
Information Systems xxx (xxxx) xxx

a

b

c

t
o

p
o
i
F
s
m
(
c
r
p
t
v

(
(

Contents lists available at ScienceDirect

Information Systems

journal homepage: www.elsevier.com/locate/is

Probabilistic declarative processmining
Anti Alman a, Fabrizio Maria Maggi b,∗, Marco Montali b,∗, Rafael Peñaloza c

University of Tartu, Estonia
Free University of Bozen-Bolzano, Italy
University of Milano-Bicocca, Milano, Italy

a r t i c l e i n f o

Article history:
Received 1 February 2021
Received in revised form 19 December 2021
Accepted 23 March 2022
Available online xxxx
Recommended by Manfred Reichert

Keywords:
Declarative processes
Probabilistic temporal reasoning
Probabilistic process discovery
Probabilistic monitoring
Probabilistic conformance checking

a b s t r a c t

In a variety of application domains, (business) processes are intrinsically uncertain. Surprisingly, only
very few languages and techniques in BPM consider uncertainty as a first-class citizen. This is also the
case in declarative processes, which typically require that process executions satisfy all the elicited
process constraints. We counteract this limitation by introducing the notion of probabilistic process
constraint. We show how to characterize the semantics of probabilistic process constraints through
the interplay of time and probability, and how it is possible to reason over such constraints by loosely
coupling temporal and probabilistic reasoning. We then rely on this approach to redefine several key
process mining tasks in the light of uncertainty. First, we discuss how probabilistic constraints can
be discovered from event data by employing, off-the-shelf, existing algorithms for declarative process
discovery. Second, we study how to carry out monitoring, obtaining a setting where a monitored partial
trace may be in multiple monitoring states at the same time, though with different probabilities. Third,
we handle conformance checking both at the trace and event log level, in the latter case providing a
notion of earth mover’s distance that suits with our context. All the presented techniques have been
implemented in proof-of-concept prototypes.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Temporal process constraints have been extensively adopted
o declaratively capture the acceptable courses of execution in
perational processes [1–4]. In particular, the Declare constraint-

based process modeling language [2,5] has been introduced as a
front-end language to specify process constraints based on linear
temporal logic over finite traces (LTLf) [6]. While conventional
rocess models requires to explicitly account for all valid courses
f executions, constraint-based approaches implicitly character-
ze them as all the traces that satisfy all modeled constraints.
or example, a Declare model may capture an order-to-cash
cenario by indicating that whenever an order is accepted, it
ust be eventually paid by the customer, and that shipment

picking one and only one of the available shipment modalities)
an only occur upon a prior payment. The model then sepa-
ates the (infinitely) many different traces where the order is
roperly paid and shipped by conforming to all constraints, from
he nonconforming traces where at least one such constraints is
iolated.

∗ Corresponding authors.
E-mail addresses: anti.alman@ut.ee (A. Alman), maggi@inf.unibz.it

F.M. Maggi), montali@inf.unibz.it (M. Montali), rafael.penaloza@unimib.it
R. Peñaloza).
Please cite this article as: A. Alman, F.M. Maggi, M. Montali et al., Probab
https://doi.org/10.1016/j.is.2022.102033.

https://doi.org/10.1016/j.is.2022.102033
0306-4379/© 2022 Elsevier Ltd. All rights reserved.
In this scenario, as customary in all existing constraint-based
approaches for process modeling, the constraints contained in the
model are certain: they are all expected to hold in every con-
forming execution. This view is too restrictive when one wants
to capture commonly recurring patterns, such as:

• Common behaviors and best practices, captured as constraints
that should hold in the majority, but not necessary all cases.
As an example, in the order-to-cash scenario one could
express that orders are shipped via truck in at least 90% of
the cases.

• Outlier and exceptional behaviors, in the form of constraints
that hold in a very few, but still conforming, cases. For
example, one could express that an order is shipped via car
in no more than 1% of the cases;

• Partially controllable behaviors, involving activities that are
not all controlled by the organization orchestrating the pro-
cess; in the order-to-cash scenario, payments are executed
by external customers, and one could express that it is
known that whenever an order is accepted, a payment is
performed by the customer in 8 cases out of 10 (which
implicitly indicates that in the remaining 2, not payment is
issued).

Uncertainty is intrinsically present also when process con-
ilistic declarative process mining, Information Systems (2022) 102033,

straints are discovered from event data, as they may hold only in a

https://doi.org/10.1016/j.is.2022.102033
http://www.elsevier.com/locate/is
http://www.elsevier.com/locate/is
mailto:anti.alman@ut.ee
mailto:maggi@inf.unibz.it
mailto:montali@inf.unibz.it
mailto:rafael.penaloza@unimib.it
https://doi.org/10.1016/j.is.2022.102033

A. Alman, F.M. Maggi, M. Montali et al. Information Systems xxx (xxxx) xxx

(
i
i
t
e
H
f
t
u
l

m
e
t
I
t
u
b
o
o
t
P
u
q
a
c
d
a
o

O
f
p
c
u
c
f
a
t
ϕ
r
o
a
p
m
t
o
p

w
c
p
p
c

s
t
d
t
T
r
b

w
m
c
D

s
s
S
m

c
l
d
o
c
(

i
a
c
p
t

i
o
t
l
P
i
m
r
d
a
f
a
c

2

r
n
A
m

c

more or less large) share of the traces contained in the log, which
n turn contains only a sample of all cases that could be observed
n reality. This explains why contemporary Declare discovery
echniques support retaining constraints in the discovered model
ven when such constraints are violated in some cases [7–10].
owever, once discovered, such constraints are indistinguishable
rom constraints that hold in all the traces, leading to poten-
ial inconsistencies [11]. Also in this setting, the issue is that
ncertainty needs to be explicitly accounted for at the model
evel.

For all these reasons, it is surprising that only few process
ining approaches incorporate uncertainty as a first-class citizen,
ven in the case where the process is modeled using conven-
ional, imperative formalisms (such as variants of Petri nets) [12].
n the context of Declare or, more generally, of processes declara-
ively captured in LTLf , no probabilistic, suitable extension existed
ntil recently [13]. In [13], a probabilistic version of LTLf has
een in fact thoroughly studied for the first time. A fragment
f that logic, isolated and studied in the same paper, turned
ut to provide a natural basis for lifting Declare to an uncer-
ain setting, leading to the ProbDeclare framework [14]. In [14],
robDeclare is introduced as a framework where constraints are
ncertain. Uncertainty, in turn, is characterized through a (fre-
uentist) notion of probability based on the ratio of traces in
log that are expected to satisfy the constraint. A ProbDeclare
onstraint is hence declarative in two dimensions, as it at once
eclaratively expresses which executions traces are conforming,
nd how many of such conforming traces are expected to exist
ver the total.
In this paper, we thoroughly extend [14] along two directions.

n the one hand, we provide a full account of the ProbDeclare
ramework, defining for the first time its formal semantics, and
roviding a number of examples that highlight how it works —
onsidering the challenging interplay between the temporal and
ncertainty dimensions. On the other hand, we develop ProbDe-
lare in the context of process mining [15]. To do so, we start
rom the frequentist interpretation of a ProbDeclare constraint:
constraint ϕ holds with probability p if, by considering all the

races contained in the log, the proportion of all traces that satisfy
is p. In the example of partially controlled behavior above

elated to payments, the constraint is satisfied in a log if a ratio
f 0.8 of the traces contained therein is so that if a n order
cceptance event is present, then a consequent payment is also
resent. Notice that, being the constraint declarative, there are
any different ways to satisfy the constraint, in turn contributing

o the 0.8 ratio. For example, a trace where no order acceptance
ccurs, or a trace where order acceptance is followed by three
ayments, are both examples of conforming traces.
Based on this observation, we provide a comprehensive frame-

ork for probabilistic declarative process mining, tackling dis-
overy, (prescriptive) monitoring, and conformance checking for
robabilistic process constraints. Notably, the framework ex-
loits as much as possible state-of-the-art techniques for certain
onstraints, and enriches them by suitably handling uncertainty.
This substantiates into a threefold contribution. First, we ob-

erve that probabilistic Declare constraints can be discovered off-
he-shelf using already existing techniques for declarative process
iscovery [8–10,16,17], generating declarative process models
hat are, by design, consistent (in the probabilistic sense [13]).
his overcomes at once the notorious consistency issues expe-
ienced when the discovered constraints are interpreted as all
eing certain [11].
Second, we study how to monitor probabilistic constraints,

here constraints and their combinations may be in multiple
onitoring states at the same time, though with different asso-
iated probabilities. This is based on the fact that a single Prob-
eclare model gives rise to multiple sets of constraints (called
 i

2

cenarios), each with its own distinct probability, where each
et fixes which model constraints are satisfied/violated therein.
pecifically, we show how to lift existing automata-theoretic
onitoring techniques to this more nuanced probabilistic setting.
Third, we show how (post-mortem) conformance checking [18]

an be handled both at the trace and event log level, in the
atter case providing, for the first time, a notion of earth mover’s
istance (EMD) that provides a numerical indicator on the degree
f conformance of a log with respect to a ProbDeclare model. This
omplements EMD-based conformance checking approaches for
stochastic) Petri nets [19].

Notice that while results for ProbDeclare discovery and mon-
toring were already tackled in [14] in a preliminary form, and
re extended here, conformance checking is a completely novel
ontribution. In addition, we provide here a proof-of concept im-
lementation and experimental evaluation of all the introduced
echniques.

The paper is structured as follows. After preliminary notions
ntroduced in Section 2, we introduce the syntax and semantics
f probabilistic constraints and ProbDeclare in Section 3. We
hen show in Section 4 how to reason on their interplay in
ogical and probabilistic terms. In Section 5, we discuss how
robDeclare constraints can be discovered from event data us-
ng existing techniques. In Section 6, we tackle the problem of
onitoring probabilistic constraints at runtime. In Section 7, we

evisit conformance checking from a probabilistic angle, intro-
ucing an EMD-based measure for conformance, and discussing
lternatives. In Section 8, we conduct an evaluation of the dif-
erent presented techniques, using the BPIC2018 event log [20]
s a basis. Section 9 discusses related work. Finally, Section 10
oncludes the paper and spells out directions for future work.

. Preliminaries

This section introduces the preliminary notions needed in the
est of the article. We start by fixing some standard notions and
otation related tomultisets. Given a set A, the set of multisets over
is the set of mappings of the form m : A → N. The set of all
ultisets over A is denoted by A⊕. Given a multiset S ∈ A⊕ over

A and an element a ∈ A, S(a) ∈ N denotes the number of times
a appears in S, called its multiplicity. Given a ∈ A and n ∈ N, we
write an ∈ S if S(a) = n. With a slight abuse of notation, we write
a ∈ S if an ∈ S for some n > 0. The cardinality |S| of a multiset S
is the sum of the multiplicities of its elements: |S| =

∑
a∈S S(a).

We say that S is finite if its cardinality is finite.
We fix a finite alphabet Σ of activities, representing atomic

execution steps in the process. A (process) trace τ overΣ is a finite
sequence a1 . . . an of activities, where ai ∈ Σ for i ∈ {1, . . . , n}.
The length of trace τ is denoted by length(τ). We use the notation
τ (i) to select the activity ai present in position (also called instant)
i of τ .

From a formal languages point of view, a trace is a word over
a given finite alphabet Σ of propositions, which in our setting
denote activities. Hence, we use Σ∗ to denote the infinite set of
all possible traces built from activities in Σ . A log over Σ is a
finite multiset of traces overΣ∗; the cardinality of a log is defined
as the number of traces stored therein.1

In the remainder of the section, we recall syntax and semantics
of LTL over finite traces [6] and how it has been used to capture
process constraints within declarative process modeling, with a
particular emphasis on the Declare approach [2,5].

1 From the theoretical point of view, our approach would work also in the
ase where the log is an infinite multiset of traces. For simplicity of exposition,
n the article we do not consider this case.

A. Alman, F.M. Maggi, M. Montali et al. Information Systems xxx (xxxx) xxx

2

t
t
a
i

i

i
c
h
i
ϕ

e
a
f

(

(

(

W
w
w
t

E
w
‘
m
f

i
a
p
s
f
t
o
b
c
t

2

o
a
C
c
f
p
a
p
g

D
f
Σ

s
t

D
h
e

D
p
m

3

i
i
a
m

o
g
C
a
a

E
e
f

o
w
f

s
a

.1. LTL over finite traces

LTL over finite traces (LTLf) [6] is the most widely employed
emporal logic to express properties of (business) process execu-
ions. It has exactly the same syntax as standard LTL. However,
s the name suggests, while LTL formulae are interpreted over
nfinite, recurring sequences, LTLf formulae are defined over finite
(but possibly unbounded) ones.

Differently from [6], where LTLf is defined as usual over finite
sequences of propositional assignments, we consider in this paper
the simpler case where formulae are directly interpreted over the
notion of process trace as defined above.

Definition 1. The set of LTLf formulae is recursively defined
through the following grammar:

ϕ ::= a | ¬ϕ | ϕ1 ∨ ϕ2 | ⃝ϕ | ϕ1 U ϕ2

where a ∈ Σ .

LTLf is built over atomic propositions (denoting activities in
our setting) combined through boolean connectives and two tem-
poral constructors: ⃝ (‘‘next’’) and U (‘‘until’’). The semantics of
the logic is defined by evaluating formulae over trace instants,
which form a discrete measure of time.

Definition 2. Consider an LTLf formula ϕ, a trace τ , and a valid
nstant i of τ with 1 ≤ i ≤ length(τ). We inductively define that
ϕ holds at instant i of trace τ , written τ , i |H ϕ, by:

• τ , i |H a for a ∈ Σ iff τ (i) = a;
• τ , i |H ¬ϕ iff τ , i ̸|H ϕ;
• τ , i |H ϕ1 ∨ ϕ2 iff τ , i |H ϕ1 or τ , i |H ϕ2;
• τ , i |H ⃝ϕ iff i < length(τ) and τ , i + 1 |H ϕ;
• τ , i |H ϕ1 U ϕ2 iff there exists some j, i ≤ j ≤ length(τ) such

that τ , j |H ϕ2 and for every k such that i ≤ k < j, we have
τ , k |H ϕ1.

Intuitively, ⃝ denotes the next state operator, and ⃝ϕ holds
f there exists a next instant (i.e., the current instant does not
orrespond to the end of the trace), and in the next instant ϕ
olds. Operator U instead is the until operator, and ϕ1 U ϕ2 holds
f ϕ1 holds now and continues to hold until, in a future instant,
2 finally holds.
From these operators we can derive the usual boolean op-

rators ∧ and →, the two formulae true and false, as well as
dditional temporal operators. We consider, in particular, the
ollowing three:

eventually) ♢ϕ := trueU ϕ is true, if there is a future state
where ϕ holds;

globally) □ϕ := ¬♢¬ϕ is true, if now and in all future states ϕ
holds;

weak until) ϕ1 W ϕ2 := (ϕ1 U ϕ2)∨□ϕ1 relaxes the until opera-
tor by admitting the possibility that ϕ2 never becomes true,
in this case requiring that ϕ1 holds globally.

e write τ |H ϕ as a shortcut notation for τ , 0 |H ϕ. In this case,
e say that τ satisfies ϕ (or that ϕ is satisfied by τ). In addition,
e say that formula ϕ is consistent if there exists a trace τ such
hat τ |H ϕ.

xample 1. The LTLf formula □(close → ⃝♢acc) models that,
henever an order is closed, then it is eventually accepted. The

‘next’’ operator used is needed to guarantee that acceptance is
ade after at least one time instant. The structure of the formula

ollows what is called a response in Declare.
3

It is well known that every LTLf formula ϕ can be translated
nto a corresponding standard finite-state automaton Aϕ which
ccepts exactly those finite traces that satisfy ϕ [6,21]. The com-
lexity of reasoning with LTLf is the same as that of LTL, with
atisfiability being PSpace-complete. However, manipulation of
inite-state automata performs much better in practice compared
o the case of Büchi automata used when formulae are interpreted
ver infinite traces [22–26]. This is the main reason why LTLf has
een extensively and successfully adopted within BPM to capture
onstraint-based, declarative processes, in particular providing
he formal basis of Declare [21,23].

.2. Declare

Declare is a constraint-based process modeling language based
n LTLf . Declare models a process by fixing a set of activities,
nd defining a set of temporal (process) constraints over them.
onstraints are specified via pre-defined LTLf templates, which
ome with a corresponding graphical representation (see Table 1
or some prototypical Declare templates which we use in this
aper). For the sake of generality, in this paper, we consider
rbitrary LTLf formulae as constraints. However, in the exam-
les, we consider formulae whose templates can be represented
raphically in Declare.

efinition 3. A Declare model is a pair ⟨Σ, C⟩, where Σ is a
inite set of activities, and C is a finite set of LTLf formulae over
, called constraints.

