .𝐴 ⊓ ∃𝑟 .𝐵 𝑟−→ 𝐴, ∃𝑟 .𝐴 ⊓
∃𝑟 .𝐵 𝑟−→ 𝐵}) where 𝑗 (∃𝑟 .𝐴 ⊓ ∃𝑟 .𝐵) B 𝑥 and 𝑗 (∃𝑟 .𝐴 ⊓ ∃𝑟 .𝐵 𝑟−→
𝐴) B 𝑏 and 𝑗 (∃𝑟 .𝐴 ⊓ ∃𝑟 .𝐵 𝑟−→ 𝐵) B 𝑏. Neither target(∃𝑟 .𝐴 ⊓
∃𝑟 .𝐵 𝑟−→ 𝐴) nor target(∃𝑟 .𝐴 ⊓ ∃𝑟 .𝐵 𝑟−→ 𝐵) is subsumed by a pol-

icy concept, but their conjunction is subsumed by 𝐴 ⊓ 𝐵, i.e., the

constructed ABox cannot be compliant. In particular, ∃𝑌 .B looks

as follows: ∃∅. {𝐴(𝑎), 𝐴(𝑏), 𝐵(𝑏)}. It entails (𝐴 ⊓ 𝐵) (𝑏).
At the moment, we do not have a characterization of safety for

the case of non-singleton policies that is in the spirit of Theorem 3.9.

Nevertheless, using ideas from [13, 14] it is easy to see that safety

for general policies is in NP.

Proposition 3.16. Safety for general policies can be decided in
nondeterministic polynomial time.

Proof Sketch. Themain idea underlying the proof is that, when-

ever ∃𝑋 .A is not safe for P, then there exists a small ABox ∃𝑌 .B
that is compliant with P and such that ∃𝑋 .A ∪ ∃𝑌 .B is not com-

pliant with P, where small means that the number of object names

occurring in B is polynomially bounded by the maximal size of the

concepts in P. Such an ABox can then be guessed in nondetermin-

istic polynomial time.

The reason for the existence of such a small counterexample to

safety is the following. If ∃𝑋 .A is not safe for P, then there exists a

compliant quantified ABox ∃𝑍 .C such that ∃𝑋 .A∪∃𝑍 .C |= 𝑃 (𝑎)
for an individual 𝑎 and a policy concept 𝑃 ∈ P. Thus, there is a ho-

momorphism from the ABox translation of 𝑃 (𝑎) to ∃𝑋 .A ∪∃𝑍 .C.
Let ∃𝑌 .B be the quantified ABox obtained from ∃𝑍 .C by removing

all objects that are not in the image of this homomorphism. This

provides us with the small ABox we are looking for. □

4 THE OPTIMAL SAFE ANONYMIZATION
If a given quantified ABox turns out not to be safe, we want to

modify it in a minimal way to make it safe before publishing it.

Given a quantified ABox ∃𝑋 .A and a policy P, we say that ∃𝑌 .B
is a P-compliant anonymization (P-safe anonymization) of ∃𝑋 .A
if ∃𝑋 .A |= ∃𝑌 .B and ∃𝑌 .B is compliant with P (safe for P).

Such an anonymization ∃𝑌 .B is optimal if there is no P-compliant

anonymization (P-safe anonymization) of ∃𝑋 .A that lies strictly

between ∃𝑋 .A and ∃𝑌 .B w.r.t. the entailment relation. Thus, op-

timality means that we minimize the amount of entailments lost

by the anonymization.

The problem of computing optimalP-compliant anonymizations

of quantified ABoxes for EL policies was investigated in detail

in [4], where it is shown that a quantified ABox may in the worst

case have exponentially many P-compliant anonymizations of

exponential size. We show below that, for safety w.r.t. singleton

policies, there always exists an (up to equivalence) unique optimal

anonymization, which may, however, still be of exponential size.

