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KRDB Research Centre

Free University of Bozen-Bolzano, Italy
rafael.penaloza@unibz.it

Abstract
Fuzzy Answer Set Programming (FASP) combines the non-
monotonic reasoning typical of Answer Set Programming
with the capability of Fuzzy Logic to deal with imprecise
information and paraconsistent reasoning. In the context of
paraconsistent reasoning, the fundamental principle of mini-
mal undefinedness states that truth degrees close to 0 and 1
should be preferred to those close to 0.5, to minimize the am-
biguity of the scenario. The aim of this paper is to enforce
such a principle in FASP through the minimization of a mea-
sure of undefinedness. Algorithms that minimize undefined-
ness of fuzzy answer sets are presented, and implemented.

Introduction
Fuzzy Answer Set Programming (FASP) (Nieuwenborgh,
Cock, and Vermeir 2007; Janssen et al. 2012a; 2012b; Blon-
deel et al. 2013; Lee and Wang 2014; Mushthofa, Schock-
aert, and Cock 2015) is a successfully combination of Fuzzy
Logic (Cintula, Hájek, and Noguera 2011) and Answer Set
Programming (ASP) (Gelfond and Lifschitz 1991; Marek
and Truszczyński 1999; Niemelä 1999), which resulted in
a declarative framework supporting non-monotonic reason-
ing on propositional formulas interpreted by truth degrees in
the interval [0,1]. As in ASP, reasoning on unknown knowl-
edge is eased by the use of default negation, whose seman-
tics is elegantly captured by the notion of answer set, or sta-
ble model: in a model, truth of unknown knowledge may be
assumed as soon as there is no evidence of the contrary, and
the model is discarded when the truth of some propositions
is not necessary in order to satisfy the input program un-
der the assumption for the unknown knowledge provided by
the model itself. Moreover, as in Fuzzy Logic, non-Boolean
truth degrees are useful to handle vague information, but
also to deal with inconsistencies that may arise from math-
ematical abstractions of real phenomena. In this respect, the
truth degree 0.5 is analogous to the truth value undefined
used by many paraconsistent logics and paracoherent an-
swer set semantics (Przymusinski 1991; You and Yuan 1994;
Sakama and Inoue 1995; Eiter, Leone, and Saccà 1997;
Amendola et al. 2016).

Fuzzy answer sets satisfy two fundamental principles
shared by several semantics for logic programs: justifia-
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bility (J, or foundedness), and the closed world assump-
tion (C, or CWA). Briefly, for normal ASP programs, jus-
tifiability requires that every true atom is derived from
the input program under the assumption provided for the
negated formulas, and the CWA constrains to false any atom
whose defining rules have false bodies (You and Yuan 1994;
Eiter, Leone, and Saccà 1997). For FASP programs, these
two principles can be recast in terms of truth degrees:

(JC˜ ) Any truth degree x ∈ (0,1] for an atom p is derived
from the input program under the assumption provided
for the negated formulas.

Minimal undefinedness (U) is another fundamental prin-
ciple introduced in the context of paraconsistent reason-
ing, imposing a minimization on the number of undefined
atoms (You and Yuan 1994). For example, the FASP pro-
gram Π = {p← ∼q, q← ∼p} has three answer set candi-
dates, namely I = {(p,1),(q,0)}, J = {(p,0),(q,1)}, and
K = {(p,0.5),(q,0.5)}, but K has to be discarded because
it contains two undefined atoms. In terms of truth degrees,
minimal undefinedness imposes the following preference:

(U˜) Truth degrees close to 0 or 1 should be preferred to
those close to 0.5.

However, minimal undefinedness is not enforced by the cur-
rent notion of fuzzy answer set, as for example K is among
the fuzzy answer sets of the program Π above. In fact,
Π has uncountably many fuzzy answer sets of the form
{(p,x),(q,1−x)}, x ∈ [0,1]. I and J should be the preferred
two fuzzy answer sets for being undefinedness-free.

The previous example also highlights that fuzzy answer
sets do not possess another important principle known as
congruence (Co): The extension of a semantics must co-
incide with the original semantics on coherent theories. In
terms of fuzzy ASP, congruence can be stated as follows:

(Co˜ ) Fuzzy answer sets of coherent ASP programs coincide
with crisp answer sets.

Principles (U˜) and (Co˜ ) are useful in abduction processes
involving fuzzy circuits. For example, the designer of a
fuzzy controller may be interested in computing input con-
figurations producing a given output. This abduction process
can be improved by focusing on minimal undefined interpre-
tations, as those are the simplest to explain in the real world.