Declare adopts a crisp interpretation of constraints: a trace
atisfies a Declare model if it satisfies all constraints contained
herein.

efinition 4. A trace τ satisfies a Declare model ⟨Σ, C⟩ if τ |H ϕ

olds for every ϕ ∈ C. A Declare model M is consistent if there
xists a trace τ that satisfies it.

Automata-based techniques for LTLf have been adopted in
eclare to tackle fundamental tasks within the lifecycle of Declare
rocesses, such as consistency checking [2,4], enactment and
onitoring [2,21,27], as well as discovery support [10].

. Probabilistic process constraints: Modeling and reasoning

By inspecting Definition 4, it is apparent that constraints are
nterpreted in an exact, certain way, as they must all be satisfied
n every execution of the system. We now relax this assumption,
nd consider instead an uncertain framework where constraints
ay not necessarily be all satisfied.
To do so, we need to tackle three problems, at increasing level

f complexity. The first problem is to characterize how traces
enerated by the process can be interpreted probabilistically.
onsider for example an order-to-cash process generating two
lternative executions: one where the order is closed and then
ccepted, the other where the order is closed and then rejected.

xample 2. The log L1 containing 90 repetitions of the first
xecution and 10 repetitions of the second is radically different
rom the log L2 where the two executions appear equally often.

This shows that we need to move from an interpretation
f traces as nondeterministic executions of the process, to one
here their relative frequency is relevant, as it provides the

ootprint of the implicit stochastic behavior of the process.
The second problem pertains how to lift the semantics of a

ingle process constraint to its probabilistic version. We use prob-
bilities to express conditions on how likely it is for a constraint

A. Alman, F.M. Maggi, M. Montali et al. Information Systems xxx (xxxx) xxx

a
(
E

n

s
T
i
s
c
s
t
e
s
o
p
s
c

E
w
t
b
d

t
t
l
s
c
t
a

i
i

Table 1
Some Declare templates, with their LTLf and graphical representations.

template notation template notation

existence(a) =

♢a
a

1..∗
absence(a) :

¬existence(a) = ¬♢a
a

0

existence2(a) :

♢(a ∧ ⃝♢a) a

2..∗
absence2(a) :

¬existence2(a) = ¬♢(a ∧ ⃝♢a) a

0..1

response(a, b) :

□(a → ⃝♢b) a b
precedence(a, b) :

¬bWa
a b

resp-existence(a, b) :

♢a → ♢b
a b

not-coexistence(a, b) :

¬(♢a ∧ ♢b) a b
h

ρ

E
a

to be satisfied in an arbitrarily selected execution of the process.
As explained already, this allows one to model constraints that
can be exceptionally violated, or outlying traces that are seldomly
observed.

Example 3. Let C1 be a probabilistic constraint indicating that
n order is accepted with probability greater or equal than 0.7
that is, 70% of the times or more). Considering the two logs in
xample 2, we can see that L1 satisfies the constraint (as traces

containing payments exceed 70% of the total), whereas log L2 does
ot, as in L2 traces with payments cover 50% of the whole log.

The third problem emerges when multiple probabilistic con-
traints have to be considered at once, in the light of uncertainty.
he intuition that a trace may satisfy only some of the them
ndicates that we need to account for multiple, alternative pos-
ible worlds (called scenarios hereafter), each indicating which
onstraints are satisfied and which not. The main question for
cenarios is how likely they are or, more technically, what are
he possible probabilities describing how likely it is to encounter
ach of them, given the probability conditions associated to the
ingle constraints. These values may be impossible to determine,
r may correspond to fixed numbers inducing a single discrete
robability distribution over scenarios, or to (possibly infinite)
ets of numbers describing a family of probability distributions
ompatible with the local probability conditions on constraints.

xample 4. Consider constraint C1 from Example 3, together
ith another constraint C2, expressing that with 0.5 probability
he order is paid. This yields 4 possible scenarios: (1) C1 and C2
oth hold (the order is accepted and paid), (2) C1 holds and C2
oes not (the order is accepted, but not paid), (3) C1 does not hold

while C2 does (the order is paid without being accepted), and (4)
none of the two constraints hold (the order is not accepted nor
paid). The probability of encountering one given scenario out of
this four depends on how the two constraints relate to each other
both in the way they constraint the process executions, and the
way they constrain the probabilities of the executions satisfying
(or violating) them. Considering the semantics of C1 and C2 and
heir associated probability conditions, we are in the case where
here are infinitely many probability distributions describing how
ikely it is to encounter a process trace falling in each of the four
cenarios. By combined reasoning on traces and probabilities, we
ould for example infer that at least 20% and at most 50% of
he traces must belong to scenario (1) where the order is both
ccepted and paid.

In this section, we attack the first of these three problems
n the order they have been introduced. We start by describ-

ng how event logs relate to stochastic languages, providing the

4

basis for evaluating probabilistic constraint models. We then
focus on single constraints, defining their shape and semantics.
Before moving to sets of constraints, we recall the necessary
background on the probabilistic temporal logic that provides the
formal underpinnings of our approach. We finally move to sets
of constraints, defining a probabilistic version of Declare, called
ProbDeclare.

In Section 4, we then show how we can reason on the multiple
probabilistic constraints present in a single ProbDeclare model.

3.1. Stochastic languages and event logs

To represent the traces generated by a stochastic process, we
borrow the notion of stochastic language from [12]. Following the
notation introduced in Section 2, we use Σ to denote a finite set
of activities.

Definition 5. A stochastic language over Σ is a function ρ :

Σ∗
→ [0, 1] mapping each trace over Σ onto a corresponding

probability, so that ∑
τ∈Σ∗

ρ(τ) = 1 (1)

A stochastic language ρ is finite if |{τ ∈ Σ∗
| ρ(τ) > 0}| is

finite, that is, ρ contains finitely many traces with non-zero
probability.

As argued in [12], a log can be seen as a finite stochas-
tic language by interpreting trace multiplicities as frequencies.
Specifically, the probability of a trace is computed as the ratio
of the trace multiplicity and the total number of traces in the log.

Definition 6. The stochastic language induced by a log L over Σ
is the finite stochastic language ρL such that for every trace τ ∈ L,
we have ρL(τ) =

L(τ)
|L| .

Conversely, a finite stochastic language can be seen as a log by
transforming probabilities into multiplicities.

Definition 7. The log induced by a finite stochastic language ρ
over Σ is the multiset Lρ such that for every trace τ ∈ Σ∗, we
ave Lρ(τ) = ρ(τ) · |L|.

Note in particular that any trace whose probability is zero in
will not appear in the log Lρ .

xample 5. Consider the following traces over Σ = {close,
cc, nop}:

τ1 = ⟨close, acc⟩
τ2 = ⟨close, acc, close, nop, acc⟩

τ3 = ⟨close, acc, close, nop⟩ τ4 = ⟨close, nop⟩

A. Alman, F.M. Maggi, M. Montali et al. Information Systems xxx (xxxx) xxx

L

W
t

m
d
t
a
i
(

T
a
t
(
h

D

p

E
t

w
T
f
a

og L = [τ 501 , τ
30
2 , τ

10
3 , τ

10
4] induces the stochastic language ρL

defined as follows: (i) ρ(τ1) = 0.5 (ii) ρ(τ2) = 0.3 (iii) ρ(τ3) = 0.1
(iv)ρ(τ4) = 0.1 (v) ρ is 0 for any other trace in Σ∗.

3.2. Probabilistic process constraints

We now extend LTLf process constraints to their probabilistic
version. We do so by declaratively expressing conditions on the
conforming process executions, and on their acceptable probabil-
ities.

Definition 8. A probabilistic constraint over Σ is a triple ⟨ϕ, ▷◁
, p⟩, where:

• ϕ, the process condition, is an LTLf formula over Σ;
• ▷◁ ∈ {=, ̸=,≤,≥, <,>} is the probability operator;
• p, the probability reference value, is a rational value in [0, 1].

Together, ▷◁ and p form the probability condition ▷◁ p of the
constraint.

We use compact notation ⟨ϕ, p⟩ for the probabilistic constraint
⟨ϕ,=, p⟩.

Example 6. Consider the log L from Example 5, and the Declare
constraint response(close, acc) = □(close → ⃝♢acc). One can
directly check that this constraint does not hold in the entire log,
as it is violated by traces τ3 and τ4: such traces indeed contain at
least one occurrence of close (at instant 3 for τ3, and at instant
1 for τ4) that is not followed by any occurrence of acc. We can
then define probabilistic variants of the constraint, tolerating the
possibility that their process condition could indeed be violated:

• ⟨□(close → ⃝♢acc), 0.8⟩ indicates that response(close,
acc) holds with a probability equal to 0.8;

• ⟨□(close → ⃝♢acc), <, 0.5⟩ indicates that response
(close, acc) holds with a probability that is lower than 0.5.

The semantics of these constraints will be clarified soon (see
Example 7).

The semantics of probabilistic constraints is defined in terms
of stochastic languages; this directly accounts also for an alter-
native semantics based on event logs, thanks to Definition 6. The
intuition is the following. A probabilistic constraint C = ⟨ϕ, ▷◁
, p⟩ declaratively tackles two dimensions: the process dimension
via its process condition ϕ, which separates conforming from
non conforming traces, and the space of probabilities via its
probability condition ▷◁ p, indicating which probability masses
are legitimate. Both aspects have to be considered when judging
whether a stochastic language ρ satisfies C . On the one hand, ϕ
carves out from ρ the possibly infinitely many traces from Σ∗

that satisfy ϕ; on the other hand, ▷◁ p expresses a condition
over the collective probability mass obtained from all such traces
according to ρ, which is required to satisfy ▷◁ p. When ▷◁ is
the equality operator, then the probability mass is bound to
be exactly p, but when other operators are employed, infinitely
many different probability masses can be chosen to satisfy the
probability condition.

From now on, we implicitly assume that all the introduced
notions are defined over Σ and Σ∗.

Definition 9. A stochastic language ρ satisfies a probabilistic
constraint C = ⟨ϕ, ▷◁, p⟩, written ρ |H C , if:∑

τ∈Σ∗,τ |Hϕ

ρ(τ) ▷◁ p (2)

A log L satisfies C if the stochastic language ρL induced by L does
so.
 s

5

Notice that probabilistic constraints are semantically equiva-
lent if their probability conditions are identical, and their process
conditions are logically equivalent (which does not require that
they should be syntactically identical). Hence, with a slight abuse
of terminology, we use the term ‘‘constraint’’ (in singular form) to
represent all constraints that have the same probability condition,
and logically equivalent process conditions.

Example 7. Consider the log L from Example 5 and the two prob-
abilistic constraints from Example 6. L satisfies the probabilistic
constraint Cca = ⟨□(close → ⃝♢acc), 0.8⟩. In fact, the process
condition □(close → ⃝♢acc) of Cca is satisfied2 by traces τ1 and
τ2, whose overall probability is 0.5 + 0.3 = 0.8. Instead, L does
not satisfy constraint ⟨□(close → ⃝♢acc), <, 0.5⟩, since 0.8 is not
less than 0.5.

Several key observations on the interplay between the process
and probability conditions of a constraint can be extracted from
Definition 9. First of all, if C = ⟨ϕ, ▷◁, p⟩ is logically inconsistent,
that is, its LTLf process condition ϕ is inconsistent, then the only
possibility to have a stochastic language that satisfies C is to have
0 ▷◁ p. This is needed because, by definition, an inconsistent LTLf
formula has no satisfying trace, which in turn means that the
collective probability of satisfying traces is 0.

On the other hand, if C = ⟨ϕ, 0⟩, i.e., the probability condition
of C has the form = 0, then a satisfying stochastic language ρ
must assign a zero probability to all traces satisfying ϕ; formally:
for every trace τ ∈ Σ∗, if τ |H ϕ then ρ(τ) = 0. Conversely, a
probabilistic constraint of the form C = ⟨ϕ, 1⟩ indicates that all
traces having a non-zero probability in ρ must satisfy ϕ, and so
C is a crisp constraint that corresponds to ϕ in the Declare sense.

hen interpreted over a log, C indeed requires that all traces in
he log satisfy ϕ.

A further key observation concerns the effect of negation or,
ore generally, of the relationship between a constraint and its
ual, which we define next. Since duality involves the inversion of
he probability operator used therein, we first handle this specific
spect. Given a probability operator ▷◁ ∈ {=, ̸=,≤,≥, <,>},
ts comparison-inverted operator cinv(▷◁) is defined as follows:
i)cinv(=) gives =; (ii) cinv(̸=) gives ̸=; (iii) cinv(>) gives <;
(iv) cinv(<) gives >; (v) cinv(≥) gives ≤; (vi) cinv(≤) gives ≥.
his closely resembles what happens when employing standard
lgebraic techniques to solve (in)equalities: whenever the two
erms of an (in)equality are multiplied by a negative factor, if the
in)equality operator relating them is a comparison operator, it
as to be suitably ‘‘flipped’’.
We are now ready to define duality.

efinition 10. The dual of a probabilistic constraint C = ⟨ϕ, ▷◁

, p⟩ is the probabilistic constraint C = ⟨¬ϕ, cinv(▷◁), 1 − p⟩.

As the definition shows, the dual constraint C of C is obtained
by: (i) negating the process condition ϕ of C into ¬ϕ; (ii) inverting
the probability operator ▷◁ of C into cinv(▷◁); (iii) replacing the
robability reference value p of C with 1 − p.

xample 8. Consider constraint Cca from Example 6. By recalling
hat

¬□(close → ⃝♢acc) = ♢(close ∧ ¬⃝♢acc)
e have that Cca = ⟨♢(close∧¬⃝♢acc), 0.2⟩ is its dual constraint.
he constraint indicates that traces containing a close activity not
ollowed by any consequent acc activity should collectively have
probability of 0.2.

2 Recall that a response constraint is satisfied if every execution of the
ource is followed by the execution of the target.

A. Alman, F.M. Maggi, M. Montali et al. Information Systems xxx (xxxx) xxx

t
a

T
s

P
e
l
a

T

U

b
t

The semantics of constraint probabilities allows us to establish
he following key relationships between probabilistic constraints
nd their duals.

heorem 1. A stochastic language ρ satisfies a probabilistic con-
traint C if and only if ρ satisfies the dual constraint C.

roof. Let C = ⟨ϕ, ▷◁, p⟩. For every trace τ ∈ Σ∗, we have that
ither τ |H ϕ, or τ ̸|H ϕ. Consequently, recalling that a stochastic
anguage defines a probability distribution over Σ∗ (see Eq. (1)),
nd that τ ̸|H ϕ if and only if τ |H ¬ϕ, we get:∑

τ∈Σ∗,τ |Hϕ

ρ(τ) +

∑
τ∈Σ∗,τ |H¬ϕ

ρ(τ) = 1

his rewrites into∑
τ∈Σ∗,τ |Hϕ

ρ(τ) = 1 −

∑
τ∈Σ∗,τ |H¬ϕ

ρ(τ)

Since, by hypothesis, ρ satisfies C , we can apply the definition of
probabilistic constraint satisfaction (see Eq. (2)), obtaining(

1 −

∑
τ∈Σ∗,τ |H¬ϕ

ρ(τ)
)

▷◁ (p)

and, in turn: (
−

∑
τ∈Σ∗,τ |H¬ϕ

ρ(τ)
)

▷◁ (p − 1) (3)

pon multiplying the left and right terms by −1, we finally obtain(∑
τ∈Σ∗,τ |H¬ϕ

ρ(τ)
)

cinv(▷◁) (1 − p)

where the original operator ▷◁ must suitably be replaced by
its corresponding comparison-inverted operator cinv(▷◁); in fact,
upon multiplying the two terms of (3) by −1, operators = and ̸=

stay unaltered, while operators > and ≥ are respectively turned
into < and ≤ and vice-versa. By applying again the definition
of probabilistic constraint satisfaction, this means that ρ satisfies
⟨¬ϕ, cinv(▷◁), 1 − p⟩, which indeed corresponds to C . □

Theorem 1 witnesses that probabilistic constraints and their
duals are semantically equivalent.

When probabilistic constraints are interpreted over logs, the
semantics of probabilistic constraints, and in turn the result pro-
vided in Theorem 1, can be intuitively understood in terms of
frequencies. In fact, a log L satisfies C = ⟨ϕ, p⟩ if a fraction of p
traces in L satisfy ϕ, which in turn require that the complemen-
tary fraction 1−p violates ϕ (that is, satisfies ¬ϕ). With a different
reading, by randomly picking a trace τ from L, we have that τ
satisfies C with probability p, while τ violates C with probability
1 − p.