Our construction of this unique safe anonymization is inspired by

the approach employed in [4] for the case of compliance. The main
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idea underlying that approach is that one needs to generate copies of

objects, rather than just remove assertions. For example, consider

the quantified ABox ∃{𝑥}. {𝑟 (𝑎, 𝑥), 𝐴1 (𝑥), 𝐴2 (𝑥), 𝐴3 (𝑥)} and the

policy concept 𝑃 B ∃𝑟 . (𝐴1 ⊓ 𝐴2 ⊓ 𝐴3). Compliance can, e.g., be

achieved by removing 𝐴1 (𝑥), but the resulting ABox is not optimal.

In fact, one can obtain an optimal compliant anonymization by

introducing three copies𝑦1, 𝑦2, 𝑦3 of 𝑥 , making all of them variables

and 𝑟 -successors of 𝑎, and adding for all 𝑖, 1 ≤ 𝑖 ≤ 3, the assertions

𝐴𝑘 (𝑦𝑖 ) and 𝐴ℓ (𝑦𝑖 ) where {𝑘, ℓ} = {1, 2, 3} \ {𝑖}. In the general

construction, the copies of an object name 𝑢 occurring in ∃𝑋 .A
are basically of the form𝑦𝑢,K whereK ⊆ Atoms(P). The variables
𝑦𝑖 in our example would actually be denoted by 𝑦𝑥,{𝐴𝑖 } in this

construction. The quantified ABox ∃𝑌 .B containing these copies

is then defined in a way which ensures that

• ∃𝑌 .B does not entail 𝐶 (𝑦𝑢,K ) if 𝐶 ∈ K .

A so-called compliance seed function determines which copy of an

individual 𝑎 is employed to represent this individual. It is defined in

a way that ensures compliance (see [4] for details). In our example,

the seed function uses 𝑦𝑎,{∃𝑟 . (𝐴1⊓𝐴2⊓𝐴3) } to represent 𝑎.

Inspired by this idea, we also employ such copies 𝑦𝑢,K in our

construction of the optimal safe anonymization∃𝑌 .B. However, we

view all such copies as variables, and explicitly keep the individual

names from ∃𝑋 .A to denote individuals. The intuition underlying

the sets K also differs from the one in the case of compliance. In

fact, the ABox ∃𝑌 .B is constructed such that the following holds:

• if 𝑦𝑢,K is a variable in ∃𝑌 .B and 𝐶 ∈ K , then there is no

partial homomorphism from 𝐶 to ∃𝑌 .B at 𝑦𝑢,K .

Given the close connection between the entailment of concept

assertions and the existence of homomorphisms, this condition ac-

tually modifies the one used in the case of compliance by replacing

“homomorphism” with “partial homomorphism.”

Before defining the optimal safe anonymization of ∃𝑋 .A for-

mally, we introduce an optimization (also employed in [4]) that

allows us to reduce the number of copies 𝑦𝑢,K that must be intro-

duced. This optimization is based on the following lemma.

Lemma 4.1. Let 𝐶, 𝐷 be EL concept descriptions and ∃𝑋 .A a
quantified ABox. If there is a partial homomorphism from𝐶 to ∃𝑋 .A
at 𝑢 and 𝐶 ⊑∅ 𝐷 , then there also is a partial homomorphism from 𝐷

to ∃𝑋 .A at 𝑢.

Consequently, if 𝐶 ⊑∅ 𝐷 and 𝐷 ∈ K prevents the existence

of a partial homomorphism from 𝐷 to ∃𝑌 .B at 𝑦𝑢,K , then this

also prevents the the existence of a partial homomorphism from 𝐶

to ∃𝑌 .B at 𝑦𝑢,K . Thus, it is sufficient to have only the subsumer

𝐷 in K . This insight allows us to restrict the sets K to ones not

containing any ⊑∅-comparable elements.

Definition 4.2. The canonical safe anonymization sa(∃𝑋 .A, {𝑃})
of ∃𝑋 .A w.r.t. some singleton policy {𝑃} is the ABox ∃𝑌 .B con-

sisting of the following components. As set of variables, we use

𝑌 B

{
𝑦𝑢,K

����� 𝑢 ∈ ΣI ∪ 𝑋, K ⊆ Atoms(𝑃), and
K does not contain ⊑∅-comparable atoms

}
.