Example 1. Consider a fuzzy controller with temperature
and humidity as input, and fan speed as output. Let t1, t2, t3
and h1,h2,h3 be atoms representing different classes of tem-
peratures and humidities (e.g., t1 is cool, t2 is normal, and t3
is warm; h1 is humidity low, h2 is humidity normal, and h3
is humidity high) and s1,s2,s3 represent different classes of
fan speeds (e.g., s1 is off, s2 is normal speed, and s3 is max-
imum speed). The fuzzy controller rules are Πc = {s1← t1,
s2 ← t2 ⊗ h3, s3 ← t3 ⊗ (h2 ⊕ h3)}; i.e., the fan is turned
off when the temperature is cool, set to normal speed when
the temperature is normal and the humidity is high, and set
to maximum speed when the temperature is warm and the
humidity is normal or high. A possible input for the con-
troller is Πin = {t1← 0, t2← 0.8, t3← 0.2,h1← 0,h2← 0.1,
h3← 0.9}, representing a slightly warm temperature and a
high humidity. In this case the controller sets the fan speed to
a value slightly higher than normal. Indeed, as will be clear
after formally introducing the semantics in the next section,
the truth degrees of s1,s2,s3 are respectively 0, 0.7, and 0.2.

In this context, the designer of the fuzzy controller may be
interested in checking the existence of input configurations
such that all output variables s1,s2,s3 are assigned the truth
degree 0, hence leaving the fan speed completely undeter-
mined. For example, in Πc this is the case when h1, t3 are 1,
and all other input variables are 0. �

In this paper the notion of fuzzy answer sets is refined by
means of a measure of undefinedness, which results into the
definition of minimal undefinedness fuzzy answer set. Prin-
ciples (JC˜ ), (U˜), and (Co˜ ) are satisfied by FASP after this
refinement. Algorithms to iteratively compute fuzzy answer
sets that decrease the measure of undefinedness are also pre-
sented, among them binary and progression search. The al-
gorithms are implemented in a prototype system extending
FASP2SMT (Alviano and Peñaloza 2015), a FASP solver us-
ing Z3 (de Moura and Bjørner 2008) as backend. The perfor-
mance of these algorithms is compared, on the same solver,
with the use of the MINIMIZE instruction of Z3.

Preliminaries
Let B be a fixed set of propositional variables. A fuzzy atom
(atom for short) is either a variable from B, or a numeric
constant in the interval [0,1]. Fuzzy expressions are defined
inductively as follows: every atom is a fuzzy expression; if
α and β are fuzzy expressions and � ∈ {⊗,⊕,Y,Z} is a
connective, then ∼α and α�β are fuzzy expressions, where
∼ denotes default negation. The connectives ⊗,⊕ are called
Łukasiewicz, and Y,Z are the Gödel connectives. A positive
expression is a fuzzy expression not using ∼. A rule is of
the form α ← β , with α an atom, and β a fuzzy expression.
This rule is positive if β is a positive expression. A (general)
FASP program is a finite set of rules. A positive FASP pro-
gram is a FASP program where every rule is positive. We
use At(Π) to denote the set of atoms occurring in Π.

The semantics of FASP programs requires a set of truth
degrees. For the scope of this paper we consider the real in-
terval L∞ = [0,1] and the sets Ln = { i

n−1 |i = 0, ...,n− 1},
for n ≥ 2. Note that L2 = {0,1} is the classical Boolean
set. Henceforth, L denotes an arbitrary but fixed such set,

unless explicitly stated otherwise. A FASP program Π is
an L -program if all constants occurring in Π are in L .
An L -interpretation I is a function I : B → L mapping
each atom of B into a truth degree in L . We will often
denote such a function as the set {(p, I(p)) | p ∈ B}. I
is extended to fuzzy expressions as follows: I(c) = c for
all c ∈ [0,1]; I(∼α) = 1− I(α); I(α ⊗ β ) = max{I(α) +
I(β )− 1,0}; I(α ⊕ β ) = min{I(α)+ I(β ),1}; I(α Y β ) =
max{I(α), I(β )}; and I(α Zβ ) = min{I(α), I(β )}. I satis-
fies the rule α ← β (I |= α ← β ) if I(α) ≥ I(β ); it is an
L -model of an L -program Π (I |= Π) if I |= r for all r ∈Π.