Example 9. Consider again constraint Cca from Example 6. When
interpreted over a log L, Cca captures that in 80% of the traces from
L it is true that, whenever an order is closed, then it is eventually
accepted. This is equivalent to assert the dual statement that in
20% of the traces from L, the response is violated, i.e., there
exists an instant where the order is closed in an instant that
is not followed by an acceptance. Given an unknown trace τ ,
there is then 0.8 probability that τ satisfies the response formula
□(close → ⃝♢acc), and 0.2 that τ violates such a formula, that
is, satisfies the negated formula ♢(close ∧ ¬⃝♢acc)).

Example 10. The distinction between the existence and
absence templates in Declare gets blurred when their probabilis-
tic versions are considered. This is due to the fact that, from the

logical perspective, they negate each other (cf. the first two lines W

6

of Table 1). Let us focus to the case where an exact probability
mass is attached to an existence constraint. Then, the following
holds:

⟨existence(a), p⟩ = ⟨♢a, p⟩ = ⟨¬♢a, 1 − p⟩
= ⟨absence(a), 1 − p⟩

The same line of reasoning applies to the existence2 and
absence2 templates. In our uncertain setting, all such templates
predicate in fact on the probability of (repeated) occurrence of a
given activity.

So far, we have been dealing with single probabilistic con-
straints. We next focus on sets of constraints. This is much more
challenging as the presence of multiple probabilistic constraints
establishes mutual relationships among them. Such mutual re-
lationships pertain process and uncertainty dimensions, as well
as their interplay. To understand the formal basis of this twofold
interplay, we need to briefly recall the PLTL0f logic.

3.3. Interlude: the PLTL0f Logic

Before moving to a probabilistic extension of Declare where
multiple probabilistic constraints are simultaneously present, we
note that the probabilistic constraints introduced in Definition 8
are a syntactic variant of the notion of formula in the logic PLTL0f ,
a fragment of the recently introduced probabilistic temporal logic
PLTLf [13]. In a nutshell, a PLTL0f formula is a set of expressions of
the form ⊚▷◁pϕ, where ϕ, ▷◁, and p are defined as in probabilistic
constraints (cf. Definition 8).

While the general semantics of PLTLf is more complex, PLTL0f
formulae are interpreted through a simple ‘‘tree-shaped’’ model
consisting of one root node, which branches over a finite num-
ber of finite traces;3 in other words, a PLTL0f model is a finite
set of LTLf traces, representing different possible evolutions of
the system. To handle the uncertainty, this set of traces has an
associated probability distribution; that is, each trace is assigned
a probability value in [0,1] such that the sum of the probabilities
of all branches (that is, of all traces) amounts to 1.

A PLTL0f model M satisfies the PLTL0f formula Φ iff for each
expression ⊚▷◁pϕ in Φ the probability of all the traces that satisfy
ϕ (in the classical LTLf sense) is ▷◁ p. This formula Φ is consistent
iff there is a PLTL0f model that satisfies it.

An important property of PLTL0f , which was already shown
in previous work [13], is that deciding consistency of a PLTL0f
formula is PSpace-complete. The basic idea is to construct, one
at a time, the different scenarios induced by the formula: com-
binations of LTLf formulae appearing in Φ or their negations.
Intuitively, a scenario identifies the set of traces that satisfy the
same subset of LTLf formulae that form the overall PLTL0f formula.
If there are n probabilistic expressions, there will be 2n different
scenarios, although some of them might not be consistent. The
probabilistic constraints are then verified over all the possible
(locally consistent) scenarios. That is, for each ⊚▷◁pϕ we require
that the sum of the probabilities of all scenarios that include ϕ
satisfy ▷◁ p. These constraints can be verified through a system
of linear constraints. The full details about this construction and
its properties are provided in [13], and suitably reviewed in the
context of this article in Section 4.

3 Theoretically, a model could also contain infinitely many, finite-length
ranches. However, it would not be distinguished from a corresponding model
hat compactly represents the original one using only finitely many branches.
e therefore stick to finite-branching models for simplicity.

A. Alman, F.M. Maggi, M. Montali et al. Information Systems xxx (xxxx) xxx

3

w
o
h
e
t
p
o
c
⟨

w
t
c
s
a

D
C
P
p
w

m
o
c

t
a
t

D
m

p
d
c
a
o
h
p
s
t

t

D
a
t

E

♢
v
t

♢

t

P
a
w
s
t
b
a

a
T

t
d
c
o
a
t
f

E
c
s
i

.4. Probabilistic declare

We now lift Declare to its probabilistic version ProbDeclare,
here multiple probabilistic constraints have to be considered at
nce. Without loss of generality, we assume that no constraint
as the form ⟨ϕ, 0⟩ (in that case, the constraint can in fact be
quivalently reformulated as its dual ⟨¬ϕ, 1⟩). For simplicity of
reatment, we also separate crisp constraints from genuinely
robabilistic constraints. This separation still allows to reason
ver constraints and their interplay in our framework, as a crisp
onstraint ϕ can be seen as its corresponding probabilistic version
ϕ, 1⟩. At the same time, this distinction is practically relevant:
hile a given trace may or not satisfy genuinely probabilis-
ic constraints, it must satisfy all the crisp ones. Hence, when
onstructing the different scenarios, we will only need to con-
ider possible satisfaction of violation of probabilistic constraints,
ssuming that all the crisp ones are always satisfied.

efinition 11. A ProbDeclare model is a triple ⟨Σ, C,P⟩, where
is a finite set of LTLf formulae called crisp constraints, while
is a set of (genuinely) probabilistic constraints, each having a

robability condition that is different from = 1 (otherwise, they
ould be listed in C).

From now on, we always assume that, given a ProbDeclare
odel ⟨Σ, C,P⟩, the standard Declare model ⟨Σ, C⟩ consisting
nly of the crisp constraints is consistent. This type of consistency
an be checked using standard techniques [11].
The notion of satisfaction for ProbDeclare models resembles

hat of standard Declare models, but now we have to consider
stochastic language (or a log) instead of a single trace. This, in

urn, radically changes the resulting framework.

efinition 12. A stochastic language ρ satisfies a ProbDeclare
odel ⟨Σ, C,P⟩ if:

• for every crisp constraint ϕ ∈ C and every trace τ ∈ Σ∗ with
non-zero probability (that is, such that ρ(τ) > 0), we have
τ |H ϕ;

• for every probabilistic constraint C = ⟨ϕ, ▷◁, p⟩ ∈ P , ρ |H C
as in Definition 9, that is, we have

∑
τ∈Σ∗,τ |Hϕ ρ(τ) ▷◁ p.

Satisfying multiple constraints at once introduces hidden de-
endencies among them, not only for what concerns their process
imension [4,5], but also when it comes to their probability
onditions. On the one hand, all the local probability conditions
ttached to single constraints induce a set of global conditions
n the acceptable probability distributions over Σ∗. On the other
and, the same trace may satisfy the process condition of multiple
robabilistic constraints, thus influencing the probabilities of all
uch constraints, probabilities that are in turn required to satisfy
he corresponding constraint probability conditions.

All in all, depending on the probabilistic constraints at hand,
here may be one, many, or no satisfying stochastic language(s).

efinition 13. A ProbDeclare model is consistent if there exists
t least one finite stochastic language (or, equivalently, one log)
hat satisfies it.

xample 11. Consider a ProbDeclare model containing a single
probabilistic constraint, indicating that in at least 10% of the
traces, the order is canceled and paid: ⟨ϕpc,≥, 0.1⟩, with ϕpc =

pay ∧ ♢cancel. This model has infinitely many satisfying logs,
arying in terms of traces and frequencies. All such logs have
o ensure that at least 10% of the traces are so that they satisfy
7

pay ∧ ♢cancel. Two sample logs satisfying the constraint are, in
his light:

• [⟨close, acc, pay, cancel⟩5] (100% traces satisfying) ϕpc ;
• [⟨close, ref, pay, cancel⟩5, ⟨close, acc, pay, cancel⟩10,

⟨close, ref⟩15, ⟨close, acc⟩20, ⟨close, acc, pay⟩50]
(15% traces satisfying) ϕpc .

Consider now a different ProbDeclare model containing the pre-
vious constraint and also a second constraint indicating that
order cancelations rarely occur, in particular in no more than
5% of the traces: ⟨ϕc,≤, 0.05⟩, with ϕc = ♢cancel. We can see
that the resulting ProbDeclare model is inconsistent. In fact, ϕpc
logically implies ϕc , and consequently, every trace satisfying ϕpc
also satisfies ϕc . Since ϕpc must be satisfied in at least 10% of the
traces of a satisfying log, then ϕc is satisfied with that, or a higher,
ratio. This clashes with the probability condition indicating that
ϕc cannot be satisfied with a larger ratio than 5%.

One may wonder what is the complexity of checking consis-
tency of a ProbDeclare model. It turns out that, thanks to the
close correspondence between the PLTL0f logic and ProbDeclare,
we can import in our setting the complexity bounds obtained for
PLTL0f in [13]. Interestingly, recalling that many different reason-
ing tasks can be reduced to consistency, these complexity bounds
indicate that reasoning in ProbDeclare yields the same worst-case
complexity as that of reasoning in the (non-probabilistic) LTLf
setting.

Theorem 2. Checking consistency of ProbDeclare models is PSpace-
complete.

Proof. Consider the definition of ProbDeclare model (Defini-
tion 11), and the PLTL0f logic recalled in Section 3.3. We encode a
ProbDeclare model M = ⟨Σ, C,P⟩ intoPLTL0f formula ΦM whose
expressions encode the constraints in C and P as follows: for
every crisp constraint ψ ∈ C, we build the PLTL0f expression
⊚=1ψ , and for every probabilistic constraint ⟨ϕ, ▷◁, p⟩, we build
the PLTL0f expression ⊚▷◁pϕ. As mentioned earlier PLTLf (and thus
LTL0f) formulae are interpreted over finite trees, where nodes
re propositional assignments, and branches carry probabilities,
ith the condition that the sum of such probabilities is 1. A finite
tochastic language ρ can be straightforwardly represented as a
ree of this form as follows: every trace τ in ρ such that ρ(τ) > 0
ecomes a branch of the corresponding tree, with probability ρ(τ)
ttached to it.
We then get that M is consistent if and only if ΦM is satisfi-

ble. Checking satisfiability of ΦM is a PSpace-complete task [13,
heorem 18]. □

Theorem 2 does not yet provide a concrete technique to ac-
ually carry out reasoning and, more generally, understand how
ifferent probabilistic constraints interact with each other. We
lose this section with an example that highlights the intricacies
f such an interaction. In the next section we will systematically
ttack these aspects by proposing a provably correct, operational
echnique based on the notion of scenario, recalled in Section 3.3
or PLTL0f .

xample 12. Consider the following ProbDeclare model, where
risp constraints are shown in dark blue, and probabilistic con-
traints are in light blue with their corresponding exact probabil-
ty reference values (the operator is always implicitly =).

A. Alman, F.M. Maggi, M. Montali et al. Information Systems xxx (xxxx) xxx

i
t
w
c
o
a
a
r
r
a
c
o

4

o
r
u
i
r
l
a

c
p
e
f
w
E
t
v
d
p
d

a
v
s
i
T
c
t
d

4

o
n
a
t

I

s
p
t
p

D
⟨

v
c
S
n
e

E
i
t
n
h
s
c
t
a

t
c
s
b

4

r
a
t
c
t
w

t
L
a
s

D
b
s

close
order

1..∗

accept
order

{0.8}

refuse
order

{0.3}
{0.9}

The model expresses that each order is at some point closed,
and, whenever this happens, there is probability 0.8 that it will
be eventually accepted, and probability 0.3 that it will be even-
tually refused. Due to the two precedence constraints, accept-
ng/rejecting an order can only occur if the order was closed. Since
he sum of these probability masses exceeds 1, a fraction of traces
ill contain both an acceptance and a rejection. This declaratively
aptures the state of affairs in which a previous decision made
n a closed order is later reversed. On the other hand, there is
sensible amount of traces where the order will be eventually
ccepted, but not refused, given the fact that the probability
eference value of the response constraint connecting close to
ef is only 0.3. In 90% of the cases, it is asserted that acceptance
nd rejection are mutually exclusive; if this would be a crisp
onstraint, it would conflict with the need of having a fraction
f traces where the order is accepted and refused.

. Reasoning over multiple probabilistic constraints

Is the model in Example 12 consistent? What is the probability
f encountering a trace where an order is closed, and then both
efused and accepted? To answer these questions, we need to
nderstand which alternative possible process executions are
mplicitly described by a ProbDeclare model, and what are their
espective, legitimate probabilities — lifting uncertainty from the
ocal level of constraints to the global level where all constraints
re taken into account at once.
As we have seen for PLTL0f in Section 3.3, these alternative pro-

ess executions arise from the fact that a valid execution may, in
rinciple, satisfy some probabilistic constraints, and violate oth-
rs, and the set of satisfied/violated constraints may be different
rom that of another, valid execution. This yields multiple possible
orlds, which we call (constraint) scenarios consistently with [13].
ach scenario fixes which probabilistic constraints are satisfied;
his also determines that the other probabilistic constraints are
iolated. A scenario, then, is nothing else than a declarative, finite
escription of the (possibly infinite) set of traces that all share the
roperties of satisfying/violating the probabilistic constraints, as
ictated by the scenario.
In this section, we show how we can formally characterize,

nd reason upon, scenarios and their probabilities. This pro-
ides the foundational basis for the process mining tasks de-
cribed in the rest of the article. Specifically, we proceed accord-
ng to the following steps. We first introduce constraint scenarios.
hen we show how scenarios can be logically and probabilisti-
ally characterized, finally introducing an operational technique
o provide combined reasoning on scenarios and their probability
istributions.

.1. Constraint scenarios

We now proceed, step by step, to highlight the different facets
f scenarios, starting from their definition. To simplify our tech-
ical treatment, from now on we fix an ordering over the prob-
bilistic constraints in a ProbDeclare model, thus representing
hem as a tuple instead of a set.

Consider a ProbDeclare model with n probabilistic constraints.
n principle, a model of this form implicitly yields 2n possible
8

cenarios. Each scenario picks which process conditions from the
robabilistic constraints are satisfied, and which are violated. In
his light, a scenario implicitly describes all traces that satisfy the
rocess conditions selected by the scenario.

efinition 14. A scenario of a ProbDeclare model M = ⟨Σ, C,
ϕ1, p1⟩, . . . , ⟨ϕn, pn⟩⟩ is a total function σ : {1, . . . , n} → {0, 1},
where σ (i) = 1 indicates that the LTLf process condition ϕi
is satisfied in the scenario, while σ (i) = 0 indicates that ϕi is
iolated in the scenario (that is, ¬ϕi is satisfied therein). As a
ompact, explicit notation, we denote σ as SMσ (1)···σ (n), or simply
σ (1)···σ (n) when M is clear from the context. We also employ
otation SMk or Sk, where k is a decimal number whose binary
ncoding coincides with σ (1) · · · σ (n).

xample 13. Fig. 1 builds on the ProbDeclare model introduced
n Example 12, indicating its induced scenarios. The model con-
ains 6 constraints, three crisp and three probabilistic. Circled
umbers represent the ordering of such constraints. Since we
ave 3 probabilistic constraints, 23

= 8 possible constraint
cenarios are induced, each enforcing the satisfaction of the three
risp constraints, and deciding on the satisfaction or violation of
he three constraints response(close, acc), response(close, ref),
nd not-coexistence(acc, ref).
The resulting scenarios are reported in the same figure, using

he naming conventions introduced before, in agreement with the
onstraint ordering. For example, scenario S101 is the scenario that
atisfies response(close, acc) and not-coexistence(acc, ref),
ut violates response(close, ref).

.2. Logical characterization and consistency of scenarios

As we already pointed out, each scenario provides a canonical
epresentation for all the (possibly infinitely many) traces that all
gree on the satisfaction/violation of constraints as indicated by
he scenario. Three questions immediately arise: (i) how does one
heck to which scenario(s) a trace belongs? (ii) Can a trace belong
o multiple scenarios? (iii) Are all scenarios meaningful, or should
e discard some of them?
To answer such questions, we provide a logical characteriza-

ion of scenarios. First and foremost, we introduce a characteristic
TLf formula for a scenario: a trace belongs to a scenario if
nd only if the trace satisfies the characteristic formula of the
cenario.

efinition 15. Let M = ⟨Σ, C, ⟨⟨ϕ1, ▷◁1, p1⟩, . . . , ⟨ϕn, ▷◁n, pn⟩⟩⟩
e ProbDeclare model. The characteristic formula induced by a
cenario SMb1···bn over M , compactly called SMb1···bn-formula, is the
LTLf formula

Φ(SMb1···bn) =

⋀
ψ∈C

ψ ∧

⋀
i∈{1,...,n}

{
ϕi if bi = 1
¬ϕi if bi = 0

Definition 16. A trace τ belongs to scenario SMb1···bn if τ |H

Φ(SMb1···bn). Scenario SMb1···bn is consistent if there is at least one trace
that belongs to it.