The matrix B is then constructed as follows:

(1) Add 𝐴(𝑎) to B if 𝐴(𝑎) ∈ A and 𝐴 ∉ Atoms(𝑃).
(2) Add 𝐴(𝑦𝑢,K ) to B if 𝐴(𝑢) ∈ A and 𝐴 ∉ K .

(3) Add 𝑟 (𝑎, 𝑏) to B if 𝑟 (𝑎, 𝑏) ∈ A and there is no ∃𝑟 .𝐶 ∈
Atoms(𝑃).

(4) Add 𝑟 (𝑎,𝑦𝑣,L) to B if 𝑟 (𝑎, 𝑣) ∈ A and, for each ∃𝑟 .𝐶 ∈
Atoms(𝑃), there is 𝐷 ∈ L with 𝐶 ⊑∅ 𝐷 .

(5) Add 𝑟 (𝑦𝑢,K , 𝑦𝑣,L) to B if 𝑟 (𝑢, 𝑣) ∈ A and, for each ∃𝑟 .𝐶 ∈
K , there is 𝐷 ∈ L with 𝐶 ⊑∅ 𝐷 .

(6) Add 𝑟 (𝑦𝑢,K , 𝑏) to B if 𝑟 (𝑢,𝑏) ∈ A and there is no ∃𝑟 .𝐶 ∈ K .

In the remainder of this section, we show that sa(∃𝑋 .A, {𝑃})
is indeed the optimal {𝑃}-safe anonymization of ∃𝑋 .A, and that

it can be computed in exponential time.

First, note that (2), (5), and (6) of the construction together with

Lemma 3.10 ensure that the intuition underlying the variables 𝑦𝑢,K
mentioned above is really satisfied by sa(∃𝑋 .A, {𝑃}).

Lemma 4.3. If 𝐶 is a concept description and 𝑦𝑢,K is a variable
such that K contains some atom 𝐷 with 𝐶 ⊑∅ 𝐷 , then there is no
partial homomorphism from 𝐶 to sa(∃𝑋 .A, {𝑃}) at 𝑦𝑢,K .

This lemma, together with the characterization of safety given

in Theorem 3.9 and (1), (3), and (4) of the construction, then yields

that sa(∃𝑋 .A, {𝑃}) is indeed safe for {𝑃}.

Proposition 4.4. The quantified ABox sa(∃𝑋 .A, {𝑃}) is entailed
by ∃𝑋 .A and safe for {𝑃}.

Proof. As an easy consequence of Definition 4.2 we obtain that

the mapping ℎ where ℎ(𝑎) B 𝑎 for each individual name 𝑎 and

where ℎ(𝑦𝑢,K ) B 𝑢 for each variable 𝑦𝑢,K is a homomorphism

from sa(∃𝑋 .A, {𝑃}) to ∃𝑋 .A. This shows that ∃𝑋 .A entails

sa(∃𝑋 .A, {𝑃}).
We make use of Theorem 3.9 for justifying safety. Consider an

individual name 𝑎 and a concept name 𝐴 ∈ Atoms(𝑃). By the very

definition of sa(∃𝑋 .A, {𝑃}), its matrix B does not contain the

concept assertion 𝐴(𝑎).
It remains to prove that, for each individual name 𝑎, for each

role assertion 𝑟 (𝑎,𝑢) in the matrix of sa(∃𝑋 .A, {𝑃}), and for each

existential restriction ∃𝑟 .𝐶 in Atoms(𝑃), there does not exist a

partial homomorphism from 𝐶 to sa(∃𝑋 .A, {𝑃}) at 𝑢. Note that
Lemma 4.1 tells us that it suffices to consider existential restrictions