Given L -interpretations I,J, we write I≤ J if I(p)≤ J(p)
for all p ∈B. If I ≤ J and I 6= J, we write I < J. A minimal
L -model of an L -program Π is an L -model of Π such
that there is no L -model J satisfying J < I. The reduct of
an L -program Π w.r.t. an L -interpretation I, denoted ΠI , is
obtained by replacing each occurrence of ∼α by the constant
1− I(α). Let Π be an L -program, and I be L -interpreta-
tion. I is an L -answer set of Π if I is a minimal L -model of
ΠI . FAS(L ,Π) is the set of L -answer sets of Π. Π is L -co-
herent if FAS(L ,Π) 6= /0, and L -incoherent otherwise.

Example 2. Let Π = {a ← ∼b, b ← ∼c, b ← 0.4}, and
I = {(a,0),(b,1),(c,0)}. I ∈ FAS(L∞,Π) because I is a
minimal L∞-model of ΠI = {a← 0,b← 1,b← 0.4}. �

ASP programs can be seen as special cases of FASP
L2-programs using only the connective Z. The classical an-
swer sets of such programs are FAS(L2,Π).

Justifiability and CWA
Let us first introduce the immediate consequence operator
TΠ for a positive L -program Π:

TΠ(I) : α 7→max{I(β ) | α ← β ∈Π}, ∀α ∈B (1)

where I is an L -interpretation. The operator is monotonic,
and thus has a least fixpoint lfp(TΠ).

Given an L -program Π and an L -interpretation I, an
atom p ∈ B is justified in Π and I if I(p) = lfp(TΠI )(p).
Note that the immediate consequence operator is applied to
the reduct ΠI , so that lfp(TΠI )(p) actually derives the truth
degree of p from the input program under the assumption
provided by I for the negated expressions in Π.

Theorem 1 (Justifiability). Let Π be an L -program, and
I ∈ FAS(L ,Π). All atoms p ∈B such that I(p) ∈ (0,1] are
justified in Π and I.

Proof. We show that lfp(TΠI ) equals I. The reduct ΠI has the
unique L -answer set lfp(TΠI ) (Lukasiewicz 2006). Hence,
there is no J < lfp(TΠI ) with J |= (ΠI)I . Since (ΠI)I = ΠI ,
we have that lfp(TΠI ) is a minimal L -model of ΠI . It follows
that lfp(TΠI )= I because I ∈FAS(L ,Π) by assumption.

Consequently, atoms not occurring in the left-hand side of
any rule of Π, among them those in B \At(Π), are associ-
ated with truth degree 0 in any L -answer set of Π.

Corollary 1 (CWA). Let Π be an L -program, p ∈B, and
I ∈FAS(L ,Π). If I(β ) = 0 for all p← β ∈Π, then I(p) = 0.



As stated in the introduction, justifiability and CWA are
important properties of fuzzy answer sets, but insufficient
to produce simple explanations in abductive reasoning. The
next example clarifies this aspect.

Example 3. Let Πabd be Πc from Example 1 extended with
the following rules:

p← ∼∼p ∀p ∈ {t1, t2, t3,h1,h2,h3} (2)
0← ∼(t1⊕ t2⊕ t3) (3)
0← ∼(h1⊕h2⊕h3) (4)
0← s1⊕ s2⊕ s3 (5)

Fuzzy answer sets of Πabd correspond to input con-
figurations of the fuzzy controller in Example 1 such
that all output variables are assigned 0. Indeed,
(2) guesses an input configuration I, (3)–(4) enforce
I(t1)+ I(t2)+ I(t3)≥ 1 and I(h1)+ I(h2)+ I(h3)≥ 1 (some
restrictions are omitted for simplicity), and (5) discards I if
I(s1)+ I(s2)+ I(s3)> 0. Two fuzzy answer sets of Πabd are
{(t1,0),(t2,0.5),(t3,0.5),(h1,0.5),(h2,0.5),(h3,0),(s1,0),
(s2,0),(s3,0)} and {(t1,0),(t2,0),(t3,1),(h1,1),(h2,0),
(h3,0),(s1,0),(s2,0),(s3,0)}. The latter is a simpler
explanation, and should be preferred to the former. �

Minimal Undefined Fuzzy Answer Sets
Fuzzy answer sets can be seen as a kind of imprecise answer
set, where the interpretation of some of the atoms may not
be fully defined. We want to restrict our attention only to
those fuzzy answer sets that minimize the undefinedness ac-
cording to an appropriate measure. Following De Luca and
Termini (1972), a measure of undefinedness is a function U
mapping every interpretation I to a non-negative real num-
ber U(I) ∈ R such that:

(P1) U(I) = 0 if and only if I(p) ∈ {0,1} for all p ∈B;

(P2) if for every p ∈ B either (i) J(p) ≥ I(p) ≥ 0.5, or
(ii) J(p)≤ I(p)≤ 0.5, then U(I)≥U(J); and

(P3) let Ī(p) := 1− I(p) for all p ∈B; then U(I) =U(Ī).