Consistency of scenarios correspond to the usual notion of
satisfiability in LTLf . An inconsistent scenario can be dropped, as
no trace can belong to it.

Example 14. We continue Example 13 by focusing on the logical
characterization, and consistency, of the 8 scenarios introduced
there.

The characteristic formulae of the different scenarios are built
by conjoining the LTL formulae of the crisp constraints and those
f

A. Alman, F.M. Maggi, M. Montali et al. Information Systems xxx (xxxx) xxx

t
c

Fig. 1. A ProbDeclare model, with 8 constraint scenarios, out of which only 4 are consistent. Recall that each scenario induces a formula that does not simply conjoin
the positive/negated variants of the probabilistic constraints, but includes also the conjunction of the formulae for crisp constraints.
of the probabilistic constraints, for the latter deciding, one by one,
whether to keep the formula in its positive or negated form. For
example, considering scenario S101, we have Ψ (S101) =

existence(close) ∧ precedence(close, acc)
∧ precedence(close, ref)
∧ response(close, acc) ∧ ¬response(close, ref)
∧ not-coexistence(acc, ref)

which, in turn, is the LTLf formula

(♢close) ∧ ((¬acc)W close) ∧ ((¬ref)W close)
∧ (□(close → ⃝♢acc)) ∧ (♢(close ∧ ¬⃝♢ref))
∧ (¬(♢acc ∧ ♢ref))

Checking whether this LTLf formula is satisfiable tells us
whether scenario S101 is consistent or not. More generally, as
indicated in Fig. 1 only 4 scenarios are actually consistent.

S101 is consistent: a trace witnessing consistency is the one
in which an order is closed and then accepted. Notice that there
are infinitely many other traces that belong to this scenario. For
example, one may repeat the acceptance an arbitrary amount of
times, still leading to a trace that belongs to S101.

Instead, S111 is not consistent. In fact:

• it requires that the order is closed (due to the crisp 1..∗
constraint on close);

• consequently, the order is eventually accepted and refused,
due to the two response constraints attached to close, which
in this scenario must be both satisfied;

• however, the presence of both an acceptance and a re-
fusal violates the not-coexistence constraint linking such
two activities, contradicting the requirement that also this
constraint must be satisfied in this scenario.

All in all, we get 4 consistent scenarios:

• S001, where an order must be closed and later not accepted
nor refused;

• S011, where an order must be closed and later refused (and
not accepted);

• S101, where an order must be closed and later accepted (and
not refused);

• S110, where an order must be closed and later accepted and
refused.

To close with the logical characterization of scenarios, we have
hat scenarios partition the set of all traces in Σ∗ that satisfy the
risp constraints.
9

Theorem 3. Given a ProbDeclare model M. For every trace τ ∈ Σ∗

that satisfies all crisp constraints in M, we have that τ belongs to one
and only one scenario of M.

Proof. Let M = ⟨Σ, C, ⟨⟨ϕ1, ▷◁1, p1⟩, . . . , ⟨ϕn, ▷◁n, pn⟩⟩⟩. For an
LTLf formula ϕ, we either have τ |H ϕ or τ |H ¬ϕ. We then
proceed as follows. Let b1 · · · bn be a sequence of n bits. For every
i ∈ {1, . . . , n}, set bi = 1 if τ |H ϕi, bi = 0 otherwise. By definition,
τ then belongs to SMb1···bn . □

4.3. Probabilistic characterization of scenarios and combined reason-
ing

We now move to the probabilistic characterization of sce-
narios. This is extremely important, as it tells us what are the
relative, acceptable cumulative frequencies of traces belonging to
each scenario. Once this information is incorporated, scenarios
provide a canonical representation of all the possible logs/finite
stochastic languages that satisfy the ProbDeclare model at hand.
These stochastic languages may vary in terms of probability dis-
tributions for two reasons. First, probabilistic constraints may
come with probability conditions that accept multiple, possibly
infinitely many actual probability masses. Second, from the log-
ical point of view each constraint may have multiple, possibly
infinitely many distinct traces satisfying it. In this case, the prob-
ability conditions would not dictate a specific probability mass
for each such traces, but just condition their overall probability
mass they get collectively. By using the terminology of probability
theory, this means that scenarios yield a so-called credal set of
probability distributions.

To obtain the legitimate probability distributions over scenar-
ios, three initial observations are in place. A first observation,
which shows how the logical and probabilistic characterizations
of scenarios interact with each other, is that if a scenario is incon-
sistent, it must forcefully be associated to a probability mass of 0 -
considering that it has no satisfying trace. A second observation is
that the allowed probability masses for consistent scenarios have
to be chosen so as to respect the probability condition of each
probabilistic constraint that is satisfied in that scenario. How-
ever this cannot be naively done by considering each scenario
in isolation. In fact, a probabilistic constraint may be satisfied
in multiple distinct consistent scenarios, consequently requir-
ing that its probability condition is respected by the cumulative
probability masses of all such scenarios.

Interestingly, when characterizing the allowed probability
masses for such scenarios, it may very well turn out that a consis-
tent scenario gets probability 0. An even more extreme situation
may arise, namely the one where it may not be at all possible
to find such probability masses. This indicates that ProbDeclare

A. Alman, F.M. Maggi, M. Montali et al. Information Systems xxx (xxxx) xxx

m
a
p
m

E

r
b
s
n

t
b
m

t
m
1

(

i

(

c
d
t
(
t
t
s

a

t
(

T
p

c
w
a

W
t
a
T
t
i
a
b
c
a
c
a

c

S
i
L

odels may be inconsistent due to the impossibility of extracting
probability distribution from the probability conditions of its
robabilistic constraints, considering that inconsistent scenarios
ust have 0 probability.

xample 15. Consider the four consistent scenarios of Fig. 1
and Example 14. We provide some intuitive observations on
probabilistic constraints and scenarios, which will then be sys-
tematically handled in the remainder of the section.

Three out of these four scenarios, namely S001, S011, and S101,
indicate that the not coexistence constraint relating acc and
ef is satisfied. This means that their overall, combined proba-
ility mass must be in line with the one assigned to the con-
traint, namely the exact value 0.9. The fourth consistent sce-
ario is S110, which is the only consistent scenario where the

not coexistence constraint is false. Considering that the sum of
he probability masses associated to all consistent scenarios must
e 1, we have that S110 must be then associated to a probability
ass of 1−0.9 = 0.1. This is in line with the probability reference

values assigned to the two probabilistic response constraints:
he fact that their probabilities sum up to 1.1 indicates that there
ust be traces satisfying both of them with a minimum ratio of
.1 − 1 = 0.1.
Two scenarios, namely S101 and S110, indicate that response

close, acc) is true. The probability condition attached to this
constraint is = 0.8, and corresponds to the cumulative probability
mass obtained by summing the probability mass of such two
scenarios. Since, by what observed before, the probability of S110
s 0.1, this implies that the probability of S101 is 0.7.

By a similar line of reasoning, applied to constraint ⟨response
close, acc), 0.3⟩, we can infer that the probability mass of S011 is
actually 0.2. Since the probability masses of the three scenarios
S101, S110, and S011 saturate 1, we finally infer that scenario S001
annot have any satisfying trace, as its probability mass is 0. This
oes not happen due to logical inconsistency, but comes from
he interplay between the logical characterization of scenarios
which selects four consistent scenarios out of the total) and
he probabilistic characterization of such scenarios as induced by
he probability conditions attached to the constraints that are
atisfied therein.

To systematically characterize the possible probabilities masses
ssociated to scenarios, we reconstruct the approach of PLTL0f [13,

Theorem 17] in our setting. In particular, to compute the pos-
sible distributions of probability masses associated to consistent
scenarios, we set up a system of inequalities whose solutions con-
stitute all the probability distributions that are compatible with
the logical and probabilistic characterization of the probabilistic
constraints in the ProbDeclare model of interest. To do so, we
associate each scenario to a probability variable, keeping the same
naming convention. For example, the probability mass of scenario
S001 is represented by variable x001. For M = ⟨Σ, C, ⟨⟨ϕ1, ▷◁1
, p1⟩, . . . , ⟨ϕn, ▷◁n, pn⟩⟩⟩, we construct the system LM of inequali-
ies using probability variables xi, with i ranging from 0 to 2n

− 1
in binary format):

xi ≥ 0 0 ≤ i < 2n (4)(2n−1∑
i=0

xi
)

= 1(∑
i∈{0,...,2n−1},

jth position of i is 1

xi
)

▷◁j pj 0 ≤ j < n (5)

xi = 0 0 ≤ i < 2n, scenario Si is inconsistent (6)

he first two lines guarantee that variables xi indeed form a
robability distribution, being all non-negative and collectively
 v

10
summing up to 1. The schema of inequalities captured in Eq. (5)
verifies the probability associated to each probabilistic constraint
in M , lifting local probability conditions to global conditions over
scenarios. Specifically, one inequality per probabilistic constraint
⟨ϕj, ▷◁j, pj⟩ in M is generated. The (in)equality ensures that the
ollective sum of probability masses attached to all scenarios
here that constraint is true, should all yield a resulting prob-
bility mass that satisfies condition ▷◁j pj. Finally, the schema of

inequalities captured in Eq. (6) is where logical and probabilistic
reasoning are connected: for every inconsistent scenario, the
inequality states that its probability mass is 0. This guarantees
that only consistent scenarios may receive a positive probability
mass in LM .

All in all, we get that a ProbDeclare model M is consistent
if and only if LM admits a solution (i.e., admits at least one
probability distribution over scenarios). Even more, solving LM
corresponds to verifying whether it is possible to find a log whose
traces can be assigned to the different scenarios, ensuring that all
the constraint probability conditions are respected by the ratios
of traces in each scenario. Checking whether LM admits a solution
can be done in PSpace in the size of M , if we calculate the size of
M as the length of the LTLf formulae appearing in its crisp and
probabilistic constraints [13].

Example 16. Consider the ProbDeclare model M containing two
probabilistic constraints:

1. existence(close) = ♢close with probability = 0.1;
2. response(close,acc) = □(close → ⃝♢acc) with probability

= 0.8.

hen interpreted over a log, M indicates that only 10% of the
races contain that the order is closed, and that 80% of the traces
re so that, whenever an order is closed, it is eventually accepted.
his model is inconsistent. Intuitively, the fact that in 80% of the
races, whenever an order is closed, it is eventually accepted,
s equivalent to say that, in 20% of the traces, we violate such
response constraint, i.e., we have that an order is closed

ut then not accepted. All such traces satisfy the existence
onstraint over the close activity, and, consequently, the prob-
bility of such a constraint must be at least 0.2. However, this is
ontradicted by the first constraint of M , which imposes that such
probability is 0.1.
We now show how this is detected formally. M yields 4

onstraint scenarios:
S00 = {¬♢close,♢(close ∧ ¬⃝♢acc)}
S01 = {¬♢close,□(close → ⃝♢acc)}
S10 = {♢close,♢(close ∧ ¬⃝♢acc)}
S11 = {♢close,□(close → ⃝♢acc)}

cenario S00 is inconsistent: it requires and forbids that the order
s closed. The other scenarios are instead all consistent. Hence,
M is4:

x00 + x01 + x10 + x11 = 1
x10 + x11 = 0.1

x01 + x11 = 0.8
x00 = 0

This system yields x10 = 0.2, x01 = 0.9, and x11 = −0.1. This
is an inconsistent probability assignment, and witnesses that it
is not possible to define a probability distribution over scenarios
that agrees with the local probability conditions imposed by the
two probabilistic constraints.

4 We omit, for compactness, the inequalities of type (4) indicating that each
ariable must be ≥ 0.

A. Alman, F.M. Maggi, M. Montali et al. Information Systems xxx (xxxx) xxx

o
i
t
e
s
p
s

D
P
o
s

t
i
b
t
v
a
i
o

i
s
p
b
l

m

If a ProbDeclare model M is consistent, then LM has at least
ne solution, and it may have infinitely many, possibly requir-
ng the different probability masses for a scenario to be scat-
ered in different subintervals of [0, 1]. Hence we need a way to
xtract some practical, finitely representable information about
uch different solutions. We do so through the notion of scenario
robability box, storing bounds on the probability masses that
cenarios of M can get assigned to.

efinition 17. The scenario probability box PM of a consistent
robDeclare model M is a total function mapping every scenario
f M into a closed interval contained in [0, 1], such that for every
cenario Si of M , we have PM (Si) = [inf i, supi] if and only if:

• inf i is the solution of the optimization problem that mini-
mizes xi over LM ;

• supi is the solution of the optimization problem that maxi-
mizes xi over LM .

Note that this definition does not (nor it intends to) claim
hat for every value p ∈ PM (Si) in the probability box, there
s a model that assigns that probability to Si. The probability
ox provides only the extreme values as an approximate way
o understand the behavior of these scenarios: it excludes some
alues a priori, and can be refined as values for other scenarios
re picked, by updating the system of inequalities. How much the
nterval singled out by a probability box is informative depends
n the actual space of solutions for the model at hand.
Obviously, whenever LM has a unique solution, we can avoid

nvoking the optimization problems, and directly assign to each
cenario a probability box whose extreme values coincide to the
robability mass from the solution. In that case, the probability
oxes provide full information, and do not require anymore to
ook into LM . This is not the case when multiple solutions exist.

The scenario probability box PM of a consistent ProbDeclare
odel M , together with the system LM , can be used to:

• Extract probability mass distributions over scenarios that agree
with M . This is done by picking, for every scenario Si, one
probability mass value within PM (Si), in such a way that
all the chosen values actually constitute a solution for LM
(which can be checked in linear time).

• Check whether a finite stochastic language ρ satisfies M . To
do so, we proceed as follows. For every scenario Si of M , we
compute the probability mass Pρ(Si) induced by ρ on Si as:

Pρ(Si) =

∑
τ∈Σ∗, ρ(τ)>0, τ belongs to Si

ρ(τ)

We then verify that the so-computed probability masses
provide an actual probability distribution, which can be
checked by feeding them into LM and checking whether the
so-obtained ground inequalities are all satisfied.

Example 17. Consider the ProbDeclare model in Fig. 1. We now
substantiate the intuitive reasoning described in Example 15 with
a systematic computation of scenario probabilities. The system of
inequalities for the model is so that x000 = x010 = x100 = x111 =

0, since the corresponding scenarios are all inconsistent. For the
consistent scenarios, we instead get the following equalities, once
the variables above are removed (being them all equal to 0):

x001 + x011 + x101 + x110 = 1
x101 + x110 = 0.8

x011 + x110 = 0.3
x001 + x011 + x101 = 0.9

It is easy to see that this system of equations admits only one
solution: x = 0, x = 0.2, x = 0.7, x = 0.1. This solution
001 011 101 110

11
witnesses that scenario S001 has zero-probability, and that the
most likely scenario, holding in 70% of cases, is actually S101,
namely the one where after the order is closed, it is eventually
accepted, and not refused. In addition, the solution tells us that
there are other two unlikely scenarios: the first, holding in 20% of
cases, is the one where, after the order is closed, it is eventually
refused (and not accepted); the second, holding in 10% of cases,
is the one where a closed order is accepted and refused.

We finish this section with an example of ProbDeclare model
whose corresponding system of inequalities admits infinitely
many solutions.

Example 18. Consider the ProbDeclare model in Fig. 2. It comes
with 4 constraint scenarios, obtained from the two process con-
ditions precedence(sign,close) = ¬closeW sign and response
(close, sign) = □(close → ⃝♢sign), as well as their respec-
tive negated formulae ¬signU close and ♢(close ∧ ¬⃝♢sign). All
such scenarios are consistent, and hence the resulting system of
inequalities is:

x00 ≥ 0 x01 ≥ 0 x10 ≥ 0 x11 ≥ 0
x00 + x01 + x10 + x11 = 1

x10 + x11 = 0.8
x01 + x11 = 0.1

This system admits multiple solutions. In fact, by calculating the
minimum and maximum values for the 4 variables, we get the
following scenario probability box:

• scenario S00, where the order is closed but consent is not
signed, gets probability interval [0, 0.1];

• scenario S01, where the order is closed and consent is signed
afterward, gets probability interval [0, 0.1];

• scenario S10, where the order is closed after having signed
consent, gets probability interval [0.7, 0.8];

• scenario S11, where the order is closed and consent is signed
at least twice (once before, and once afterward), gets prob-
ability interval [0.1, 0.2].

Since the probability box involves intervals of limited size, it
provides a good, approximated view over the actual probability
distributions that can be faithfully employed instead of solving
the system of inequalities whenever needed.

5. Discovering ProbDeclare models from event logs

We now show that ProbDeclare models can be discovered
from event data using, off-the-shelf, already existing techniques,
with a quite interesting property: that the discovered ProbDeclare
model is always guaranteed to be consistent (in the probabilistic
sense of Definition 13).