∃𝑟 .𝐶 inMax(Atoms(𝑃)).
If 𝑢 is an individual name, then by (3) of Definition 4.2 there

is no existential restriction ∃𝑟 .𝐶 in Max(Atoms(𝑃)). Thus, there
is nothing to show. Now assume that 𝑢 is a variable 𝑦𝑣,L . Since
𝑟 (𝑎,𝑦𝑣,L) is a role assertion in sa(∃𝑋 .A, {𝑃}), (4) of Definition 4.2

implies that A contains 𝑟 (𝑎, 𝑣) and that 𝐶 ⊑∅ 𝐷 for some atom

𝐷 ∈ L. Lemma 4.3 yields that there is no partial homomorphism

from 𝐶 to sa(∃𝑋 .A, {𝑃}) at 𝑦𝑣,L . □

The following proposition implies optimality of sa(∃𝑋 .A, {𝑃}).

Proposition 4.5. Each {𝑃}-safe anonymization of ∃𝑋 .A is en-
tailed by sa(∃𝑋 .A, {𝑃}).

Proof. Let ∃𝑍 .C be a {𝑃}-safe anonymization of ∃𝑋 .A. Then

there is a homomorphism ℎ from ∃𝑍 .C to ∃𝑋 .A. Define the

mapping 𝑘 by setting 𝑘 (𝑎) B 𝑎 for each individual name 𝑎 and

𝑘 (𝑥) B 𝑦ℎ (𝑥),𝑓 (𝑥) for each variable 𝑥 where 𝑓 (𝑥) contains each
concept name 𝐴 ∈ Atoms(𝑃) with 𝐴(𝑥) ∉ C as well as each

subsumption-maximal existential restriction ∃𝑟 .𝐶 ∈ Atoms(𝑃)
such that, for each 𝑟 (𝑥,𝑢) ∈ C, there is no partial homomorphism
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from 𝐶 to ∃𝑍 .C at 𝑢. We prove that 𝑘 is a homomorphism from

∃𝑍 .C to sa(∃𝑋 .A, {𝑃}).
(1) Let 𝐴(𝑎) ∈ C, which implies 𝐴(𝑎) ∈ A. Since ∃𝑍 .C is

safe for P, Lemma 3.8 implies that 𝐴 cannot be contained

in Atoms(𝑃), and so (1) of Definition 4.2 ensures that the

concept assertion 𝐴(𝑎) is contained in sa(∃𝑋 .A, {𝑃}).
(2) Let 𝐴(𝑥) ∈ C, which implies 𝐴(ℎ(𝑥)) ∈ A. It follows that

𝐴 ∉ 𝑓 (𝑥) and so we conclude by (2) of Definition 4.2 that

𝐴(𝑘 (𝑥)) is in sa(∃𝑋 .A, {𝑃}).
(3) Consider a role assertion 𝑟 (𝑎, 𝑏) ∈ C, which then also be-

longs toA. Since ∃𝑍 .C is safe for P, Lemma 3.8 implies that,

for each ∃𝑟 .𝐶 ∈ Max(Atoms(𝑃)), there is no partial homo-

morphism from𝐶 to ∃𝑍 .C at𝑏. Since𝑏 is an individual name,

Lemma 3.10 implies that, for each ∃𝑟 .𝐶 ∈ Max(Atoms(𝑃)),
there always exists a partial homomorphism from𝐶 to ∃𝑍 .C
at 𝑏. We conclude that Max(Atoms(𝑃)) cannot contain an

existential restriction ∃𝑟 .𝐶 . Thus (3) of Definition 4.2 yields

that sa(∃𝑋 .A, {𝑃}) contains 𝑟 (𝑎, 𝑏).
(4) Let 𝑟 (𝑎,𝑦) be a role assertion in C, and thus 𝑟 (𝑎, ℎ(𝑦)) ∈ A,

and let ∃𝑟 .𝐶 ∈ Max(Atoms(𝑃)). According to Lemma 3.8,

there does not exist a partial homomorphism from𝐶 to∃𝑍 .C
at 𝑦. Since 𝑦 is a variable, Lemma 3.10 implies that either

there is a concept name 𝐴 ∈ Conj(𝐶) such that the concept

assertion𝐴(𝑦) is not in C, or there is an existential restriction
∃𝑠 .𝐷 ∈ Conj(𝐶) such that, for each 𝑠 (𝑦, 𝑣) ∈ C, there is no
partial homomorphism from𝐷 to ∃𝑍 .C at 𝑣 . In the first case,