Intuitively, these properties state, respectively, that classical
interpretations are fully defined; interpretations closer to the
extreme degrees are more defined (or less undefined); and
undefinedness is symmetric w.r.t. complementary interpreta-
tions. Given a measure of undefinedness U , U(J)<U(I) can
be understood as J being more informative than I. Hence,
minimizing U corresponds to selecting a fuzzy answer sets
with minimal imprecision, and potentially taking only the
extreme degrees 0 and 1. Note that the properties (P1)–(P3)
imply that the interpretation mapping all variables to the in-
termediate value 0.5 will always maximize the value of U .

In some cases it is also interesting to consider measures
of undefinedness in which U increases strictly as the inter-
pretations get farther from the borders, in order to satisfy the
principle (U˜). Formally, a measure of undefinedness is strict
if it satisfies the following property:

(P2’) if |I(p)− 0.5| ≥ |J(p)− 0.5| for all p ∈ B, and for
some q∈B |I(q)−0.5|> |J(q)−0.5|, then U(I)<U(J).

A simple example of a (strict) measure of undefinedness
is the distance function UD that measures how distant are the
interpretations of the atoms from being classical. Formally,

UD(I) = ∑
p∈B

min{I(p),1− I(p)}.

Theorem 2 (UD). UD is a strict measure of undefinedness.

Proof. We need to show the properties (P1), (P2’) and (P3).

(P1) UD(I) = 0 iff min{I(p),1− I(p)} = 0, for all p ∈B,
which holds iff I(p) ∈ {0,1} for all p ∈B.

(P2’) This property follows from the observation that
min{α,1−α} = 0.5−|α − 0.5|, for each α ∈ R. Given
I,J, by assumption, |I(p)− 0.5| ≥ |J(p)− 0.5| for all
p∈B and at least one of these inequalities is strict. Then,

UD(I) = ∑
p∈B

(0.5−|I(p)−0.5|)

< ∑
p∈B

(0.5−|J(p)−0.5|) =UD(J).

(P3) Define the sets A (I) = {p ∈ B | I(p) ≥ 0.5} and
A ′(I) = {p ∈B | I(p)< 0.5}. It is easy to see that

UD(I) = ∑
p∈A (I)

(1− I(p))+ ∑
p∈A ′(I)

(I(p))

= ∑
p∈A (I)

(Ī(p))+ ∑
p∈A ′(I)

(1− Ī(p)) =UD(Ī).

Notice, however, that many other such measures exist. A
non-strict measure of undefinedness that can sometimes be
considered is the drastic measure that maps crisp interpreta-
tions to 0 and all others to 1.
Definition 1. An L -answer set I of a program Π is a min-
imal undefined L -answer set w.r.t. the strict measure U if
there is no J ∈ FAS(L ,Π) with U(J) < U(I). The set of
minimal undefined L -answer sets of Π w.r.t. U is denoted
by MUFAS(L ,Π,U).

Clearly, MUFAS(L ,Π,U) ⊆ FAS(L ,Π) holds. As
shown in the following example, there are cases in which
this inclusion is strict. Thus, restricting to minimally unde-
fined interpretations further specializes the class of models
of interest, satisfying property (U˜) given in the introduction.

Example 4. The interpretations I = {(a,0.1), (b,0.9)} and
J = {(a,0.6), (b,0.4)} are two L∞-answer sets of the pro-
gram Π = {a← ∼b,b← ∼a} with UD(I)<UD(J). Indeed,

UD(I) = min{1− I(a), I(a)}+min{1− I(b), I(b)}
= 0.1+0.1 = 0.2, and

UD(J) = 0.4+0.4 = 0.8.