A variety of different algorithms has been devised to discover
Declare models from event data [7–10,16]. In general, the vast
majority of these algorithms adopts the following approach to
discovery:

• Candidate formulae are generated by analyzing the activities
contained in the log.

• For each formula, its support is computed as the fraction of
traces in the log where the constraint holds.

• Candidate formulae are filtered, retaining only those whose
support exceeds a given threshold.

• Further filters are applied, for example considering aspects
such as redundancy, interestingness, and vacuity [7,11,28].

In this pipeline, the notion of support is typically formalized
as follows.

A. Alman, F.M. Maggi, M. Montali et al. Information Systems xxx (xxxx) xxx

D
L

a
t
s
a
t
t
a

5

p
i
a
c
a

Fig. 2. A ProbDeclare model and its 4 constraint scenarios.
s
τ
s

w

c
t
d
h
i
b
b
p
s
o
b

5

e
t
d
r
t

(
p
p
i
p
C
u
v
o
s

E
m
t
p
l
c
w

efinition 18. The support of an LTLf formula ϕ in an event log
is

suppL(ϕ) =

∑
τ∈L,τ |Hϕ L(τ)

|L|

To obtain a meaningful Declare model in output, there is one
dditional, crucial catch: the formulae that pass all the steps of
he pipeline may result in an overall inconsistent model. The rea-
on is that formulae with a high support strictly less than 1 may
ctually conflict with each other [11,29]; this is not recognized by
he model, which does not keep nor use any information related
o support. Fixing these potential inconsistencies calls then for
dditional post-processing techniques [11].

.1. Support as uncertainty

Differently from Declare, in ProbDeclare we can interpret sup-
ort as uncertainty, using it to fine-tune the constraint probabil-
ty. This leads to explicitly maintain support-related information
t the model level, with a well-defined semantics and reasoning
apabilities. The most straightforward way to use support is to
djust the discovery pipeline described above as follows:

• each discovered formula with support 1 can be retained as
a crisp constraint;

• each discovered formula ϕ with support p < 1 can be
retained as a probabilistic constraint of the form ⟨ϕ, p⟩
(that is, with probability condition = p).

Example 19. Consider L = [⟨close, acc⟩7, ⟨close, ref⟩2, ⟨close,
acc, ref⟩1], capturing the evolution of 10 orders, 7 of which have
been closed and then accepted, 2 of which have been closed and
then refused, and 1 of which has been closed, then accepted,
then refused. The support of constraint response(close,acc) is
8/10 = 0.8, witnessing that 8 traces satisfy such a constraint,
whereas 2 violate it. This corresponds exactly to the interpreta-
tion of probability 0.8 for the probabilistic response(close,acc)
constraint in Fig. 1. More generally, the entire ProbDeclare model
of Example 12 can be discovered from L.

It turns out that a ProbDeclare model discovered in this way
enjoys the key property of being consistent, no matter which
subset of the crisp and probabilistic constraints is retained. Con-
sequently, we do not need to apply any post-processing step tai-
lored to guarantee consistency, while we can carry out combined
reasoning on the discovered constraints and their support.

Theorem 4. Let L be a log over Σ , and M = ⟨Σ, C,P⟩ be a
ProbDeclare model. If:

• for every crisp constraint ψ ∈ C, we have suppL(ψ) = 1, and
• for every probabilistic constraint ⟨ϕ, ▷◁, p⟩ ∈ P , we have that

▷◁ is the equality operator and that p = suppL(ϕ),

then M is consistent.

Proof. Let M be the ProbDeclare model as in the theorem. We
show that consistency is witnessed by L itself, in the sense that
12
the stochastic language ρL induced by L has the property of satis-
fying M . To satisfy M , L must satisfy every crisp and probabilistic
constraint therein. The case of crisp constraints is straightforward.

As for probabilistic constraints, let C = ⟨ϕ, suppL(ϕ)⟩ ∈ P
be a probabilistic constraint in M . By Definition 9, to satisfy C
the stochastic language ρL must satisfy the following equation:∑

τ∈Σ∗,τ |Hϕ ρ(τ) = suppL(ϕ).
On the other hand, since each τ contributes to the left-hand

um if and only if ρ(τ) > 0, which in turn happens if and only if
∈ L, we can rewrite the left-hand side into:

∑
τ∈L,τ |Hϕ ρ(τ) =

uppL(ϕ).
By Definition 6, we know that ρ(τ) =

L(τ)
|L| , thus obtaining:∑

τ∈L,τ |Hϕ

ρ(τ) =

∑
τ∈L,τ |Hϕ

L(τ)
|L|

=

∑
τ∈L,τ |Hϕ L(τ)

|L|

hich, by Definition 18, coincides with suppL(ϕ). □

Thanks to the result of this theorem, probabilistic constraints
an be discovered in a purely local way, having the guarantee that
hey will never conflict with each other. However, the theorem
oes not give any hint on how many discoverable constraints
ave to be inserted in the discovered model, nor which are more
nteresting than others. Hence, in principle one could apply the
rute-force approach of [7], or the discovery algorithms in [8–10]
y setting 0 as minimum support threshold, thus generating all
ossible constraints regardless of their support. Afterward, in the
pirit of steps 3 and 4 above, filters applied to single constraints
r considering the non-local interplay of multiple constraints can
e applied to keep only the most interesting ones.

.2. Discovery of Relaxed ProbDeclare Models

In the previous section, we have used support as the exact ref-
rence probability value of the discovered constraints. We close
he section by showing three different relaxations of ProbDeclare
iscovery, where support is used in a less constraining way. Being
elaxations of the original discovery technique, they all continue
o satisfy Theorem 4, and are hence consistent by design.

The first relaxation explores the notion of constraint duality
cf. Definition 10). Duality of probabilistic constraints tells that a
robabilistic constraint with very low probability reference value
(read: a very low support during discovery) is definitely of

nterest, since its dual, equivalent constraint has a very high
robability reference value 1 − p (read: a very high support).
onsequently, if χ ∈ [0, 1] is the minimum support threshold
sed in step 3 of the discovery pipeline listed above, then a
ariant of the discovery algorithm could employ a modified filter
f the following form: formula ϕ is retained if suppL(ϕ) ≥ χ or
uppL(ϕ) ≤ 1 − χ .

xample 20. Consider again the log in Example 19. By setting a
inimum threshold χ = 0.7 for support, all crisp and probabilis-

ic constraints shown in Example 12 would be retained, as their
robability/support values are either greater or equal than 0.7, or
ess or equal than 0.3. By setting χ = 0.85, instead, only the crisp
onstraints and the not-coexistence probabilistic constraint
ould be kept.

A. Alman, F.M. Maggi, M. Montali et al. Information Systems xxx (xxxx) xxx

d
v
r
s

v
⟨

T
s
m
a
g

e
f
s
⟨

i
χ
c

a

T
l

6

c
b
f
t

s
f
i
t
v

p
τ
h
A
r
i

6

a
i
⟨

c
t
t

c
b
f
P
d
c
o

The two second relaxations arise from the observation that
iscovering a probabilistic constraint of the form ⟨ϕ, suppL(ϕ)⟩ is
ery sensitive to changes in the log, as the constraint requires the
atio of traces in the log satisfying ϕ to be exactly the value of the
upport.
A first way of relaxing this is to introduce a confidence inter-

al ξ ∈ [0, 1] for probability conditions, and use it to replace
ϕ, suppL(ϕ)⟩ with the following two probabilistic constraints:

• ⟨ϕ,≥, p1⟩, with p1 = max{0, suppL(ϕ) − ξ/2};
• ⟨ϕ,≤, p2⟩, with p2 = min{1, suppL(ϕ) + ξ/2}.

hese two constraints can be seen as a single probability con-
traint whose probability condition indicates that the probability
ass of the constraint belongs to an interval of size ξ centered
round suppL(ϕ). Suitable choices for ξ can be used to balance
eneralization and precision.
A second possibility is to relax the probabilistic constraint

ven more, by not considering its actual support, but only the
act that its support is, by construction, higher than the minimum
upport threshold χ . This leads to replace the original constraint
ϕ, suppL(ϕ)⟩ by ⟨ϕ,≥, χ⟩. If the ‘‘dual variant’’ of the algorithm
s employed, then this replacement is used whenever suppL(ϕ) ≥

, whereas in the case where suppL(ϕ) ≤ 1 − χ , the original
onstraint ⟨ϕ, suppL(ϕ)⟩ must be replaced by ⟨ϕ,≤, 1 − χ⟩.
There are a number of open questions that arise from this new

pproach to discovery and its three variants, such as for example:

• how to characterize under/over-fitting considering the pres-
ence of probabilities, and the fact that discovery algorithms
do not target full LTLf , but focus on specific formula tem-
plates that natively introduce some form of generalization;

• how to reinterpret key notions such as vacuity and interest-
ingness in the presence of probabilities;

• how to fine-tune the mining of probabilities by observ-
ing evolving logs and the variations they induce in their
stochastic interpretation.

his is left as future investigation, based on the framework out-
ined in this article.

. Monitoring probabilistic constraints

In Section 4, we presented a framework to reason on ProbDe-
lare models through scenarios (Definition 14), and their proba-
ility boxes (Definition 17). We now describe how this
ramework can be made operational into a probabilistic moni-
oring technique.

We consider two types of monitoring: prefix monitoring, which
imply checks whether the currently monitored execution satis-
ies a ProbDeclare model; and full monitoring, where the mon-
tor also considers all possible future evolutions of the current
race, in turn providing mechanisms for the early detection of
iolations [21,27,30].
In the technical treatment provided next, we call in several

laces the verification problem, which checks whether a trace
satisfies an LTLf formula ϕ. Operationally, this task can be

andled through the construction of the finite-state automaton
ϕ , and determinizing it if needed [21,27]. We can then use the
esulting deterministic automaton to check whether τ satisfies ϕ
ncrementally as new activity executions are detected.

.1. Prefix monitoring

A very direct form of monitoring consists in checking whether
partial trace, that is, the prefix of a full trace whose continuation
s yet to be determined, satisfies a given ProbDeclare model M =

Σ, C,P⟩. This amounts to a probabilistic version of conformance
13
hecking, which can be directly tackled by operationalizing the
echnique used in the proof of Theorem 3 to compute the scenario
o which a trace belongs.

Let τ be the trace of a monitored execution. Our goal is to
heck whether τ satisfies M and, if so, to which scenario it
elongs, in turn using this information to return an interesting
eedback on how M classifies τ . In the next procedure, recall that
M (S) is the probability box of scenario S, namely an interval
elimiting the minimum and maximum probability masses that
an be associated to S when defining a probability distribution
ver scenarios. We proceed as follows:

• We separately check τ against each crisp constraint in C,
using its local automaton. This amounts to check whether
the automaton accepts τ . If there exists a constraint ψ ∈ C
such that τ ̸|H ψ , we return violation, together with ψ as
a witness.

• Following the strategy adopted in the proof of Theorem 3,
we use Aϕ to separately check τ against the constraint
formula ϕ of each probabilistic constraint in P . We use the
so-obtained verdicts to calculate the scenario Si to which τ
belongs.

• If PM (Si) = [0, 0], then we return violation, together with
Si and its zero probability as a witness.

• Else, we return conforming, together with Si and its prob-
ability interval PM (Si) as a feedback. On the one hand, Si
gives an indication about how M classifies τ , and which
other traces would be classified identically. On the other
hand, PM (Si) gives an indication on whether τ represents a
common or an outlier behavior, thus coupling conformance
with an estimation of the degree of ‘‘conformism" of τ .
Notably, the larger the probability interval given by PM (Si),
the less confident (and less precise) this indication is.

Recall that the probability boxes PM do not express that all proba-
bilities in this interval are possible, but it contains all the possible
values. The result of this method tells us that the probability
of observing a trace of this kind is within PM (Si), but makes no
further claims about this value.

Prefix monitoring can be performed very efficiently, but comes
with a main limitation: it does not reason on the possible future
continuations of the current trace, and so cannot provide any
insight on how the monitoring judgment may change once the
trace is extended.

6.2. Full monitoring

We now show how prefix monitoring can be further devel-
oped into full monitoring of prefixes and their possible continua-
tions in our probabilistic setting. In this case, we cannot consider
the constraints in isolation anymore, but must reason at the level
of scenarios.

As a preliminary, pre-processing step, we discard all inconsis-
tent scenarios, along with all scenarios with zero-probability. For
each consistent, non-zero-probability scenario Si, we compute its
characteristic formulaΦ(Si) as in Definition 15. Since this formula
is in LTLf , we compute its automaton AΦ (Si) and determinize
it. Then, we decorate this automaton turning it into a so-called
colored automaton, through the well-known monitor construc-
tion techniques from the literature [21,27]. We call the resulting
automaton a scenario monitor. For an LTLf formula ϕ over a set Σ
of activities, and a partial trace τ representing an ongoing process
execution, a colored automaton outputs one of the four following
truth values, in agreement with the RV-LTL semantics for runtime
verification [31]:

A. Alman, F.M. Maggi, M. Montali et al. Information Systems xxx (xxxx) xxx

w

d
i
A
w
i
c
o
s
m
c

p
T
s
t
d

f

Fig. 3. Result computed by monitoring the ProbDeclare model on the top left against the trace ⟨close, acc, ref⟩, which conforms to the outlier constraint scenario
here the two response constraints are satisfied, while the not-coexistence one is violated.
o
t
s
p
t
n
c
o
p
f
d
p
i

p
n
h
m
r
p
v
p
p
t

m
A
c
f
n
p
t
t
d
a

E
t
b
p
b
c

c
p
i
h

• τ (permanently) satisfies ϕ, if ϕ is currently satisfied (τ |H ϕ),
and ϕ stays satisfied no matter how the execution continues,
that is, for every possible continuation trace τ ′ over Σ , we
have τ · τ ′

|H ϕ (the · operator denotes the concatenation of
two traces);

• τ possibly satisfies ϕ, if ϕ is currently satisfied (τ |H ϕ), but
ϕ may become violated in the future, that is, there exists a
continuation trace τ ′ over Σ such that τ · τ ′

̸|H ϕ;
• τ possibly violates ϕ, if ϕ is currently violated (τ ̸|H ϕ), but
ϕ may become satisfied in the future, that is, there exists a
continuation trace τ ′ over Σ such that τ · τ ′

|H ϕ;
• τ (permanently) violates ϕ, if ϕ is currently violated (τ ̸|H ϕ),

and ϕ stays violated no matter how the execution continues,
that is, for every possible continuation trace τ ′ over Σ , we
have τ · τ ′

̸|H ϕ.

At runtime, we track the evolution of a running trace by
elivering its activity occurrences to all the scenario monitors
n parallel, fetching the truth values they produce as output.
s pointed out in Section 6.1, at runtime we do not know to
hich scenario the current trace will belong to once the trace

s extended with new activity occurrences. The overall feedback
an then be generically interpreted as a sort of ‘‘superposition’’
f monitoring states. In addition, we can exploit in combination
cenarios, probability intervals, and monitoring states to return a
eaningful feedback. We comment on some of these advanced
apabilities next.
For every partial trace, at most one scenario can turn out to be

ermanently or possibly satisfied. This is a direct consequence of
heorem 3. In fact, if the execution would be completed now, that
cenario would turn out to be permanently satisfied, witnessing
hat the observed trace belongs to it (and thus, by Theorem 3,
oes not belong to any other scenario). Call this scenario Sok.

• If Sok is permanently satisfied, the verdict is irrevocable,
and also implies that all other scenarios are and will for
sure be permanently violated. This in turn witnesses that
no matter how the execution continues, the resulting trace
will necessarily belong to Sok. We can then return con-
forming, together with Sok and its probability interval
PM (Sok) (exactly like in the case of prefix monitoring).

• If Sok is temporarily satisfied, the verdict may instead
change as the execution unfolds, but would collapse to
the previous case if the execution terminates, which is
communicated to the monitors by a special complete event.

In contrast to the cases of permanent and temporary satis-
action, multiple scenarios may be at the same time temporarily
14
r permanently violated. For this reason, we need to aggregate
he probability intervals of all those scenarios associated to the
ame monitoring outcome, to have an indication of the overall
robability associated with that outcome. This is done by lifting
he notion of scenario probability box to the case of sets of sce-
arios. In this case, the collective probability box is obtained by
omputing the two endpoints are via two optimization problems
ver LM , respectively minimizing and maximizing the sum of
robability variables associated to the scenarios in the set. Just as
or the probability boxes for individual scenarios, these bounds
o not express that every value within the interval is a possible
robability value, but does express that any value beyond them
s impossible.

For temporarily violated scenarios, we return the aggregated
robability interval computed as explained before. For perma-
ently violated scenarios, we can go beyond that. On the one
and, we notice that the probability interval computed for per-
anently violated scenarios can never shrink over time, but only

emain unaltered or grow. In fact, new scenarios may become
ermanently violated, but those that are already permanently
iolated will stay so forever. Consequently, a high aggregated
robability mass associated to permanent violation can be inter-
reted as a clear indication that the monitored trace will turn out
o be either a conforming outlier, or not conforming at all.