𝐴 is in 𝑓 (𝑦). In the second case, Lemma 4.1 yields that 𝑓 (𝑦)
contains some atom subsuming ∃𝑠 .𝐷 . In both cases, we have

that some atom in 𝑓 (𝑦) subsumes𝐶 , and thus (4) ensures that

the role assertion 𝑟 (𝑎, 𝑘 (𝑦)) is indeed in sa(∃𝑋 .A, {𝑃}).
(5) Let 𝑟 (𝑥,𝑦) in C, which yields 𝑟 (ℎ(𝑥), ℎ(𝑦)) ∈ A. In addition,

consider some existential restriction ∃𝑟 .𝐶 in 𝑓 (𝑥), i.e., there
does not exist any partial homomorphism from 𝐶 to ∃𝑍 .C
at 𝑦. Since 𝑦 is a variable, Lemma 3.10 implies that either

there is a concept name 𝐴 ∈ Conj(𝐶) such that the concept

assertion𝐴(𝑦) is not in C, or there is an existential restriction
∃𝑠 .𝐷 ∈ Conj(𝐶) such that, for each 𝑠 (𝑦, 𝑣) ∈ C, there is no
partial homomorphism from𝐷 to ∃𝑍 .C at 𝑣 . In the first case,

𝐴 is in 𝑓 (𝑦). In the second case, Lemma 4.1 yields that 𝑓 (𝑦)
contains some atom subsuming ∃𝑠 .𝐷 . In both cases, we have

that some atom in 𝑓 (𝑦) subsumes 𝐶 , and thus (4) yields that

the role assertion 𝑟 (𝑘 (𝑥), 𝑘 (𝑦)) is indeed in sa(∃𝑋 .A, {𝑃}).
(6) Finally, let 𝑟 (𝑥, 𝑏) ∈ C, and thus 𝑟 (ℎ(𝑥), 𝑏) is in A. By defi-

nition of 𝑓 we have that, for each ∃𝑟 .𝐶 ∈ 𝑓 (𝑥), there does
not exist any partial homomorphism from 𝐶 to ∃𝑍 .C at 𝑏.

Since 𝑏 is an individual name, Lemma 3.10 yields that, for

each ∃𝑟 .𝐶 ∈ 𝑓 (𝑥), there is always a partial homomorphism

from 𝐶 to ∃𝑍 .C at 𝑏. We conclude that 𝑓 (𝑥) cannot con-
tain any existential restriction ∃𝑟 .𝐶 . Now (6) ensures that

sa(∃𝑋 .A, {𝑃}) contains 𝑟 (𝑘 (𝑥), 𝑏). □

Putting the results of Propositions 4.4 and 4.5 together, we obtain:

Theorem 4.6. The quantified ABox sa(∃𝑋 .A, {𝑃}) is the (up to
equivalence) unique optimal {𝑃}-safe anonymization of ∃𝑋 .A.

The cardinality of the set Atoms(𝑃) is linear in the size of 𝑃 ,

and thus we need to create at most exponentially many copies of
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Original ABox: ∃{𝑥}. {𝑚(𝑏, 𝑥), 𝐶 (𝑥), 𝑠 (𝑥, 𝑗), 𝐶 ( 𝑗)}
Policy: {∃𝑚. (𝐶 ⊓ ∃𝑠 .𝐶)}

Abbreviations: 𝑃 B ∃𝑚. (𝐶 ⊓ ∃𝑠 .𝐶) and 𝐷 B ∃𝑠 .𝐶

Figure 5: The canonical safe anonymization for the introduc-
tory example

each object in ∃𝑋 .A. In addition, the conditions for whether to

include an assertion in the constructed ABox ∃𝑌 .B can be tested

in polynomial time. Thus, the above theorem yields the following

complexity results.