Therefore, J /∈MUFAS(L∞,Π,UD). On the other hand, also
I /∈MUFAS(L∞,Π,UD) holds, as it can be easily shown that
MUFAS(L∞,Π,UD) = {{(a,0),(b,1)}, {(a,1),(b,0)}}. �

Observe that the program Π in Example 4 satisfies
MUFAS(L∞,Π,UD) = FAS(L2,Π), that is, its minimal un-
defined L∞-answer sets coincide with its classical answer
sets. This is not by chance, as claimed in the next theorem.



Theorem 3 (Congruence). If Π is an L2-coherent program,
then MUFAS(L ,Π,U) = FAS(L2,Π) for all sets of truth
degrees L and measures of undefinedness U.

Proof. (⊆) Consider I ∈ FAS(L2,Π). Since U is a mea-
sure of undefinedness, by (P1), U(I) = 0. Therefore, there
is no fuzzy interpretation J such that U(J) < U(I), i.e.,
I ∈MUFAS(L ,Π,U).
(⊇) Let I ∈ MUFAS(L ,Π,U). We show that U(I) = 0,
from which I ∈ FAS(L2,Π) follows by (P1). Since Π is
L2-coherent, there is J ∈ FAS(L2,Π), and hence U(J) = 0.
Since J ∈ FAS(L ,Π) holds as well, we have U(I) = 0.

Notice that if Π is L2-incoherent, then it may be the case
that MUFAS(L ,Π,U) 6= FAS(L2,Π) = /0. For instance, the
program Π = {a← ∼a} has no classical answer sets, but
{(a,0.5)} is in MUFAS(L∞,Π,UD).

Finally, one of the peculiarities of fuzzy answer set pro-
gramming, in contrast to its classical version, is that a single
FASP program may have uncountably many answer sets. As
we show in the following example, the same holds for mini-
mal undefined fuzzy answer sets.

Example 5. Let Π be {a← ∼b⊗ c, b← ∼a⊗ c, c← ∼c}.
For every x∈ [0,0.5], Ix := {(a,0.5−x),(b,x),(c,0.5)} is an
L∞-answer set of Π with UD(Ix) = 1. Moreover, there is no
J ∈ FAS(L∞,Π) with UD(J)< 1. Hence, Π has uncountably
many minimal undefined fuzzy answer sets. �

Computation
Anytime algorithms (Alviano, Dodaro, and Ricca 2014;
Alviano and Dodaro 2016) for computing minimal unde-
finedness fuzzy answer sets are now presented. The underly-
ing idea is to compute one fuzzy answer set, and iteratively
search for new fuzzy answer sets of lower undefinedness.
As shown in (Alviano and Peñaloza 2015), fuzzy answer
sets can be computed via a rewriting into satisfiability mod-
ulo theories (SMT): given an L -program Π, the computed
fuzzy answer set I is represented by the assignment to real
constants xp, for all atoms occurring At(Π); formally, for all
p ∈ At(Π), it holds that xp = I(p).

The rewritings presented by Alviano and Peñaloza, whose
details are not relevant for the scope of this paper, can be ex-
tended to compute fuzzy answer sets with a measure of un-
definedness bounded by a given real number. For example, if
the measure of undefinedness is UD, and one is interested to
fuzzy answer sets whose undefinedness is at most a given
bound b ∈ R, any rewriting from (Alviano and Peñaloza
2015) can be extended with the formula

∑
p∈At(Π)

ite(xp < 1− xp,xp,1− xp)≤ b (6)

where ite(xp < 1−xp,xp,1−xp) essentially evaluates to the
minimum between xp and 1−xp (see (Alviano and Peñaloza
2015) for a formal definition).

In the following, for a measure function U , and a bound
b ∈ R, we will use the formula

U({(p,xp) | p ∈ At(Π)})≤ b (7)

Algorithm 1: BinarySearch(Π, U , ε)
1 (sat, I∗) := solve(Π);
2 if not sat then return incoherent;
3 (lb,ub) := (−ε,U(I∗));
4 while ub− lb > ε do
5 b := (lb+ub)/2;
6 (sat, I) := solve(Π,U({(p,xp) | p ∈ At(Π)})≤ b);
7 if sat then (I∗,ub) := (I,U(I));
8 else lb := b;
9 return I∗;

to discard any interpretation I such that U(I) > b. More-
over, for an L -program Π and a formula of the form (7),
let solve(Π,ϕ) denote the invocation of a function comput-
ing a fuzzy answer set I of Π satisfying ϕ , if it exists; in
this case, the function returns (true, I), and otherwise it re-
turns ( f alse,−). Abusing of notation, we also use solve(Π)
to invoke function solve on Π alone, with no bound on the
measure of undefinedness.