Another way to interpret the aggregated contribution of per-
anently violated scenarios is as in terms of posterior probability.
ll the scenarios that are permanently violated can in fact be
onsidered impossible by the probabilistic model, in turn calling
or rescaling the probability intervals attached to the other sce-
arios one the permanently violated ones are excluded. For any
robability distribution in our model, if pts, ptv , and ppv represent
he probabilities of the scenarios that are temporarily satisfied,
emporarily violated, and permanently violated, respectively, as
escribed above, we update the former two to: p′

ts := pts/(1−ppv)
nd p′

tv := ptv/(1 − ppv). Likewise for probability intervals.

xample 21. Consider the ProbDeclare model in Fig. 1 with its
hree consistent scenarios with non-zero probability (the contri-
ution of scenario S001 is in fact irrelevant). Fig. 3 shows the result
roduced when monitoring a trace that at some point appears to
elong to the most likely scenario, but in the end turns out to
onform to the least likely one.
We briefly comment on the evolution of the trace and its

orresponding monitors. When the trace starts, all scenarios are
ossibly violated, as they expect close to be executed. There is
n this situation no uncertainty about which monitoring state
as to be returned. Once close is executed, the situation stays

A. Alman, F.M. Maggi, M. Montali et al. Information Systems xxx (xxxx) xxx

u
q
e
f
b
r

b
t
v
a
c
d
v
b
a
c
a

i
a

7

i
r
p
s
c
t
p
v

w
d
c
s

t
t

c
c
d

f
t
s
m
t
b
b
a
i
t
a
S

s
a
F
f

7

m
t
o
c
b
d
c

D

naltered, as both response constraints now require a conse-
uent execution of acc and/or ref. The monitor returns a differ-
nt picture when the third activity is processed, namely acc. In
act, scenario S011 becomes permanently violated, as the com-
ination of the existence(close) and the negated version of
esponse(close,acc) imposed therein that no occurrence of acc

would happen. Differently, scenario S101 becomes possibly sat-
isfied, as the response(close,acc) constraint is now satisfied.
The satisfaction is possible as we cannot guarantee that the
not coexistence(acc,ref) constraint, which must be true in S101,
will stay so. If the execution would stop now, then we would have
that the trace collected so far actually belongs to scenario S101
(as it would become the only permanently satisfied). This would
indicate that the monitored execution belongs to the most likely
scenario, encountered in 70% of the cases.

However, the situation changes as the execution unfolds:
not coexistence(acc,ref) becomes permanently violated when
ref is later executed, in turn causing S101 to become permanently
violated as well. Upon the execution of this activity, scenario S110
ecomes possibly satisfied: it requires both response constraints
o be satisfied and the not coexistence(acc,ref) one to be
iolated, which is indeed the case. Satisfaction is only possible
s existence(close) may be violated upon a further execution of
lose. At this stage, it has become certain that the monitored trace
oes not belong to S011 nor S101, as they are both permanently
iolated. There are in fact two possibilities: either the trace
elongs to S110, or becomes non conforming (and, thus, not part of
ny scenario). Since the execution terminates and the trace gets
ompleted, the former is the case: the final trace belongs to S110,
rare scenario that is seen in 10% of the cases.
From the image, we can also clearly see that the trace consist-

ng only of a close activity would be judged as non-conforming,
s it would violate all the monitored scenarios.

. Probabilistic conformance checking

As a last process mining task, we revisit conformance check-
ng. Probabilistic conformance checking of a single trace with
espect to a ProbDeclare model can be fully tackled using the
refix monitoring technique introduced in Section 6.1. In this
ection, we concentrate on a different approach: conformance
hecking of a whole log with respect to a ProbDeclare model, in
he spirit of an ongoing line of research that is investigating this
roblem by adopting procedural, probabilistic models based on
ariants of stochastic Petri nets [19,32–36].
In particular, we take inspiration from the approach in [19],

hich studies how the well-established notion of Wasserstein
istance [37] (also called earth mover’s distance or EMD for short)
an be adapted to measure the distance between a log and a
tochastic Petri net.
In general terms, given two discrete distributions of elements,

he EMD between these distributions is computed by combining
wo distinct distances:

• an element distance measuring the pairwise distance be-
tween elements from the first distribution and elements
from the second distribution, considering the elements as
such, and not the probability mass they carry;

• a reallocation distance measuring the ‘‘effort" required to
move the probability mass carried by an element from the
first distribution to an element of the second distribution,
with the overall goal of transforming one distribution into
the other.

A key issue arising when applying EMD in the context of
onformance checking, is to decide what are the elements to be
ompared, on the log side and on the model side. In [19], this is

one:

15
• on the log side by transforming the input log into a stochas-
tic language (with the approach that we reconstruct in Def-
inition 6), and by considering as elements the traces of the
stochastic language with their probability masses;

• on the model side, by explicitly enumerating a finite portion
of all the probabilistic traces from the stochastic Petri net.

While similar in spirit, our approach comes with a radical dif-
erence with respect to that in [12]: while they explicitly consider
races as elements, we implicitly fold traces to be compared into
cenarios. This is based on the observation that a ProbDeclare
odel is not able to classify traces at a more granular level than

hat of scenarios. At the same time, it brings the advantage that
oth on the log and on the model side we have to consider
oundedly many elements (that is, scenarios), without the need of
pproximating or truncating the elements. If one is interested to
nject into the approach a more fine-grained analysis of the log at
he single trace level with ad-hoc distance measures, alternative
pproaches have to be investigated. We comment on this in
ection 7.4.
In the remainder of the section, we first discuss how to mea-

ure the distance between two scenarios. We then describe how
log can be seen as a probability distribution over scenarios.

inally, we combine these notions, introducing a notion of EMD
or ProbDeclare.

.1. Scenario distance

Consider two scenarios of the same ProbDeclare model M . We
easure their distance by applying the most intuitive approach,

hat is, on the basis of how many constraints they disagree
n. Given the binary representation of the two scenarios, this
orresponds to the number of flips that, component-wise, have to
e applied so as to transform one scenario into the other. Let ⊕

enote the exclusive or (XOR) of two bits. Then, we can formally
apture this intuition as follows.

efinition 19. Let Sb1···bn and Sd1···dn be two scenarios with the
same number of components. Then the (normalized) bit-flipping
distance between Sb1···bn and Sd1···dn is a number in [0, 1] defined
as follows:

fd(Sb1···bn , Sd1···dn) =

∑n
i=1(bi ⊕ di)

n

Example 22. Consider two scenarios S011 and S101. We have:

• fd(S011, S011) = 0;
• fd(S011, S101) = fd(S101, S011) = 2/3.

7.2. Log-induced probability distributions

As indicated before, instead of unfolding the model into traces,
we want to fold the log into scenarios. The idea is to compute
the probability distribution that the traces in the log, together
with their respective frequencies, induce over the scenarios of the
model of interest.

This simply amounts to collect, scenario by scenario, the over-
all relative frequency of all traces that belong to a scenario, and
use it to assign a probability to that scenario.

Definition 20. Let L be an event log, and M be a ProbDeclare
model. The probability distribution induced by L over M is the
function FM

L that maps scenarios of M into values from [0, 1] as
follows: for every scenario Si of M , we have that

FM
L (Si) =

∑
τ∈L, τ belongs to Si

L(τ)
|L|

A. Alman, F.M. Maggi, M. Montali et al. Information Systems xxx (xxxx) xxx

E
a
⟨

b
0

,

It is easy to prove that FM
L is indeed a probability distribution.

xample 23. Consider again the ProbDeclare model M in Fig. 1,
nd the log L = [⟨close, acc⟩1, ⟨close, ref⟩4, ⟨close, acc, ref⟩2,
close, ref, acc⟩3]. The trace ⟨close, acc⟩ is the only one in L that
elongs to scenario S101, consequently giving FM

L (S101) = 1/10 =

.1. Similarly, the trace ⟨close, ref⟩ is the only one belonging to
the scenario S011, consequently giving FM

L (S011) = 4/10 = 0.4.
Finally, the two remaining traces belong to S110, as they represent
two different ways to change decision about a closed order.
Hence, we obtain the probability FM

L (S110) = (2 + 3)/10 = 0.5.

7.3. Earth mover’s distance for ProbDeclare

We are now ready to define our notion of EMD. To do so,
we create a system of inequalities that expresses constraints on
the amount of probability mass that has to be reallocated, in
order to agree with one of the probability distributions asso-
ciated to scenarios, and to the probability distribution induced
by the log over such scenarios. In doing so, there are two main
aspects to consider: first, that there may be multiple (possibly,
infinitely many) probability distributions induced by the ProbDe-
clare model over its scenarios; second, that there are in principle
several different ways to reallocate probability masses. Hence,
we seek for the optimal reallocation strategy, minimizing at once
over the probability distributions induced by the model, and over
the different reallocation values for scenarios. Minimization is
defined over the overall reallocation cost, where each reallocation
from a scenario to another scenario is weighted by the bit-flipping
distance between the two scenarios.

Specifically, given a ProbDeclare model M with n probabilistic
constraints, and given a log L, we use variables x0, . . . , x2n−1 to
indicate the probabilities assigned to the scenarios of M , compat-
ibly with the probability box of M; in addition, we use variable ri,j
to indicate the reallocation of the probability induced by L over
scenario Si to the probability xi assigned to scenario Sj compatibly
with the system of inequality LM . We then set up the system of
inequalities RM,L as follows:

2n−1∑
i=0

2n−1∑
j=0

fd(Si, Sj) · ri,j = cost (7)

2n−1∑
j=0

ri,j = FM
L (Si) 0 ≤ i < 2n (8)

2n−1∑
i=0

ri,j = xj 0 ≤ j < 2n (9)

LM (10)

Line (7) introduces the overall cost incurred in moving the
probability masses, defined as the linear combination of each
reallocation multiplied by the bit-flipping distance between the
involved scenarios. Line (8) expresses the constraints on realloca-
tions induced by the log, indicating that, for each scenario Si, the
overall reallocation variables involving Si must collectively yield
exactly the probability mass induced by L on that scenario. Sim-
ilarly, line (9) expresses the constraints on reallocations induced
by the model, indicating that, for each scenario Si, the overall
reallocation variables involving Si must collectively yield exactly
the probability mass assigned to that scenario compatibly with
the probability distributions induced by M over scenarios. The
next line (10) expresses precisely such a compatibility, including
in the system of inequalities those in LM , which capture how the
constraint probability conditions from M induce corresponding
constraints on the probability masses of the different scenarios.

We are now finally ready to define the overall notion of
distance.
16
Definition 21. The earth mover’s distance (EMD) between a
ProbDeclare model M and a log L is:

EMD(M, L) = 1 − cost∗,

where cost∗ is the solution of the optimization problem that
minimizes variable cost in the system of inequalities RM,L.

Obviously, when actually computing the earth mover’s dis-
tance we can immediately remove from the system of inequalities
all those entries that refer to scenarios with zero probability, as
they would not contribute at all to the distance. In addition, in
case LM assigns a single probability mass to each scenario, we can
directly use such values in place of the xj variables, completely
omitting Eqs. (10).

Example 24. Consider the ProbDeclare modelM in Fig. 1, and the
log L from Example 23. We now compute the EMD between them.
Even before entering into the actual calculation, we can already
observe that only three scenarios are relevant for considerations,
namely S011, S101, and S110, since they are the only ones associated
to a non-zero probability by LM . In addition, we can immediately
estimate that the distance will be quite sensible: from the model
side, LM indicates S101, S011, and S110 by decreasing likelihood,
whereas from the log side, FM

L indicates the completely reversed
ranking.

To instantiate the system of inequalities RM,L, we can follow
the intuition provided in the following two tables.

bit-flipping distances reallocations

S011 S101 S110 x011 x101 x110
S011 0 2/3 2/3 FM

L (S011) r011,011 r011,101 r011,110 0.4

S101 2/3 0 2/3 FM
L (S101) r101,011 r101,101 r101,110 0.1

S110 2/3 2/3 0 FM
L (S110) r110,011 r110,101 r110,110 0.5

0.2 0.7 0.1
We obtain:

0 · r011,011 + 2/3 · r011,101 + 2/3 · r011,110
+ 2/3 · r101,011 + 0 · r101,101 + 2/3 · r101,110
+ 2/3 · r110,011 + 2/3 · r110,101 + 0 · r110,110 = cost

r011,011 + r011,101 + r011,110 = 0.4
r101,011 + r101,101 + r101,110 = 0.1
r110,011 + r110,101 + r110,110 = 0.5
r011,011 + r101,011 + r110,011 = 0.2
r011,101 + r101,101 + r110,101 = 0.7
r011,110 + r101,110 + r110,110 = 0.1

By minimizing cost , we get solution 0.4. Hence:

EMD(M, L) = 1 − 0.4 = 0.6

7.4. An alternative EMD based on alignments

The EMD here presented relies on the observation that, when
comparing a trace and an LTLf formula, what matters is whether
the satisfies or violates the formula, not ‘‘how’’ and ‘‘why’’ this
is the case. In our approach, this declarative approach leads to
blurring the distinction between traces and scenarios. In fact, a
scenario only distinguishes those traces that belong from those
that do not, and does not provide any further finer-grained con-
siderations on how violating traces differ to each other. This has
the effect that two radically different logs may lead to the same
EMD value when compared to a ProbDeclare model M if the
traces they contain, albeit different, relate in the same way to the
scenarios induced by M .

An alternative approach is to go beyond this coarse-grained,
boolean approach, moving toward a more refined approach where
in case of violation, some estimation about the entity/
degree of violation is used. This is commonly captured, in the

conformance checking literature, by the notion of alignment,

A. Alman, F.M. Maggi, M. Montali et al. Information Systems xxx (xxxx) xxx

e
d
t
d
l

f
e
h
t
s
p
t

D
a
c
s

q

8

M
t
a
o

f
p
(
c
c
d

xtensively studied in the literature [18] also in the case of
eclarative process models based on Declare [38]. For example,
he EMD distance studied in [19] indeed combines reallocation
istances on probabilities with alignment distances between each
og trace and the stochastic Petri net.

In a nutshell, alignments provide an indication about the dif-
erence between an observed trace and a model trace, typically
mploying variants of the Levenshtein distance, e.g., counting
ow many insertions and deletions have to be applied to make
he two traces equal. The alignment distance between an ob-
erved trace and a whole model is then computed as the smallest
ossible distance between the observed trace and the model
races.

In the context of our EMD, instead of relating a trace τ to a
scenario S by first obtaining the scenario S ′ to which τ belongs,
then comparing S to S ′ via the notion of bit-flipping distance
(cf. Definition 19), one could employ the alignment distance
between τ and S instead. This can be done, e.g., by computing
the deterministic automaton AΦS for the characteristic formula
of S (cf. Definition 15), then using the technique in [38]. Notice
that this notion of distance is not a number in [0, 1]. However,
we can easily normalize it against the worst possible alignment
between τ of S, which is one where τ has nothing in common
with the traces belonging to S; if this happens, then the alignment
distance is |τ | + mS , where mS is the length of the shortest trace
(in this case, the best to select) belonging to S.

Example 25. Consider the trace τ = ⟨close, acc⟩ from Exam-
ple 23, and the three relevant scenarios S011, S101, and S110 from
Fig. 1 and Example 24. Recall that τ belongs to scenario S101.
Hence, the bit-flipping distances are 0 with S101 itself, and 2/3
with both S011 and S110.

Consider instead the alignment distance between τ and the
three scenarios. Since τ belongs to S101, the alignment distance
is in this case 0, as τ gets compared to itself. In the case of
S110, instead, the (model) trace from S110 that is closest to τ is
τ ′

= ⟨close, acc, ref⟩; this yields an alignment distance of 1,
considering that by adding ref at the end of τ we get τ ′. To
normalize this distance, we note that the shortest trace length
for S110 is actually 3 (being τ ′ one of the shortest traces in S110).
Considering that the length of τ is 2, we then get a distance of
1/5. Finally, in the case S011, we have that the closest trace in S011
is τ ′′

= ⟨close, ref⟩, which is also the shortest one. The alignment
distance between τ and τ ′′ is 2, as one needs to remove acc and
insert ref to turn τ into τ ′′. Hence, the normalized distance is 2/4.

Apart from the fact that the distance values are numerically
different when moving from flipping to alignment distance, what
is more important to notice is that while the bit-flipping distance
considers scenarios S011 and S110 as being equally distant from τ ,
this is not the case for the alignment distance.

All in all, if one is interested in differentiating traces that
violate a scenario based on ‘‘how close’’ they are to traces be-
longing to that scenario, the bit-flipping distance-based EMD can
be replaced with a different EMD, where the element distance
used therein relies on the normalized alignment distance instead
of the (scenario-based) bit-flipping distance. An in-depth study of
this aspect is matter of future work.