Corollary 4.7. The optimal {𝑃}-safe anonymization sa(∃𝑋 .A,

{𝑃}) of ∃𝑋 .A can be computed in exponential time for combined
complexity and in polynomial time for data complexity.

A slight modification of Example 2 in [2] can be used to show

that the exponential upper bound stated in the corollary is tight.

Example 4.8. Consider the ABox ∃𝑋 .A with variable 𝑥 and

matrix {𝑟 (𝑎, 𝑥), 𝐴1 (𝑥), 𝐵1 (𝑥), . . . , 𝐴𝑛 (𝑥), 𝐵𝑛 (𝑥)}, and the policy

concept 𝑃 B ∃𝑟 . (𝐴1 ⊓ 𝐵1) ⊓ . . . ⊓ ∃𝑟 . (𝐴𝑛 ⊓ 𝐵𝑛). It is easy to see

that the optimal safe anonymization sa(∃𝑋 .A, {𝑃}) must contain

exponentially many 𝑟 -successors of the individual 𝑎, namely the

variables 𝑦𝑥,K for each set K that contains either 𝐴𝑖 or 𝐵𝑖 for each

index 𝑖 . There cannot exist a quantified ABox that is equivalent to

sa(∃𝑋 .A, {𝑃}), but has fewer 𝑟 -successors of 𝑎.

Finally, let us come back to the Ben and Jerry example from

the introduction. Figure 5 depicts the canonical safe anonymiza-

tion of Ben’s original ABox, where we use obvious abbreviations
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for concept, role, and individual names. This shows that the safe

anonymization (3) we came up with in the introduction is not opti-

mal. In fact, the canonical safe anonymization implies that Ben is

an instance of the concept ∃mother.∃ spouse.Comedian, whereas
(3) does not have this consequence.

5 CONCLUSION
We have shown that deciding safety of a quantified ABox w.r.t. a

policy defined by a single EL concept can be decided in polyno-

mial time, and that the unique optimal safe anonymization of a

non-safe quantified ABox can be computed in exponential time.

Both complexity results are w.r.t. combined complexity, where both

the data and the policy are view to be part of the input. For data

complexity (where the policy is assumed to be fixed), the complex-

ity of the latter problem also drops to polynomial time. In the worst

case, the exponential complexity for computing the optimal safe

anonymization cannot be avoided, as demonstrated by Example 4.8.

Compared to the findings in [13, 14], our results show that the

restriction from conjunctive queries to EL concepts as formalism

for representing the policy pays off complexity-wise: in the setting

considered in [13, 14], the complexity of deciding safety lies on the

second level of the polynomial hierarchy. It would be interesting

to see whether the lower complexity obtained in our setting is

preserved when going from EL concepts to ELI concepts or to

acyclic conjunctive queries.

In this paper we have restricted the attention to singleton poli-

cies, i.e., ones consisting of a single concept. With such a policy,

Ben can for instance prevent people from finding out who are the

famous comedians, using the policy concept Comedian ⊓ Famous.
But he cannot prevent them from finding out who is famous or a

comedian, since this would require using the non-singleton policy

{Comedian, Famous}. It is currently not clear whether and how our

results can be extended from singleton policies to general ones

consisting of a finite set of EL concepts. The papers [2, 6] investi-

gate both compliance and safety for such general policies, but they

restrict the data to EL instance stores. The work in [4] considers

general quantified ABoxes and policies, but presents results for

compliance only. It would be interesting to find out whether the

NP upper bound for deciding safety in this general cases has a

matching NP lower bound, and whether our approach for comput-

ing optimal safe anonymizations can be extended to this setting.

Given a non-singleton policy {𝑃1, . . . , 𝑃𝑘 } and a quantified ABox

∃𝑋 .A, one could, of course, first apply our method for computing

an optimal safe anonymization for the case of singleton policies to

∃𝑋 .A and {𝑃1}, then to the resulting quantified ABox and {𝑃2},
etc. While this would indeed yield a quantified ABox that is safe

for {𝑃1, . . . , 𝑃𝑘 }, this ABox need not be optimal [3].
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