The first algorithm we consider is based on binary search
(Algorithm 1). Its input is an L -program, a measure of un-
definedness U , and a precision threshold ε ∈ R+. The algo-
rithm returns either the string incoherent, if FAS(L ,Π) = /0
(lines 1–2), or an L -answer set I∗ ∈ FAS(L ,Π) such that
U(I∗)−U(J) < ε for all J ∈MUFAS(L ,Π,U). If Π is co-
herent, the algorithm initializes a lower bound lb and an
upper bound ub (line 3): the upper bound is the measure
of undefinedness of the current solution, while the lower
bound represents a measure of undefinedness that cannot be
achieved by any L -answer set of Π. Then, the algorithm
searches for an L -answer set whose measure of undefined-
ness is at most (lb+ ub)/2 (lines 5–6); if one is found, the
current solution and the upper bound are updated (line 7),
otherwise the lower bound is set to (lb+ ub)/2: there is no
I ∈ FAS(L ,Π) with U(I) ≤ (lb+ ub)/2 (line 8). The pro-
cess is repeated until the possible improvement of the upper
bound is below the given precision threshold ε .
Example 6. Consider the program Π = {a← ∼b,b← ∼a}
from Example 4, with the measure UD, and ε = 0.1. solve(Π)
returns a fuzzy answer set of Π; say I0 = {(a,0.6),(b,0.4)}.
Then lb ← −0.1 and ub ← 0.8. The algorithm then finds
a new answer set I1 with U(I1) ≤ 0.35; say I1 = {(a,0.1),
(b,0.9)}, and updates the upper bound ub← 0.2. At the next
iteration we get I2 = {(a,0.05),(b,0.95)}, so ub← 0.1. The
algorithm sets b← 0, and the answer set I3 = {(a,1),(b,0)}
is retrieved and returned. �

The second method (Algorithm 2) uses progression
search to find MUFAS. In this case, the undefinedness is
bound to ub− pr, where pr is the required improvement to
the current solution. The variable pr is initially set to the pre-
cision threshold ε (line 3), doubled at each iteration (line 6),
and reset to ε when it becomes too large (line 5).
Example 7. Using the input from Example 6, Algorithm 2
finds the fuzzy answer set I0 = {(a,0.6), (b,0.4)}, initializ-
ing (lb,ub, pr)← (−0.1,0.8,0.1). It then searches for a new
fuzzy answer set I1 with UD(I1) ≤ 0.7; say I1 = {(a,0.3),



Algorithm 2: ProgressionSearch(Π, U , ε)
1 (sat, I∗) := solve(Π);
2 if not sat then return incoherent;
3 (lb,ub, pr) := (−ε,U(I∗),ε);
4 while ub− lb > ε do
5 if ub− pr ≤ lb then pr := ε;
6 (b, pr) := (ub− pr,2 · pr);
7 (sat, I) := solve(Π,U({(p,xp) | p ∈ At(Π)})≤ b);
8 if sat then (I∗,ub) := (I,U(I));
9 else lb := b;

10 return I∗;

(b,0.7)}, updating ub← 0.6 and pr← 0.2. The next itera-
tion restricts answer sets to have a measure of at most 0.4,
yielding e.g. I2 = {(a,0.1), (b,0.9)} and updating ub← 0.2,
pr← 0.4. Since ub− pr ≤ 0, pr is reset to 0.1, and a new
solution with UD(I3)≤ 0.1 is seeked. The next iterations find
I3 = {(a,0.05),(b,0.95)} and I4 = {(a,1),(b,0)}. At this
point, ub− lb = ε , and I4 is given as a solution. �

Finally, we consider a third algorithm which we call
ε-improvement. This method is obtained from Algorithm 1
by replacing line 5 to update b as follows:
5 b := ub− ε

Intuitively, the modified algorithm minimally improves the
measure of undefinedness of the current solution, until an
incoherence arises.