8. Evaluation

In the following, we present the evaluation results for the
three main approaches introduced in this paper (process dis-
covery, conformance checking, and monitoring). All parts of the
evaluation are based on the BPIC2018 event log [20], which is
a real life event log pertaining to the process of handling ap-

plications for EU direct payments for German farmers from the

17
Table 2
General statistics for the BPIC2018 sub-logs.

2015 2016 2017

Activities 152 145 102
Events 897678 763710 852610
Cases 14746 14550 14507
Variants 12244 8655 8020

European Agricultural Guarantee Fund. For our analysis, we split
the log into 3 sub-logs consisting of all the cases with initial
event occurring in 2015, 2016, and 2017, respectively. The general
statistics for these 3 sub-logs are shown in Table 2. We decided
to split the log in this way, because a specific part of the process
was redesigned starting from 2016 and another redesign of the
same part followed starting from 2017. In particular, in 2016, the
document Parcel document was replaced by the document Geo
Parcel Document, and in 2017, the document Department Control
Parcels document was also replaced by Geo Parcel Document.
uring both redesigns, all the related activities also changed, thus
llowing us to get different discovery results per year and to
ompare a model discovered from one sub-log with the other
ub-logs and identify some discrepancies.
The evaluation is aimed at answering the following research

uestions:

• Process discovery

RQ1.1 How does the size of a discovered probabilistic model
vary when changing the minimum probability al-
lowed for the constraints in the model?

RQ1.2 How does the performance of the discovery task vary
when changing the minimum probability allowed for
the constraints in the model?

• Conformance checking

RQ2.1 How sensitive is the EMD measure for different con-
straint probability distributions in the reference
model?

RQ2.2 How does the computation of the EMD measure scale
when the size of the reference model increases?

RQ2.3 How does the computation of the EMD measure scale
when the noise in the log increases?

RQ2.4 Is the EMD measure capable of detecting confor-
mance/non-conformance in a real life event log?

• Monitoring

RQ3.1 How does the monitoring approach scale when the
size of the reference model increases?

RQ3.2 Is the scaling of the monitoring approach effected by
the ratio of consistent/inconsistent scenarios?

.1. Process discovery

All process discovery tests were performed using the Declare
iner [10] in RuM [39]. The templates used for the discovery are

he ones shown in Table 1. We considered only constraints over
ctivities occurring in at least 10% of the cases, and we filtered
ut redundant [11] and vacuously satisfied [28] constraints.
Table 3 shows the number of discovered constraints for dif-

erent values of minimum constraint support, i.e., the minimum
ercentage of cases in which a discovered constraint must be
non-vacuously) satisfied. In general, the number of discovered
onstraints increases when the minimum constraint support de-
reases. However, this is not always the case since, sometimes,
ecreasing the minimum constraint support implies a higher

A. Alman, F.M. Maggi, M. Montali et al. Information Systems xxx (xxxx) xxx

e

Table 3
Process discovery results for cases starting in 2015, 2016, and 2017. Model sizes
are given in number of discovered constraints. Process discovery times are given
in milliseconds.
Min.
Supp.

2015 2016 2017

Model
Size

Time Model
Size

Time Model
Size

Time

100 20 136568 44 132482 48 93229
90 107 141607 90 131715 88 95678
80 106 143252 86 130673 91 96318
70 110 140688 86 130043 91 95737
60 116 141079 91 130523 89 95529
50 126 143743 100 132659 88 94283
40 141 142667 105 132954 97 95468
30 141 144505 107 131449 99 95679
20 150 146350 115 131993 106 95401
10 195 150678 143 136280 115 97577

number of redundant constraints that can be removed (RQ1.1).
Interestingly, the minimum constraint support represents, in the
probabilistic context, the minimum probability of all the con-
straints discovered with that minimum constraint support value,
and the support of every single discovered constraint can be
used as the satisfaction probability of that constraint in the input
log. In the same table, we also report the execution times in
milliseconds, which clearly depend on the number of activities
available in the sub-logs (the higher the number of activities,
the higher the execution time). This is due to the fact that a
higher number of activities means more candidate constraints to
be checked in the discovery task (RQ1.2).

8.2. Conformance checking

Conformance checking was carried on with the prototype
available at https://bitbucket.org/fmmaggi/probabilisticmonitor/
src/master/. First, we evaluated the sensitivity of the EMD mea-
sure by analyzing how the value of this measure changes when
changing the probabilities of the constraints in the reference
model used in the conformance checking task. Second, we used
constraints discovered from the 2015 sub-log of the BPIC2018
event log to evaluate the performance of the approach by check-
ing their conformance against the 2016 and the 2017 sub-logs.

8.2.1. EMD sensitivity
We used, as reference model, a set of 5 constraints satisfied in

all cases of the 2015 sub-log so that all potential scenarios derived
from this set of constraints would be consistent. Consistency of
scenarios is important in this case, because it allows us to modify
the probabilities of the selected constraints manually without
running the risk of creating an inconsistent model.5

Then, we manually set the probability of one constraint to 0.75
in the reference model, thus causing a miss-match between the
model and the log (we always use the 2015 sub-log for these
experiments). Then, we set two constraints to 0.75 and so on.
This procedure gives us a better understanding of how the EMD
measure reflects the probabilistic non-conformance between a
model and an event log.

The results are shown in Table 4. Here, we can see that the
endpoints of the conformance/non-conformance spectrum are
reflected in the EMD measure quite well (tests 1–6 and 16–21).
However, in the middle of the conformance/non-conformance
spectrum multiple tests result in the same EMD measure (tests

5 An example of a model that is inconsistent because of probabilities is
xactly1(a) - 1.0 and absence2(a) - 0.5, because if exactly1(a) is always satisfied

then absence2(a) must also be always satisfied and cannot therefore have a
probability of 0.5.
18
Table 4
EMD measures at different levels of probability miss-matches between the
reference model and the event log. All given constraints are always fulfilled
in the given event log (probability of 1.0 in the event log), but the probabilities
in the model are changed for each test. Conformance checking times are given
in milliseconds.
Scenario Constraint probability distribution EMD Time

0% 25% 50% 75% 100%

1 5 1 9 979
2 1 4 0.95 10187
3 2 3 0.9 10505
4 3 2 0.8 10237
5 4 1 0.65 10587
6 5 0.55 9 966
7 1 4 0.525 10257
8 2 3 0.525 10175
9 3 2 0.525 9 486

10 4 1 0.525 9 416
11 5 0.5 10027
12 1 4 0.475 10869
13 2 3 0.475 10202
14 3 2 0.475 10215
15 4 1 0.475 9 577
16 5 0.45 9 832
17 1 4 0.35 9 429
18 2 3 0.2 10098
19 3 2 0.1 10433
20 4 1 0.05 10581
21 5 0 9 987

7–10 and 11–15), despite the differences in constraint probability
distributions. Therefore, we can conclude that the sensitivity of
the EMD is maximum when the constraints in the reference
model have very high or very low probabilities (RQ2.1).

8.2.2. EMD performance
Given the overall high number of constraints discovered from

the BPIC2018 sub-logs and the resulting high number of potential
scenarios,6 we decided to select a smaller sub-set of constraints
to use in the EMD performance evaluation. More specifically, we
used the model discovered from the 2015 sub-log (with minimum
constraint support of 90, corresponding to constraints with prob-
ability of at least 90%). This model was then compared against the
2016 sub-log, in order to identify relevant sub-sets of constraints
to use. We identified two sets of 9 constraints that were the most
fulfilled and the most violated ones (when considered as crisp
constraints) respectively.7

These probabilistic models (defined by combining the discov-
ered constraints with their support as probability) were then
used to run the conformance checking task against the 2016 and
the 2017 sub-logs. Furthermore, to estimate the scalability of
the approach, we ran each test with an increasing number of
constraints. The results are shown in Tables 5–6.

First of all, we notice that the constraints with the highest
number of fulfillments in the 2016 sub-log have EMD values
always equal to 1 when using both the 2016 and the 2017
sub-logs, whereas the constraints with the highest number of
violations in the 2016 sub-log have lower EMD values for both the
2016 and the 2017 sub-logs. This means that the probabilities of
the constraints are stable across all three sub-logs (2015, 2016,
and 2017) for the first sub-set of constraints, whereas for the
second sub-set of constraints the probabilistic model discovered
from the 2015 sub-log is neither compliant with the 2016 sub-
log nor with the 2017 sub-log. This scenario shows that the
EMD-based conformance checking, when applied to a real life

6 Number of potential scenarios to be checked for consistency is 2n , where
n is the number of probabilistic constraints.
7 To do this we used the Declare Analyzer [40] in RuM.

https://bitbucket.org/fmmaggi/probabilisticmonitor/src/master/
https://bitbucket.org/fmmaggi/probabilisticmonitor/src/master/
https://bitbucket.org/fmmaggi/probabilisticmonitor/src/master/

A. Alman, F.M. Maggi, M. Montali et al. Information Systems xxx (xxxx) xxx
Table 5
Constraints from 2015 (min. support 90) that are most fulfilled in 2016
compared against 2016 and 2017 sub-logs. Conformance checking times are
given in milliseconds.
Model
Size

Scenarios Year 2016 Year 2017

Total Consistent EMD Time EMD Time

1 2 2 1 7 559 1 7 393
2 4 4 1 8 013 1 7 984
3 8 8 1 7 733 1 8 234
4 16 13 1 7 890 1 8 504
5 32 21 1 9 199 1 9 410
6 64 34 1 9 584 1 10729
7 128 55 1 10113 1 12336
8 256 89 1 15451 1 20498
9 512 131 1 121639 1 138779

Table 6
Constraints from 2015 (min. support 90) that are most violated in 2016
compared against 2016 and 2017 sub-logs. Conformance checking times are
given in milliseconds.
Model
Size

Scenarios Year 2016 Year 2017

Total Consistent EMD Time EMD Time

1 2 2 0.02 7694 0.01 7 767
2 4 4 0.025 7341 0.03 7 817
3 8 8 0.045 7711 0.04 8 144
4 16 16 0.06 8335 0.055 8 434
5 32 32 0.05 8609 0.04 8 769
6 64 64 0.04 9666 0.035 11067
7 128 128 0.035 12501 0.035 12737
8 256 256 0.03 28403 0.155 24974
9 512 512 0.045 124429 0.25 105251

event log (with known misconformancies), can successfully de-
tect both conformance and non-conformance in a probabilistic
setting (RQ2.4).

We can also notice that the number of inconsistent scenarios
strongly depends on the structure of the reference model. More
specifically, if the reference model contains constraints that inter-
act,8 with each other (in this specific case, this happens for the
model containing constraints with the highest number of fulfill-
ments), then the model is also more likely to have inconsistent
scenarios.

Finally, the EMD-based conformance checking has a reason-
ably good performance but a noticeable slowdown occurs after 8
constraints. As expected, the execution times increase when the
size of the reference model increases (RQ2.2). However, the time
performance is not affected by the amount of noise present in
the log, i.e., by the amount of discrepancies between the model
and the log. Indeed, the execution times needed for executing
the conformance checking task when values of the EMD mea-
sure are high (most fulfilled constraints) and low (most violated
constraints) are comparable (RQ2.3).

8.3. Monitoring

The evaluation of monitoring was performed analogously to
the EMD performance evaluation. Exactly the same models were
used (sets of 9 constraints discovered from 2015 that were most
fulfilled, and most violated in 2016) and the performance was

8 Consider, for example, two models, the first consisting of existence(a) and
existence(b), and the second consisting of existence(a) and response(a,b). The
constraints in the first model involve different activities and, therefore, do not
’interact’ with each other, resulting in all potential scenarios being consistent.
However, both constraints in the second model involve the same activity a,
and therefore do ‘interact’ with each other, which may result in some potential
scenarios being inconsistent. In particular, both existence(a) and response(a,b)
cannot be simultaneously violated.
19
Table 7
Constraints from 2015 (min. support 90) that are fulfilled the most in 2016
monitored against first 100 traces in 2016 and 2017 sub-logs. Monitoring times
are given in milliseconds.
Model
Size

Processing times (year 2016) Processing times (year 2017)

Model Event avg. Trace avg. Model Event avg. Trace avg.

1 71 0.05 2.41 69 0.05 2.81
2 87 0.04 2.23 86 0.05 2.79
3 115 0.03 1.80 114 0.05 2.79
4 165 0.03 1.82 168 0.05 2.77
5 261 0.04 2.34 297 0.05 2.61
6 492 0.04 2.33 536 0.05 3.00
7 1152 0.05 2.56 1181 0.04 2.52
8 2974 0.05 2.40 2902 0.05 2.74
9 12987 0.04 2.57 12890 0.05 2.79

Table 8
Constraints from 2015 (min. support 90) that are violated the most in 2016
monitored against first 100 traces in 2016 and 2017 sub-logs. Monitoring times
are given in milliseconds.
Model
Size

Processing times (year 2016) Processing times (year 2017)

Model Event avg. Trace avg. Model Event avg. Trace avg.

1 84 0.06 3.37 70 0.05 2.67
2 85 2.74 140.71 83 2.58 146.76
3 115 2.86 146.87 114 2.68 152.49
4 180 2.98 153.16 178 2.81 159.48
5 313 3.14 161.71 312 3.28 186.13
6 671 3.47 178.38 672 3.60 204.45
7 1581 4.68 240.46 1782 4.98 282.40
8 4929 7.68 394.70 4867 7.81 443.32
9 16405 18.00 923.02 16491 18.34 1041.13

evaluated using both the 2016 and the 2017 sub-logs. For all the
tests, we report the average event and trace processing times
and also the model pre-processing time. The latter refers to
computation steps that are performed before processing any of
the events being monitored (e.g., checking the consistency of
potential scenarios), and therefore is unaffected by the size of
the event log itself. The results of the monitoring evaluation are
shown in Tables 7–8.

Overall, events and traces are processed near-instantaneously,
especially in the case of the most fulfilled constraints, while the
model preprocessing times ramp up at around 8 or 9 constraints
(RQ3.1). However, there is a noticeable difference in performance
between the most fulfilled (Table 7) and the most violated (Ta-
ble 8) constraints, with the latter being slower overall. As shown
in Section 8.2.2, this is due to the fact that all potential scenarios
in the set of the most violated constraints are consistent and
therefore need to be considered during monitoring. Instead, the
set of the most fulfilled constraints has significantly less consis-
tent scenarios, leading to a better overall performance. This shows
that the number of consistent scenarios (and therefore also the
structure of the probabilistic reference model) has a noticeable
effect on the monitoring performance (RQ3.2).

9. Related work

As we already mentioned in the introduction, it is surprising
that only very few process mining approaches incorporate un-
certainty as a first-class citizen. Recently, uncertainty has been
considered in (procedural) process mining, mainly in the context
of approaches for stochastic conformance checking [12,32–35].

In [12], the authors propose a conformance measure that
considers the stochastic characteristics of both the event log
and the process model. The measure is based on the EMD and
measures the effort to transform the distributions of traces of the
event log into the distribution of traces of the process model.
We take inspiration from this contribution when defining our

A. Alman, F.M. Maggi, M. Montali et al. Information Systems xxx (xxxx) xxx

c
t
m

c
w
t
s
t

m
t
t

f
n
s
t
c
p
q

i
f
h
s
o
g
t
m
s

f
f
m
o

1

s
m
v
p
s

s
t
o
o
p
c
h
u
t

f
i
o
p
O
m
f

onformance measure based on the EMD that we use to check
he conformance of an event log with respect to a ProbDeclare
odel.
In [32], the authors extend the standard precision and recall

onformance measures between process models and event logs
ith the support of partially matching processes. In addition,
hey introduce the desired properties that conformance measures
upporting partially matching processes should fulfill and show
hat the presented measures fulfill them.

In [33], the authors propose precision and recall conformance
easures based on the notion of entropy of stochastic automata

hat are capable of quantifying frequent and rare deviations be-
ween an event log and a process model.

In [34], the authors present an entropic relevance measure
or stochastic conformance checking, computed as the average
umber of bits required to compress each log trace, based on the
tructure and information about relative likelihoods provided by
he model. The measure penalizes traces from the event log not
aptured by the model and traces described by the model but not
resent in the event log, thus addressing both precision and recall
uality criteria at the same time.
Standard measures to describe the quality of a process spec-

fication automatically discovered from execution logs neither
ulfill essential properties, such as monotonicity, nor can they
andle infinite behavior. In [35], the authors address this re-
earch problem by introducing a framework for the definition
f behavioral quotients. They prove that corresponding quotients
uarantee desired properties that existing measures have failed
o support. They use quotients for capturing precision and recall
easures between a collection of recorded executions and a
ystem specification.
All the mentioned approaches are limited to (procedural) con-

ormance checking whereas, in this paper, we propose a holistic
ramework that allows us to interpret all the branches of process
ining based on declarative models from the probabilistic point
f view.