Example 8. Consider the input from Example 6, yielding the
first solution I0 = {(a,0.6), (b,0.4)} and lb← 0,up← 0.8.
The next solution should have a measure of at most 0.7;
hence, the algorithm retrieves e.g. I1 = {(a,0.3), (b,0.7)}.
At the next iteration, b is set to 0.5, which yields a new so-
lution like I2 = {(a,0.1), (b,0.9)}. The next solution should
then be bounded by 0.1. Thus, I3 = {(a,0.05),(b,0.95)} and
I4 = {(a,1),(b,0)} are retrieved. The latter is returned. �

Implementation and Evaluation
The three algorithms presented above were implemented
in a prototype system extending FASP2SMT (Alviano and
Peñaloza 2015) with the distance function UD as the measure
of undefinedness. Other measures of undefinedness can be
easily accommodated in the prototype, but left for future ex-
tensions. Briefly, FASP2SMT parses a symbolic L -program,
which is then rewritten into ASP Core 2.0 (Alviano et al.
2013) and grounded by GRINGO (Gebser et al. 2011). The
output of GRINGO encodes a propositional L -program Π,
which is parsed and rewritten into SMT-Lib (Barrett, Stump,
and Tinelli 2010), and processed by Z3 (de Moura and
Bjørner 2008) to compute an L -answer set, if it exists.

The new prototype keeps Z3 online, adds a formula of the
form (6), and asks for a new model. Then, the formula (6)
is removed, and this iteration is repeated until the desired
precision threshold is reached. Besides the three algorithms
presented here, FASP2SMT can use the minimize instruc-
tion of Z3, which however is experimental and not part of the

SMT-Lib format. In this case Z3 runs silently to completion,
without intermediate solutions provided to the user.

The prototype system was tested empirically on sat-
isfiable instances of Hamiltonian Cycle from the litera-
ture (Mushthofa, Schockaert, and Cock 2014; Alviano and
Peñaloza 2015). Each method was tested with threshold
ε ∈ {0.1,0.01,0.001}, on an Intel Xeon CPU 2.4 GHz with
16 GB of RAM. Time and memory were limited to 600 sec-
onds and 15 GB, respectively.

The results of the experiment are reported in Table 1. Bi-
nary search exhibits the best performance: it solves all in-
stances if the required precision ε is set to 0.1, and anyhow
the majority of the testcases if ε is smaller. The value of ε

significantly affects the algorithm based on progression. In-
deed, this algorithm reached the best performance when ε

was set to 0.01. The larger value 0.1 resulted in several ex-
pensive invocations of function solve returning incoherent,
while the smaller value 0.001 slowed down the search in
some cases. Even if the algorithm is often unable to termi-
nate, it can still provide to the user fuzzy answer sets with a
good guarantee on the measure of undefinedness (the dif-
ference between lower and upper bound is usually lesser
than 1). Algorithm ε-improvement reports a very bad per-
formance, with several timeouts and not negligible bound
differences. Using the minimize construct of Z3 is not an op-
tion here, as its performance was similar to ε-improvement.

Related Work
FAS and MUFAS are related to paracoherent answer set se-
mantics. First we consider 3-valued stable models semantics
(one of the best known approximations of answer sets) intro-
duced in (Przymusinski 1991). Each 3-valued stable model
(where false stands for 0, true for 1, and undefined for 0.5)
corresponds to a fuzzy answer set. However, the reverse
statement does not hold. For example, the only 3-valued sta-
ble models of the program Π from Example 4 are {a,∼b},
{∼a,b}, and /0, which correspond to {(a,1), (b,0)}, {(a,0),
(b,1)} and {(a,0.5),(b,0.5)}, respectively. On the other
hand, Π has infinitely many fuzzy answer sets. However, if
we restrict to the L3 semantics for programs using only the

Table 1: Experimental results on Hamiltonian Cycle in-
stances: solved instances and average bound difference after
600 seconds; average running time and memory consump-
tion on solved instances is also reported.

ε binary progress ε-impr. min.

0.1

solved 100% 22% 0% 6%
ub− lb 0.073 0.409 7.157 −
time (s) 149 206 − 10
mem. (MB) 60 59 − 68

0.01

solved 94% 67% 6% 0%
ub− lb 0.013 0.111 7.834 −
time (s) 227 295 419 0
mem. (MB) 61 62 74 0

0.001

solved 83% 44% 0% 0%
ub− lb 0.005 0.565 8.399 −
time (s) 230 358 − 0
mem. (MB) 61 62 − 0



Gödel connectives, the 3-valued stable models and the class
of fuzzy answer sets coincide. Moreover, Eiter, Leone, and
Saccà (1997) note that 3-valued stable models leave more
atoms undefined than necessary. Thus, they characterized
3-valued stable models in terms of Partial stable (P-stable)
models and introduced the subclass of Least undefined-
stable (L-stable) models. Intuitively, L-stable model seman-
tics selects those 3-valued stable models, where a smallest
set of atoms is undefined. Thus, MUFAS, restricted to the
Gödel connectives, coincide to the L-stable models on FASP
programs interpreted over L3. Finally, among other paraco-
herent answer set semantics, we consider Semi-stable mod-
els (Sakama and Inoue 1995) and Semi-equilibrium models
(Amendola et al. 2016). These paracoherent semantics sat-
isfy three desiderata (see (Amendola et al. 2016)): (i) every
consistent answer set of a program corresponds to a paraco-
herent model (answer set coverage); (ii) if a program has
some (consistent) answer set, then its paracoherent mod-
els correspond to answer sets (congruence); (iii) if a pro-
gram has a classical model, then it has a paracoherent model
(classical coherence). In general, FAS semantics (and, thus,
MUFAS semantics) does not satisfy this last property. For
example, the program Π = {0 ← ∼a Z ∼b Z ∼c, a ← ∼b,
b← ∼c, c← ∼a} has no fuzzy answer set, while it has some
classical model (for instance, setting a, b, and c to true).

Measure of undefinedness are often associated with the
notion of entropy in information (Kapur and Kesavan 1992;
Kullback 1959; Jayne 1957; Bhandari and Pal 1993; Li
2015; Li and Liu 2007; Wang, Dong, and Yan 2012), and
applied in several areas: machine learning and decision trees
(Hu et al. 2010; Vagin and Fomina 2011; Wang 2011; Wang
and Dong 2009; Wang, Zhai, and Lu 2008; Yi, Lu, and Liu
2011; Zhai 2011); portfolio selection and optimization mod-
els (Qin, Li, and Ji 2009; Haber, del Toro, and Gajate 2010;
Xie et al. 2010); clustering, image processing and com-
puter vision (De Luca and Termini 1974; Yager 1979; 1980;
Xie and Bedrosian 1984; Kosko 1986; Pal and Pal 1992;
Shang and Jiang 1997; Szmidt and Kacprzyk 2001; Parkash,
Sharma, and Mahajan 2008).

Conclusions
We have studied the notion of minimal undefinedness for
fuzzy answer set programming as a means to identify so-
lutions that satisfy additional desired properties. Intuitively,
we are interested in solutions that are as close to being clas-
sical as possible. This study is motivated by previous work
on paraconsistent and paracoherent logical formalisms, but
also by an attempt to enhance abduction processes in fuzzy
circuits. More precisely, minimally undefined fuzzy answer
sets yield the most precise, and easiest to understand expla-
nations for an observed output.

Minimally undefined fuzzy answer sets, along with the
measures of undefinedness used to define them, satisfy many
properties that have been considered in the literature. In par-
ticular, they satisfy justifiability, the closed world assump-
tion, and are coherent. Moreover, the distance function UD
is a strict measure of undefinedness.

We implemented and evaluated four different methods for
computing MUFAS based on the distance function, by ex-

tending the FASP2SMT system. Our evaluation shows that
binary search provides the best strategy in this setting, while
the internal (experimental) minimize instruction of Z3
yields the worst results. As future work we intend to ex-
tend the capabilities of our prototype to handle other mea-
sures of undefinedness and apply it to more realistic in-
stances for abduction in fuzzy circuits. Moreover, the im-
plementation can be improved by employing approximation
operators (Alviano and Peñaloza 2013) to properly initial-
ize lower bounds to values greater than −ε . For example,
for Π = {a← 0.1Y∼b, b← 0.8Z∼a} and I ∈ FAS(L ,Π),
I(a) ∈ [0.1,0.2] and I(b) ∈ [0.8,0.9] hold. Hence, lb in Al-
gorithms 1–3 can be safely initialized to 0.2− ε .

References
Alviano, M., and Dodaro, C. 2016. Anytime answer set
optimization via unsatisfiable core shrinking. TPLP 16(5-
6):533–551.
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Marek, V. W., and Truszczyński, M. 1999. Stable Mod-
els and an Alternative Logic Programming Paradigm. In
The Logic Programming Paradigm – A 25-Year Perspective.
Springer Verlag. 375–398.
Mushthofa, M.; Schockaert, S.; and Cock, M. D. 2014.
A finite-valued solver for disjunctive fuzzy answer set pro-
grams. In ECAI 2014, 645–650.
Mushthofa, M.; Schockaert, S.; and Cock, M. D. 2015. Solv-
ing disjunctive fuzzy answer set programs. In LPNMR 2015,
453–466.
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