0. Conclusions

In this paper, we investigate the influence of probabilistic con-
traints on the state-of-the-art techniques for declarative process
ining. In particular, we introduce a holistic framework pro-
iding a rigorous formalization of how the standard declarative
rocess mining approaches can be interpreted when replacing
tandard, certain constraints with their probabilistic counterparts.
We first define the semantics of probabilistic constraints and

how how probabilistic constraints can be used to naturally lift
he Declare language to its probabilistic version ProbDeclare. We
bserve that probabilistic Declare constraints can be discovered
ff-the-shelf using already existing techniques for declarative
rocess discovery. Then, we study how to monitor probabilistic
onstraints and we show how conformance checking can be
andled providing a notion of earth mover’s distance that can be
sed to represent the degree of conformance of a log with respect
o a ProbDeclare model.

In the future, we would like to experiment the presented
ramework in practical case studies and deeply investigate the
mplications that probabilistic constraints bring in the context
f process mining analysis and how the richer feedback they
rovide to the user can be used in different application domains.
f particular interest is to understand how the plethora of process
ining techniques presented here (including the different choices

or discovery and earth mover’s distance) could be combined with
20
a filtering layer on the produced results, toward returning a more
intuitive output for end users.

We are also investigating the consequences that taking into
consideration stochastic aspects brings in the context of the wide
range of existing procedural process mining techniques.

Finally, we would like to investigate the interplay of the prob-
abilistic perspective in the contexts of standard multi-perspective
process mining frameworks where not only control flow is con-
sidered, but also metric time and data.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This work has been partially supported by the Estonian Re-
search Council (project PRG1226), by the UNIBZ, Italy projects
VERBA, WineID, QUEST, CAT, and by the CHIST-ERA, France 2014–
2020 Project PACMEL.

References

[1] S.W. Sadiq, W. Sadiq, M.E. Orlowska, Pockets of flexibility in workflow
specification, in: H.S. Kunii, S. Jajodia, A. Sølvberg (Eds.), Proceedings of
the 20th International Conference on Conceptual Modeling (ER 2001), in:
LNCS, vol. 2224, Springer, 2001, pp. 513–526.

[2] M. Pesic, H. Schonenberg, W.M.P. van der Aalst, DECLARE: Full support for
loosely-structured processes, in: Proceedings of the 11th IEEE International
Enterprise Distributed Object Computin Conference (EDOC 2007), IEEE
Computer Society, 2007.

[3] T.T. Hildebrandt, R.R. Mukkamala, Declarative event-based workflow as
distributed Dynamic Condition Response Graphs, in: K. Honda, A. My-
croft (Eds.), Proceedings of the 3rd Workshop on Programming Language
Approaches to Concurrency and communication-cEntric Software (PLACES
2010), in: EPTCS, vol. 69, 2010, pp. 59–73.

[4] M. Montali, M. Pesic, W.M.P. van der Aalst, F. Chesani, P. Mello, S. Storari,
Declarative specification and verification of service choreographies, ACM
Trans. Web 4 (1) (2010) 3:1–3:62.

[5] M. Montali, Specification and Verification of Declarative Open Interaction
Models: a Logic-Based Approach, in: LNBIP, vol. 56, Springer, 2010.

[6] G. De Giacomo, M.Y. Vardi, Linear Temporal Logic and Linear Dynamic
Logic on finite traces, in: Proceedings of the 23rd International Joint
Conference on Artificial Intelligence (IJCAI 2013), AAAI Press, 2013, pp.
854–860.

[7] M. Westergaard, C. Stahl, Leveraging super-scalarity and parallelism to
provide fast declare mining without restrictions, in: M. Fauvet, B.F. van
Dongen (Eds.), Proceedings of the BPM Demo sessions 2013, in: CEUR
Workshop Proceedings, vol. 1021, CEUR-WS.org, 2013.

[8] C. Di Ciccio, M. Mecella, On the discovery of declarative control flows for
artful processes, ACM Trans. Manag. Inf. Syst. 5 (4) (2015) 24:1–24:37.

[9] S. Schönig, A. Rogge-Solti, C. Cabanillas, S. Jablonski, J. Mendling, Efficient
and customisable declarative process mining with SQL, in: Proceedings
of the 28th International Conference on Advanced Information Systems
Engineering (CAiSE 2016), vol. 9694, Springer, 2016, pp. 290–305.

[10] F.M. Maggi, C. Di Ciccio, C. Di Francescomarino, T. Kala, Parallel algorithms
for the automated discovery of declarative process models, Inf. Syst. 74
(Part) (2018) 136–152.

[11] C. Di Ciccio, F.M. Maggi, M. Montali, J. Mendling, Resolving inconsistencies
and redundancies in declarative process models, Inf. Syst. 64 (2017).

[12] S.J.J. Leemans, A.F. Syring, W.M.P. van der Aalst, Earth movers’ stochastic
conformance checking, in: T.T. Hildebrandt, B.F. van Dongen, M. Röglinger,
J. Mendling (Eds.), Proceedings of the Business Process Management Forum
2019, in: LNBIP, vol. 360, Springer, 2019.

[13] F.M. Maggi, M. Montali, R. Peñaloza, Temporal logics over finite traces
with uncertainty, in: Proceedings of the 34-th AAAI Conference on Artificial
Intelligence (AAAI 2020), AAAI Press, 2020, pp. 10218–10225.

[14] F.M. Maggi, M. Montali, R. Peñaloza, A. Alman, Extending temporal business
constraints with uncertainty, in: D. Fahland, C. Ghidini, J. Becker, M.
Dumas (Eds.), Proceedings of the 18th International Conference on Business
Process Management (BPM 2020), vol. 12168, Springer, 2020, pp. 35–54.

[15] W.M.P. van der Aalst, Process Mining - Data Science in Action, 2nd,
Springer, 2016.

http://refhub.elsevier.com/S0306-4379(22)00034-5/sb1
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb1
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb1
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb1
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb1
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb1
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb1
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb2
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb2
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb2
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb2
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb2
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb2
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb2
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb3
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb3
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb3
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb3
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb3
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb3
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb3
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb3
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb3
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb4
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb4
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb4
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb4
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb4
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb5
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb5
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb5
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb6
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb6
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb6
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb6
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb6
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb6
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb6
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb7
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb7
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb7
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb7
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb7
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb7
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb7
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb8
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb8
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb8
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb9
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb9
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb9
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb9
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb9
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb9
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb9
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb10
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb10
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb10
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb10
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb10
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb11
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb11
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb11
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb12
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb12
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb12
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb12
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb12
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb12
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb12
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb13
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb13
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb13
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb13
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb13
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb14
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb14
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb14
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb14
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb14
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb14
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb14
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb15
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb15
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb15

A. Alman, F.M. Maggi, M. Montali et al. Information Systems xxx (xxxx) xxx
[16] E. Lamma, P. Mello, M. Montali, F. Riguzzi, S. Storari, Inducing declarative
logic-based models from labeled traces, in: G. Alonso, P. Dadam, M.
Rosemann (Eds.), Proceedings of the 5th International Conference on
Business Process Management (BPM 2007), in: LNCS, vol. 4714, Springer,
2007, pp. 344–359.

[17] C. Di Ciccio, F.M. Maggi, J. Mendling, Efficient discovery of target-branched
declare constraints, Inf. Syst. 56 (2016) 258–283.

[18] J. Carmona, B.F. van Dongen, A. Solti, M. Weidlich, Conformance Checking
- Relating Processes and Models, Springer, 2018.

[19] S.J.J. Leemans, W.M.P. van der Aalst, T. Brockhoff, A. Polyvyanyy, Stochastic
process mining: Earth movers’ stochastic conformance, Inf. Syst. 102 (2021)
101724.

[20] B. van Dongen, F. Borchert, BPI Challenge 2018, http://dx.doi.org/
10.4121/uuid:3301445f-95e8-4ff0-98a4-901f1f204972, 4TU.ResearchData
URL https://data.4tu.nl/articles/dataset/BPI_Challenge_2018/12688355/1.

[21] G. De Giacomo, R. De Masellis, M. Grasso, F.M. Maggi, M. Montali,
Monitoring business metaconstraints based on LTL and LDL for finite
traces, in: S.W. Sadiq, P. Soffer, H. Völzer (Eds.), Proceedings of the 12th
International Conference on Business Process Management (BPM 2014), in:
LNCS, vol. 8659, Springer, 2014, pp. 1–17.

[22] M. Montali, P. Torroni, F. Chesani, P. Mello, M. Alberti, E. Lamma, Abductive
logic programming as an effective technology for the static verification of
declarative business processes, Fundam. Inform. 102 (3–4) (2010) 325–361.

[23] M. Westergaard, Better algorithms for analyzing and enacting declarative
workflow languages using LTL, in: S. Rinderle-Ma, F. Toumani, K. Wolf
(Eds.), Proceedings of the 9th International Conference on Business Process
Management (BPM 2011), in: LNCS, vol. 6896, Springer, 2011, pp. 83–98.

[24] S. Zhu, L. Tabajara, J. Li, G. Pu, M. Vardi, Symbolic LTLf synthesis, in: C.
Sierra (Ed.), Proceedings of the 26-th International Joint Conference on
Artificial Intelligence (IJCAI 2017), ijcai.org, 2017, pp. 1362–1369.

[25] S. Zhu, G. De Giacomo, G. Pu, M. Vardi, LTLf synthesis with fairness and
stability assumptions, in: Proceedings of the 34-th AAAI Conference on
Artificial Intelligence (AAAI 2020), AAAI Press, 2020, pp. 3088–3095.

[26] L.M. Tabajara, M.Y. Vardi, LTLF synthesis under partial observability:
From theory to practice, in: J. Raskin, D. Bresolin (Eds.), Proceedings
11th International Symposium on Games, Automata, Logics, and Formal
Verification (GandALF 2020), in: EPTCS, vol. 326, 2020, pp. 1–17.

[27] F.M. Maggi, M. Montali, M. Westergaard, W.M.P. van der Aalst, Monitoring
business constraints with Linear Temporal Logic: An approach based on
colored automata, in: S. Rinderle-Ma, F. Toumani, K. Wolf (Eds.), Proceed-
ings of the 9th International Conference on Business Process Management
(BPM 2011), in: LNCS, vol. 6896, Springer, 2011, pp. 132–147.

[28] C. Di Ciccio, F.M. Maggi, M. Montali, J. Mendling, On the relevance of a
business constraint to an event log, Inf. Syst. 78 (2018).
21
[29] C. Di Ciccio, F.M. Maggi, M. Montali, J. Mendling, Ensuring model consis-
tency in declarative process discovery, in: H.R. Motahari-Nezhad, J. Recker,
M. Weidlich (Eds.), Proceedings of the 13th International Conference on
Business Process Management (BPM 2015), in: LNCS, vol. 9253, Springer,
2015, pp. 144–159.

[30] F.M. Maggi, M. Westergaard, M. Montali, W.M.P. van der Aalst, Runtime
verification of LTL-based declarative process models, in: S. Khurshid, K.
Sen (Eds.), Proceedings of the 2nd International Conference on Runtime
Verification (RV 2011), in: LNCS, vol. 7186, Springer, 2011, pp. 131–146.

[31] A. Bauer, M. Leucker, C. Schallhart, Runtime verification for LTL and TLTL,
ACM Trans. Softw. Eng. Methodol. 20 (4) (2011) 14:1–14:64.

[32] A. Polyvyanyy, A.A. Kalenkova, Monotone conformance checking for par-
tially matching designed and observed processes, in: Proceedings of the
1st International Conference on Process Mining (ICPM 2019), IEEE, 2019,
pp. 81–88.

[33] S.J.J. Leemans, A. Polyvyanyy, Stochastic-aware conformance checking: An
entropy-based approach, in: S. Dustdar, E. Yu, C. Salinesi, D. Rieu, V. Pant
(Eds.), Proceedings of the 32nd International Conference on Advanced
Information Systems Engineering (CAiSE 2020), in: LNCS, vol. 12127,
Springer, 2020, pp. 217–233.

[34] A. Polyvyanyy, A. Moffat, L. García-Bañuelos, An entropic relevance mea-
sure for stochastic conformance checking in process mining, in: B.F. van
Dongen, M. Montali, M.T. Wynn (Eds.), 2nd International Conference on
Process Mining (ICPM 2020), IEEE, 2020, pp. 97–104.

[35] A. Polyvyanyy, A. Solti, M. Weidlich, C. Di Ciccio, J. Mendling, Monotone
precision and recall measures for comparing executions and specifications
of dynamic systems, ACM Trans. Softw. Eng. Methodol. 29 (3) (2020)
17:1–17:41.

[36] G. Bergami, F.M. Maggi, M. Montali, R. Peñaloza, Probabilistic trace align-
ment, in: C. Di Ciccio, C. Di Francescomarino, P. Soffer (Eds.), Proceedings
of the 3rd International Conference on Process Mining (ICPM 2021), IEEE,
2021, pp. 9–16.

[37] L. Rüschendorf, The wasserstein distance and approximation theorems,
Probab. Theory Related Fields 70 (1) (1985) 117–129.

[38] M. de Leoni, F.M. Maggi, W.M.P. van der Aalst, An alignment-based
framework to check the conformance of declarative process models and
to preprocess event-log data, Inf. Syst. 47 (2015) 258–277.

[39] A. Alman, C. Di Ciccio, D. Haas, F.M. Maggi, A. Nolte, Rule mining with
RuM, in: B.F. van Dongen, M. Montali, M.T. Wynn (Eds.), Proceedings of
the 2nd International Conference on Process Mining (ICPM 2020), IEEE,
2020, pp. 121–128.

[40] A. Burattin, F.M. Maggi, A. Sperduti, Conformance checking based on
multi-perspective declarative process models, Expert Syst. Appl. 65 (2016)
194–211.

http://refhub.elsevier.com/S0306-4379(22)00034-5/sb16
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb16
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb16
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb16
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb16
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb16
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb16
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb16
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb16
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb17
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb17
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb17
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb18
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb18
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb18
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb19
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb19
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb19
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb19
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb19
http://dx.doi.org/10.4121/uuid:3301445f-95e8-4ff0-98a4-901f1f204972
http://dx.doi.org/10.4121/uuid:3301445f-95e8-4ff0-98a4-901f1f204972
http://dx.doi.org/10.4121/uuid:3301445f-95e8-4ff0-98a4-901f1f204972
https://data.4tu.nl/articles/dataset/BPI_Challenge_2018/12688355/1
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb21
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb21
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb21
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb21
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb21
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb21
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb21
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb21
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb21
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb22
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb22
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb22
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb22
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb22
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb23
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb23
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb23
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb23
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb23
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb23
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb23
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb24
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb24
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb24
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb24
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb24
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb25
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb25
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb25
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb25
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb25
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb26
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb26
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb26
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb26
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb26
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb26
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb26
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb27
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb27
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb27
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb27
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb27
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb27
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb27
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb27
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb27
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb28
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb28
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb28
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb29
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb29
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb29
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb29
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb29
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb29
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb29
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb29
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb29
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb30
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb30
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb30
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb30
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb30
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb30
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb30
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb31
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb31
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb31
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb32
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb32
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb32
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb32
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb32
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb32
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb32
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb33
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb33
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb33
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb33
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb33
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb33
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb33
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb33
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb33
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb34
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb34
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb34
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb34
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb34
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb34
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb34
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb35
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb35
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb35
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb35
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb35
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb35
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb35
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb36
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb36
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb36
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb36
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb36
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb36
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb36
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb37
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb37
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb37
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb38
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb38
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb38
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb38
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb38
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb39
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb39
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb39
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb39
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb39
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb39
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb39
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb40
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb40
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb40
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb40
http://refhub.elsevier.com/S0306-4379(22)00034-5/sb40

	Probabilistic declarative process mining
	Introduction
	Preliminaries
	LTL over finite traces
	Declare

	Probabilistic process constraints: Modeling and reasoning
	Stochastic languages and event logs
	Probabilistic process constraints
	Interlude: the PLTLf0 Logic
	Probabilistic declare

	Reasoning over multiple probabilistic constraints
	Constraint scenarios
	Logical characterization and consistency of scenarios
	Probabilistic characterization of scenarios and combined reasoning

	Discovering ProbDeclare models from event logs
	Support as uncertainty
	Discovery of Relaxed ProbDeclare Models

	Monitoring probabilistic constraints
	Prefix monitoring
	Full monitoring

	Probabilistic conformance checking
	Scenario distance
	Log-induced probability distributions
	Earth mover's distance for
	An alternative EMD based on alignments

	Evaluation
	Process discovery
	Conformance checking
	EMD sensitivity
	EMD performance

	Monitoring

	Related work
	Conclusions
	Declaration of competing interest
	Acknowledgments
	References

